
1

Lattices for
Error Correction and Rewriting in Flash Memories

Brian M. Kurkoski

Abstract—This paper gives an overview of the author’s
recent results on using lattices for error-correction and
rewriting in flash memories. A construction using the E8
lattice and Reed-Solomon codes for error-correction in flash
memory has a performance advantage of 1.7 to 2.0 dB. A
rewriting code construction for flash memories based upon
lattices has an minimum number of writes linear in one code
parameter.

I. BACKGROUND

Flash memory is being used in an increasing larger
variety of applications, expanding from digital cameras
and MP3 players, to solid-state drives for not only laptop
computers, but also in high-performance drives for “cloud
computing” data centers. As such, improving the reliability,
data density, and lifetime of the memory have become
significant goals. Coding theory has two roles to play in
achieving these goals. The first is familiar — to correct
errors induced by the reading and writing process. The
second is more novel — allowing rewriting while avoiding
the erase operation that shortens the life of the flash
memory.

For error-correction, numerous approaches have been
considered, although BCH codes are predominant in prac-
tice [3]. In commercial flash memory products, the memory
and error-correction functions are separated. The flash chip
makes hard decisions internally; these hard decisions are
passed to an external chip for implementation of error-
correction. Single-level flash stores just two levels (or one
bit), but multi-level flash stores q levels (or log2 q bits) [4]
[5].

Rewriting codes are a coding-theoretic approach to allow
rewriting to memories flash memories, where values stored
in memory may only be increased. While codes for binary
media were proposed in the 1980s [6], [7], within the past
few years, a large number of rewriting codes directed at
flash memory have been described [8], [9], [10], [11], [12].
As with error-correcting codes, most of these these floating
codes or flash codes are designed for flash memory cells
that can store one of q discrete levels.

However, charge is stored in a physical flash cell during
write operations. Charge, read as a voltage, is an inherently
continuous quantity. Commercial flash memory makes hard
decisions, and any coding, for error-correction and rewrit-
ing, must operate on these discrete values. It is reasonable

kurkoski@ice.uec.ac.jp — Univ. of Electro-Communications, Tokyo,
Japan. This research was supported in part by the Ministry of Education,
Science, Sports and Culture; Grant-in-Aid for Scientific Research (C)
number 21560388.

30 31 32 33 34 35 36 37 38 39 40
10

!12

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

SNR (V
2
 / !

2
, dB)

P
ro

b
a
b
ili

ty
 o

f 
W

o
rd

 E
rr

o
r

 

 
Uncoded lattice
Uncoded PAM

 t=1 t=2 t=3

 t=4

 t=5

BCH!Gray, analytical, t=1,2,3,4,5

RS!E8, analytical,t=1,2,3,4,5

RS!E8 Simulation

Fig. 1. Evaluation of analytical expressions for q = 8 (uncoded 3
bits/cell), and probability of word error from simulation. The proposed
construction of RS codes with E8 lattices has 1.7 to 2 dB better
performance than BCH codes with PAM.

that future flash-memory chips may incorporate on-chip
error-correction or provide soft information, to improve the
error-correction performance. In such a case, the state of
the flash cell is expressed as a voltage, which is a contin-
uous quantity, rather than discrete. The written values are
read back, with added noise. With this assumption, flash
memory strongly resembles conventional AWGN commu-
nication systems, which transmit and receive continuous
signals. While AWGN systems have a power constraint
averaged over time, for the flash memory system, the power
constraint is that there is a maximum and minimum value
that can be written in each cell.

Because the flash cell values are continuous quanti-
ties, this paper takes the signal-space viewpoint that has
long been used for the AWGN channel. Among other
results, it is now known that lattices can achieve the
capacity of the AWGN channel [13] [14], and lattices
appear to be a promising practical approach for bandwidth-
constrained channels [15]. In fact, a related technique,
trellis-coded modulation, has already been considered for
error-correction in flash memories [3].

II. LATTICES FOR FLASH MEMORY

This paper gives a brief overview of the author’s recent
results on using lattices for rewriting and error-correction



2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 (0,0)
 [0,0]

 (0,1)
 [0,1]

 (0,2)
 [0,2]

 (0,3)
 [0,3]

 (0,4)
 [0,4]

 (1,0)
 [1,0]

 (1,1)
 [1,1]

 (1,2)
 [1,2]

 (1,3)
 [1,3]

 (1,4)
 [1,4]

 (2,0)
 [2,0]

 (2,1)
 [2,1]

 (2,2)
 [2,2]

 (2,3)
 [2,3]

 (2,4)
 [2,4]

 (3,0)
 [3,0]

 (3,1)
 [3,1]

 (3,2)
 [3,2]

 (3,3)
 [3,3]

 (3,4)
 [3,4]

 (4,0)
 [4,0]

 (4,1)
 [4,1]

 (4,2)
 [4,2]

 (4,3)
 [4,3]

 (4,4)
 [4,4]

 (0,0)
 [3,2]

 (0,1)
 [3,3]

 (0,2)
 [3,4]

 (0,3)
 [3,0]

 (0,4)
 [3,1]

 (1,0)
 [4,2]

 (1,1)
 [4,3]

 (1,2)
 [4,4]

 (1,3)
 [4,0]

 (1,4)
 [4,1]

 (2,0)
 [0,2]

 (2,1)
 [0,3]

 (2,2)
 [0,4]

 (2,3)
 [0,0]

 (2,4)
 [0,1]

 (3,0)
 [1,2]

 (3,1)
 [1,3]

 (3,2)
 [1,4]

 (3,3)
 [1,0]

 (3,4)
 [1,1]

 (4,0)
 [2,2]

 (4,1)
 [2,3]

 (4,2)
 [2,4]

 (4,3)
 [2,0]

 (4,4)
 [2,1]

 (0,0)
 [4,3]

 (0,1)
 [4,4]

 (0,2)
 [4,0]

 (0,3)
 [4,1]

 (0,4)
 [4,2]

 (1,0)
 [0,3]

 (1,1)
 [0,4]

 (1,2)
 [0,0]

 (1,3)
 [0,1]

 (1,4)
 [0,2]

 (2,0)
 [1,3]

 (2,1)
 [1,4]

 (2,2)
 [1,0]

 (2,3)
 [1,1]

 (2,4)
 [1,2]

 (3,0)
 [2,3]

 (3,1)
 [2,4]

 (3,2)
 [2,0]

 (3,3)
 [2,1]

 (3,4)
 [2,2]

 (4,0)
 [3,3]

 (4,1)
 [3,4]

 (4,2)
 [3,0]

 (4,3)
 [3,1]

 (4,4)
 [3,2]

 (0,0)
 [2,0]

 (0,1)
 [2,1]

 (0,2)
 [2,2]

 (0,3)
 [2,3]

 (0,4)
 [2,4]

 (1,0)
 [3,0]

 (1,1)
 [3,1]

 (1,2)
 [3,2]

 (1,3)
 [3,3]

 (1,4)
 [3,4]

 (2,0)
 [4,0]

 (2,1)
 [4,1]

 (2,2)
 [4,2]

 (2,3)
 [4,3]

 (2,4)
 [4,4]

 (3,0)
 [0,0]

 (3,1)
 [0,1]

 (3,2)
 [0,2]

 (3,3)
 [0,3]

 (3,4)
 [0,4]

 (4,0)
 [1,0]

 (4,1)
 [1,1]

 (4,2)
 [1,2]

 (4,3)
 [1,3]

 (4,4)
 [1,4]

x
1

x
2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 (u
1
,u

2
)

 [a
1
,a

2
]

 (u
1
,u

2
)

 [a
1
,a

2
]

 (u
1
,u

2
)

 [a
1
,a

2
]

 (u
1
,u

2
)

 [a
1
,a

2
]

x
1

x
2

Legend

d = (0, 0) d = (1, 0)

d = (1, 1)d = (0, 1)

s

(A)

(A)

(A)

(A)
x

Information u = (u1, u2)

Hash sequence a = (a1, a2)

Hash function:

ai = ui +mi mod M

where random m are:

d = (0, 0) =⇒ m = (0, 0)

d = (1, 0) =⇒ m = (4, 3)

d = (0, 1) =⇒ m = (3, 2)

d = (1, 1) =⇒ m = (2, 0)

Fig. 2. Illustration of the proposed code for two dimensions, n = 2, G = [1 0; 1
2 1],M = 5, D = 2.

in flash memories. Two submitted conference papers are
available on arXiv, see References [1] and [2].

It is assumed that the values stored in flash cells
correspond to lattice points. From a lattice perspective,
conventional flash, using PAM-like encoding, stores data
at the points {0, . . . , q − 1}n in a rectangular lattice.
However, rectangular lattices are inefficient, and there exist
lattices that have many desirable properties such as better
packing efficiency. The E8 lattice has a number of desirable
properties. Besides being the best-known lattice in eight
dimensions, it also has an efficient decoding algorithm.
The lattice generator matrix is triangular, which makes it
suitable for encoding. In addition, the E8 lattice points
are either integers or half-integers; for implementations,
this may be more suitable than writing arbitrary values to
memory.

A. Lattices for Error-Correction in Flash
For error-correction, the merit of lattices is clear. With

integer spacing, the minimum Euclidean distance of PAM
is 1. For the E8 lattices, the minimum Euclidean distance is
as much as

√
2 ≈ 1.4. However, an outer error-correcting

code is still needed to guarantee data reliability. Because
E8 decoding induces burst-like errors, Reed-Solomon (RS)
codes constructed over GF(28) are used for error correc-
tion. Only the modulo-2 value of the lattice points are
protected by the RS codes; the Euclidean separation of

the lattice points is also important. This system might be
regarded as a type of trellis-coded modulation.

Because flash memory operates at high SNR region,
analytical expressions of word error performance, based
on the union bound, can be developed. Fig. 1 shows the
probability of word error using these analytical expressions
for q = 8 (3 bits per flash cell), and various code rates.
The code parameters are in Table I.

At a probability of word error rate of 10−12, the uncoded
E8 lattice has approximately 1.7 dB better performance
than uncoded PAM. For each code comparison, the error-
correction capability of the RS and BCH code is essentially
the same. This benefit is preserved, and after coding, gains
of 1.7 to 2.0 dB are observed. In addition, simulation of
the proposed system shows that the analytical expressions
are tight at high SNR.

For more details, see Reference [1].

B. Lattice for Rewriting in Flash
Similarly for a rewriting code based on lattices, the cell

values are points of an n-dimensional lattice inside the
cube (0, q−1)n. To allow rewriting, there is a one-to-many
mapping between from the information to the codebook.
To encode an information sequence, the encoder searches
over the candidate codewords and selects one. To aid
this encoding and search, the codebook is partitioned into
subcodebooks, most with a one-to-one mapping. Adding



3

RS over GF(28) BCH over GF(213)

(nc, kc, t) cells N bits k (nc, kc, t) cells N bits k
(172,170,1) 1376 4112 (4109,4096,1) 1370 4096
(172,168,2) 1376 4096 (4122,4096,2) 1374 4096
(173,167,3) 1384 4104 (4135,4096,3) 1379 4096
(174,166,4) 1392 4112 (4148,4096,4) 1383 4096
(174,164,5) 1392 4096 (4161,4096,5) 1387 4096

TABLE I
RS AND BCH CODES CONSIDERED IN FIG. 1

a random component to the encoding will improve the
average number of writes.

The rewriting code construction is best illustrated using
a two-dimensional example, shown in Fig. 2. Since the
dimension is n = 2, this corresponds to writing data
into 2 flash cells. The lattice has a generator matrix
G = [1 0; 1

2 1]. The code consists of all lattice points
inside the square of volume (MD)n, where M and D are
two parameters, M = 5 and D = 2 in this example. This
code can write log2 M = log2 5 bits per cell into 2 flash
cells. The lattice is then partitioned into Dn = 4 blocks.
Each block has a one-to-one mapping between information
and lattice points, so the overall code has a one-to-four (in
general, one-to-Dn) mapping.

Here an encoding example is given. Note that each
block has a unique pseudorandom mapping. The original
information is denoted u, and this is mapped to a “hashed”
sequence a. Assume that the current state of the memory
is s = (4, 3) (indicated in the figure), and the information
to be written is u = (1, 3).

Each block is indexed by a vector d ∈ {(0, 0), (0, 1),
(1, 0), (1, 1)}. For each d, the hashed sequence is com-
puted, and the candidate vector is found:

d = (0, 0) : u = (1, 3) → a[d] = (1, 3) → x[d] = (1, 3.5)
d = (0, 1) : u = (1, 3) → a[d] = (0, 1) → x[d] = (5, 3.5)
d = (1, 0) : u = (1, 3) → a[d] = (4, 1) → x[d] = (4, 7)
d = (1, 1) : u = (1, 3) → a[d] = (3, 3) → x[d] = (8, 7).

These x[d] are indicated in Fig. 2 by “(A)”. For the first
candidate (1, 3.5), the difference x[(0, 0)] − s is negative
in the first component, and so this point cannot be written,
because values are only allowed to increase. For each of
the remaining three, the point x[(0, 1)] is the most suitable,
and so it is selected as the point to be written, x (indicated
in the figure).

It is fairly clear that with the proposed construction,
the minimum number of word writes is D. However, it
is not so easy to determine the average number of word
writes. Naturally, there is a tradeoff between code rate and
the average number of writes, and this is demonstrated in
Fig. 3, obtained by computer simulation. Values of q were
fixed, with q = DM + 1. The code rate R = log2 M ,
and D was allowed to be a non-integer. The most striking
feature is that the number of writes depends strongly upon
q.

Also shown in Fig. 3 is the average number of writes

1 1.5 2 2.5 3 3.5 4 4.5 5

2

4

6

8

10

12

14

16

18

20

22

24

q=4

q=8

q=16

q=32

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 
w

ri
te

s

Code rate R

no hash

no hash

no hash
no hash

Fig. 3. Average number of word writes using the E8 lattice, with q−1 =
DM and code rate R = log2 M . Code rate R is in bits/cell.

if hashing is not used, that is, the hash vector m is all-
zeros. At low rates, the random hash increases the average
number of writes. But as the rate increases, this advantage
diminishes. Note that the hash has no influence on the
minimum number of writes.

For more details, see Reference [2].

REFERENCES

[1] B. Kurkoski, “The E8 lattice and error correction in multi-level
flash memory,” submitted to International Conference on Commu-
nications, IEEE, 2011. Available http://arxiv.org/abs/1009.5764.

[2] B. Kurkoski, “Rewriting codes for flash memories based upon
lattices, and an example using the E8 lattice,” in Proceed-
ings IEEE Global Telecommunications Conference, (Miami,
Florida, USA), IEEE, December 2010. To appear. Available
http://arxiv.org/abs/1007.1819.

[3] F. Sun, S. Devarajan, K. Rose, and T. Zhang, “Design of on-
chip error correction systems for multilevel nor and nand flash
memories,” Circuits, Devices Systems, IET, vol. 1, pp. 241–249,
June 2007.

[4] H. Nobukata and et al., “A 144-mb, eight-level NAND flash memory
with optimized pulsewidth programming,” IEEE Journal of Solid-
State Circuits, vol. 35, pp. 682–690, May 2000.

[5] M. Grossi, M. Lanzoni, and B. Ricco, “A novel algorithm for
high-throughput programming of multilevel flash memories,” IEEE
Transactions on Electron Devices, vol. 50, pp. 1290–1296, May
2003.

[6] R. L. Rivest and A. Shamir, “How to reuse a “write-once” memory,”
Information and Control, vol. 55, pp. 1–19, December 1982.



4

[7] G. D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for
write-once memories,” IEEE Transactions on Information Theory,
vol. 32, pp. 697–700, September 1986.

[8] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint
information storage in write asymmetric memories,” in Proceedings
of IEEE International Symposium on Information Theory, pp. 1166–
1170, June 2007.

[9] V. Bohossian, A. Jiang, and J. Bruck, “Buffer coding for asym-
metric multi-level memory,” in Proceedings of IEEE International
Symposium on Information Theory, pp. 1186–1190, June 2007.

[10] E. Yaakobi, A. Vardy, P. H. Siegel, and J. K. Wolf, “Multidimen-
sional flash codes,” in Proceedings 46th Annual Allerton Confer-
ence on Communication, Control, and Computing, (Monticello, IL,
USA), pp. 392–399, September 2008.

[11] H. Finucane, Z. Liu, and M. Mitzenmacher, “Designing floating
codes for expected performance,” in Proceedings 46th Annual
Allerton Conference on Communication, Control, and Computing,
(Monticello, IL, USA), September 2008.

[12] A. Jiang and J. Bruck, “Information representation and coding
for flash memories,” in Communications, Computers and Signal
Processing, 2009. PacRim 2009. IEEE Pacific Rim Conference on,
pp. 920–925, August 2009.

[13] H.-A. Loeliger, “Averaging bounds for lattices and linear codes,”
IEEE Transactions on Information Theory, vol. 43, pp. 1767–1773,
November 1997.

[14] U. Erez and R. Zamir, “Achieving 1
2 log(1 + SNR) on the AWGN

channel with lattice encoding and decoding,” IEEE Transactions on
Information Theory, vol. 50, pp. 2293–2314, October 2004.

[15] N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,”
IEEE Transactions on Information Theory, vol. 54, pp. 1561–1585,
April 2008.


