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Generalized Voronoi Constellations

Brian M. Kurkoski *

Abstract— A lattice code construction that employs two
separate lattices, a high dimension lattice for coding gain
and a low-dimension lattice for shaping gain, is described.
This generalizes past work on lattices codes based on self-
similar Voronoi constellations.
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1 Introduction

Let A and Ag be two lattices in n-dimensional Eu-
clidean space. If Ag C A, then the quotient group
Ac/As exists. The coset leaders of this group form a
lattice code, which is useful for physical layer network
coding. If A, is good for coding and good for shaping,
then the choice Ag = aA. with a € Z gives a self-similar
lattice code A./aA. which is useful for proving impor-
tant theoretical results [1].

However, this choice is less suitable for practical
implementations. It is assumed that A. is a high-
dimensional lattice such as a low-density lattice codes
or LDPC Construction A. Such Polytrev capacity-
approaching lattices A, are designed to be efficiently
decoded, using for example belief-propagation decod-
ing. But performing shaping directly, that is direct con-
struction of a self-similar lattice code is computation-
ally difficult, and the exact shaping gain is not known.
On the other hand, lattices with reasonable shaping
gain and efficient shaping algorithms are known, such
as Eg, Barnes-Wall and Leech lattices. In this paper,
quotient groups A./As where the lattices are not self-
similar is considered.

2 Contribution

A simple necessary and sufficient conditions for
Ag C A, is stated. Let A. have n-by-n check matrix
H. (generator matrix is G. = H_1).

Lemma Let Ag have an all-integer generator matrix
Gs. Ag C A, if and only if H.Gj is a matrix of integers.

This Lemma shows that it is straightforward to test
if Ag is a sublattice of A.. If this condition holds, then
the quotient group A./Ag exists and is a candidate for
physical layer network coding.

Encoding refers to mapping information to the
cosets of A./As. For self-similar lattices, Ay = alA¢,a €
Z, Conway and Sloane gave a straightforward algo-
rithm to perform encoding. When Ag and A. are not
self-similar, encoding is not obvious. Let C be a lattice
code, given by suitably chosen coset leaders of A./As.
The number of codewords |C| is M = | det Ag|/| det A|,
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the information is represented by integers by, b, ..., b,
and the quantizer for Ag is Qa,.

Definition The lattice code C has a rectangular en-
coding if there exists G, and My, ..., M, such that

Geb — Qi (Geb) (1)

generates C exactly, for b, € {0,1,..., M; — 1}. Clearly
M = H?:l M.

The definition is motivated by the desire for simple
encoding schemes, that is, the range for each b; depends
only on M;. For self-similar lattices Ay = aA., so M; =
a and |C| = @™, and encoding is straightforward.

Proposition Let A have basis G. = [g1, - - ., 8] and
let My,..., M, be positive integers. If the following
conditions are satisfied:

1. M;g; € Agfori=1,2,...,n and

2. det(Ge) [Ti; M; = det(As),
then these G, and M; can be used for a rectangular
encoding.

Generally speaking, the given basis G. for A. (for
example, the inverse of the sparse LDLC H matrix)
may not satisfy this condition. It is desired to find a
basis GI. which does satisfy this condition. Replace one
vector in column ¢ with an unknown column vector q.
For example, if ¢ = n then the basis has the form:

G,:[ﬂ £ ... Bt q}, (2)

C maq mao Mn—1
The basis transformation is:
G. =G W (3)

where W is a unitary matrix with integer entries. The
vector q is determined by finding W that satisfies those
conditions. The n-by-n matrix W has nx (n—1) entries
that are linearly dependent, and n entries r1,73,...,7,
that are unknowns. The equation

detW =1 (4)

results in a single linear diophantine equation in these
unknowns. In numerical investigations thus far, this
equation usually has many solutions. But finding the
“best” solution remains an open problem.
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