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Abstract. This contribution improves content-based hash functions for
image retrieval systems using nested lattice codes. Lattice codes are used
to quantize image feature vectors to final hash values. The goal is to
develop a nested lattice indexing scheme such that there is a propor-
tional relationship between Euclidean distance and some metric distances
(Hamming distance or, as in this paper, weighted Hamming distance
and first difference distance) in order to increase the hash function’s
robustness. The proposed two-dimensional nested lattice code reduces
the normalized mean squared error (NMSE) by 20% compared to two-
dimensional Gray code.
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1 Introduction

Today, digital images are increasingly transmitted over the Internet and between
mobile devices such as smartphones. It is easy to make an unauthorized copy
and manipulate the content by using widely available image processing softwares.
Therefore, image hash functions are used as an image authentication technique
to protect data from distortion attacks that steal or alter data illegally. Cryp-
tographic and content-based hash functions are two major data hashing tech-
niques. Traditionally, data integrity issues are addressed by cryptographic hash
functions, which are key-dependent and bit sensitive. This technique is usually
applied to text message and file authentication, which requires all message bits
to be unchanged [1]. In contrast, a content-based hash functions generates the
hash value from the image features. This method is more suitable for multimedia
files, which should be able to tolerate some minor modifications. In addition, the
content-based approach can be applied to image retrieval systems [2]. Retrieval
applications, such as online image search engines, require a response as quickly
as possible to user queries. While sample-by-sample image comparison is com-
putationally slow, robust content-based hash functions can compare numerous
files in multimedia databases efficiently.
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Fig. 1. A framework for hashing system.

A framework for hashing system is represented in Fig. 1. Consider an original
input signal s and its modified signal s′. First, input signal s is pre-processed to
real feature vectors x using signal processing techniques such as singular vector
decomposition (SVD), speeded up robust features (SURF), Fourier transform
and other signal processing operations. Then real feature vectors are converted
to binary hash value hash using codes such as Gray code and Reed-Muller code
or, as in this paper, lattice code. Similarly, modified signal s′ is processed to
feature vectors x′, then is converted to hash value hash′. In this research, we
concentrate on improving the real-to-binary conversion.

Euclidean distance is widely known as a good measure of the similarity
between features x and x′ [3]. We let the Euclidean distance between x and
x′ be dE = ||x′ − x||, and let the metric distance between hash and hash′ be
dM = MetricDistance(hash, hash′) where dM represents an arbitrary metric
on hash values. By robustness, the greater the difference between two features,
the greater the difference of their hash values that is desired [4]. If features x
and x′ are similar, then hash values hash and hash′ should also be similar. If x
and x′ are very different, then hash and hash′ should be also different. Then, we
expect dE to be proportional to dM , for a good hash scheme. Using the Euclid-
ean distance between feature vectors allows us to study hashing schemes without
considering specific signal processing schemes.

In fact, many hashing schemes have been proposed, but finding a proportional
relationship remains a challenge. In 2000, Venkatesan and Ramarathnam [4] used
randomized signal processing strategies and message authentication code (MAC)
from cryptography for a non-reversible compression of images into random binary
strings. As a result, it minimizes the probability that two hash values may collide
and is robust against image changes due to compression, geometric distortions, and
other attacks. From another perspective, in 2011, Parrao et al. [5] used image nor-
malization and SVD as the first signal processing stage, then apply Gray code to
obtain the binary hash sequence in image hash functions. According to his paper,
the robustness of the hash functions was increased against rotation, scaling and
JPEG attacks. Faloutsos in 1988 [6], Zhu et al. in 2010 [7] also used Gray code as
the discrete-binary conversion stage of image hashing to improve clustering of simi-
lar records. In 2012, Yuenan et al. proposed hash functions based on randomGabor
filtering anddithered lattice vector quantization (LVQ).A four-dimensional lattice
is used for quantization, but codewords are normalized by a Gray code at the end.
Basically, their approach can be considered as using Gabor filtering and a combi-
nation of a Gray code and a lattice.
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In this paper, the Gray code is replaced by a lattice code. We also propose
weighted Hamming distance and first difference distance as new metric distances.
A lattice is a code over an n-dimensional real space and it has several advantages
compared to Gray code. While Gray code requires a scalar quantizer, lattices
employ vector quantization. It is well-known that vector quantizers have lower
quantization error than scalar quantizers [9,10], therefore a lattice code is more
suitable for quantization. The goal of this research is to find a hash-value encod-
ing scheme such that the metric distance between hash values is proportional
to their Euclidean distance. However, it is impossible to achieve a purely linear
relationship, so our objective is to minimize the mean squared error of linear pre-
dictor function from metric distance to Euclidean distance among images using
lattice codes.

The outline of the remainder of this paper is as follows. Section 2 gives back-
ground of lattice codes, Gray codes, Hamming distance, weighted Hamming
distance, first difference distance and Euclidean distance metrics. Section 3 gives
the proposed lattice coding method, evaluation method and the best choice of
nested lattice code. Section 4 shows simulation results and performance com-
parison of Gray code and nested lattice code. Section 5 is the conclusion and
future work.

2 Background

2.1 Lattices and Nested Lattice Codes

A lattice Λ is a linear additive subgroup of Rn. Lattices form effective structures
for various geometric, coding and quantization problems. Some well-known lat-
tices are A2,D4, E8 [9]. In n dimensions, a lattice point x ∈ Λ is an integral,
linear combination of the basis vectors:

x = G · b =
n∑

i=1

gibi, (1)

where b ∈ Zn is a vector of integers, G =
[
g1 g2 . . . gn

]
is an n-by-n generator

matrix and gi are n-dimensional basis column vectors, for i ∈ {1, 2 . . . n}. The
corresponding fundamental volume is V (Λ) = det (Λ) = |det (G)|. A lattice Λ
with expansion factor k forms itself a lattice. We define kΛ as a nested lattice
with factor k.

2.2 Lattice Quantizer

A lattice quantizer maps an n-dimensional input vector y = (y1, y2, . . . , yn) to a
lattice point x∗ ∈ Λ closest to y, or more formally,

x∗ = argmin
x∈Λ

||y − x||2, (2)

where || · ||2 denotes squared Euclidean distance. And, we define quantization
error vector e:

e = y − x∗. (3)
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2.3 Voronoi Region

The Voronoi region [12] V (x) consists of all points of Rn which are at least as
close to x as to any other lattice point, given by:

V (x) = {z ∈ Rn : ||z − x||2 < ||z − y||2, for all y ∈ Λ,y ̸= x}. (4)

Let VrΛ(a), integer r, vector a ∈ Rn, denote the Voronoi region for rΛ, shifted
by vector a. A Voronoi code CrΛ(a) consists of every lattice Λ point which is
placed inside the Voronoi region VrΛ(a):

CrΛ(a) = Λ ∩ VrΛ(a). (5)

Figure 2 depicts 16 lattice points inside a solid line Voronoi region V4Λ(a) which
is enlarged 4 times from VrΛ(0), then translated by vector a.

Fig. 2. Voronoi region V4Λ(a).

2.4 Gray Code and Gray Indexing

A Gray code is a binary code where two consecutive codewords differ by only
one bit. Gray codes are widely used to reduce the number of bit errors in digital
communication systems [13]. Gray codes are also known as reflected binary code.
This section describes a recursive construction which encode binary sequences
to Gray codes. Figure 3 depicts the algorithm to recursively generate Gray codes
from binary sequences for two next levels from level one.

In this sub-section,we introducem×nbitsGray code to index ann-dimensional
real inputdatapoint (x1, . . . , xn) for xi ∈ [0, 2m], i = {1, . . . , n}, uniformlydistrib-
uted. Firstly, input (x1, . . . , xn) is quantized to integer vector by rounding to the
nearest integer component-wise:

(y1, . . . , yn) = QInteger(x1, . . . , xn). (6)
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Fig. 3. The steps of the reflect and prefix method to generate Gray sequences.

Then, integer vector (y1, . . . , yn) is translated into binary sequences (b1, . . . , bn),
then level m Gray code encode (b1, . . . , bn) to binary Gray sequence (c1, . . . , cn).
Finally, those n sequences of Gray code were concatenated to an unique binary
hash sequence.

GrayHash = c1, . . . , cn. (7)

2.5 Metrics

This paper uses Hamming distance, weighted Hamming distance, first difference
distance and Euclidean distance as metrics to evaluate the normalized mean
squared error.

Hamming distance is the number of positions that must be changed to trans-
form one string to another [14]. The Hamming distance dH(x,y) between two
n-dimensional bit vectors x and y is the number of positions where they differ:

dH(x,y) =
n∑

i=1

dH(xi, yi), (8)

where

dH(xi, yi) =
{
0 if xi = yi
1 if xi ̸= yi

, for i = 1, . . . , n. (9)

We propose a weighted Hamming distance measure which assigns weights
exponentially to every group of bits of sequences of n-dimensional and m levels:

dWH(x,y) =
m·n∑

i=1

widH(xi, yi), (10)

where

wi = 2⌊i/n⌋, for i = 1, . . . ,m · n. (11)

The purpose of weighted Hamming distance is explained in Sect. 3.
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In this paper, we also propose the concept of first difference distance which
reflects the similarity between bit sequences. Two bit sequences will be com-
pared from the last element to the first element, the index of the first differ-
ent element will be marked as first difference distance. In n-dimensional space,
consider two binary sequences: x = {(x1, . . . , xn)

(1), . . . , (x1, . . . , xn)
(n)} and

y = {(y1, . . . , yn)(1), . . . , (y1, . . . , yn)(n)}, first difference distance is the index of
the first group of n bits, that they are different. More formally,
For i ∈ [0, n], i ∈ Z,

dFD(x,y) = i ⇔
{
(x1, . . . , xn)

(n−i) ̸= (y1, . . . , yn)
(n−i)

(x1, . . . , xn)
(n−j) = (y1, . . . , yn)

(n−j) (12)

∀j ∈ [0, (i − 1)], j ∈ Z.
Euclidean distance is the distance between two points in Euclidean space.

For n-dimensional space, Euclidean distance from x to y is defined as:

dE = ||y − x|| =

√√√√
n∑

i=1

(yi − xi)2. (13)

3 Proposed Algorithm

A hash scheme maps real numbers to bits. A good hash scheme will preserve
distance as well as possible. That is, the Euclidean distance between two points
in the real space should be proportional to the metric distance between the hash
values of those two points. Our indexing scheme quantizes points into nested
lattice points in multiple levels. If two points are far from each other, they tend
to be quantized to different lattice points in high levels. In contrast, if two points
are close together in Euclidean space, they should be quantized to same lattice
points in high levels, and quantized to different lattice points only at low levels.
To preserve distance, the higher the level, the higher the weight the bits groups
should be assigned. On the other hand, consider from the highest level of nested
lattice to the lowest level, the index of the first different position also represents
the difference between two bit sequences. That is the idea for applying weighted
Hamming distance in order to assign weights exponentially to every group of
bits of codewords.

3.1 Nested Lattice Indexing

We indexed n-dimensional real points using m levels nested lattice in n-
dimensional space. Consider ann-dimensional real input datapointx ∈ [0, 2m−1]n,
uniformly distributed. We define a lattice Λ2i by a n-by-n generator matrix GΛ2i

:

GΛ2i
= 2iGΛ = 2i

[
g1 g2 . . . gn

]
, for i ∈ {0, 1 . . . (m − 1)}. (14)
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We also define a shift vector a as below.

a = [a1, . . . , an]. (15)

The best choice of shift vector a is explained in detail in Sect. 3.3.
An algorithm for finding a hash value LatticeHash from a real input vector

x is given in three main steps.
Step 1: We shift the real input x by vector 2ia at the corresponding level 2i or
more formally,

y(i) = x − 2ia, for i ∈ {0, 1 . . . (m − 1)}. (16)

Step 2: Datapoint y(i) is quantized to lattice point z(i) by Λ2i :

zi = QΛ2i
(y(i)), for i ∈ {0, 1 . . . (m − 1)}. (17)

Next, we calculate the vector b(i), which is the integer representation of the
lattice point z(i).

b(i) = G−1
Λ2i

z(i), for i ∈ {0, 1 . . . (m − 1)}. (18)

After that, the vector bi is indexed inside Voronoi region V2Λ2i
(0) which is gen-

erated by magnifying current fundamental region two times. In other words, we
indexed the coset representatives of quotient groupΛ2i+1/Λ2i . For instance, in two-
dimensional lattice A2, the coset includes (0, 0), (0, 1), (1, 0), (1, 1). Particularly,

index(i) = b(i) mod 2, for i ∈ {0, 1 . . . (m − 1)}. (19)

Step 3: Finally, m n-bit li binary sequences corresponding to m levels nested
lattice 20, 21, . . . , 2m−1 are concatenated into a binary hash sequence:

LatticeHash = index(1), index(2), . . . , index(m). (20)

3.2 Evaluation Method Based on Normalized Mean Squared Error

In this section, we consider two input distribution cases and introduce normalized
mean squared error (NMSE) as a robustness measure.

For the hashing system input, we consider two distributions for the original
feature vectors x and the modified vectors x′. In both cases, original vectors x
are uniformly distributed, but modified vectors x′ are different.
Case (a): x and x′ are both uniformly distributed. Then we apply lattice index-
ing scheme and Gray indexing scheme and compare their performance.
Case (b): x is uniform and x′ is obtained by adding Gaussian noise to x, as:
x′ = x+N(0,σ2). In this case, we change the Gaussian variance, then analyzing
how the noise variance affects the indexing scheme’s performance.

NMSE is used to compare the robustness between indexing schemes. After
generating x and x′ according to the two mentioned cases, input vectors are
decoded to binary sequences. Then, the Euclidean distance dE and other metric
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distances (dH or, as in this paper, dWH and dFD) between every pairs (x,x′)
are computed. Recall the target is calculating dE from some metric distances
dM , so we use least mean squared error technique to fit dE and dM by a linear
predictor function d′

E = αdM +β, where α and β are coefficients with least mean
squared error. Then, we define the NMSE between estimated d′

E and sample’s
dE for n-dimensional space and N pairs of d′

E and dE as:

NMSE =
1
n
MSE =

1
nN

N∑

i=1

||d′
Ei − dEi||. (21)

NMSE is dimensionless. The smaller the NMSE, the better the linearity the
indexing scheme can achieve and the more robust the indexing scheme is.

3.3 The Best Choice for Shift Vector a

There are infinite choices for the shift vector a, this sub-section explains how
to choose the optimized one. Firstly, we introduce the concept of inefficiently
indexed regions (IIR) which consist of distinct points in Euclidean space with
zero Hamming distances between indexed codewords. A set consists of k regions
R1, . . . , Rk are IIR if and only if there exist pairs of (x,x′) such that:

x ∈ Ri,x′ ∈ Rj , dE(x,x′) > 0, dWH(x,x′) = 0, for i, j ∈ {1, . . . , k}, i ̸= j. (22)

For instance, as shown in Fig. 4, A and A′ are relatively IIR together, similarly
with B,B′ and C,C ′. All pairs which have one element from A (hash value 01),
the other from A′ (also hash value 01) are indexed to the same codeword with
Hamming distance equal zero, but they have large Euclidean distance. In short,
IIRs increase the MSE.

Consider a two-dimensional lattice Λ and a Voronoi region V2Λ(a). According
to the proposed rules in Sect. 3.1, all points in V2Λ(a) are indexed as shown in
Figs. 4 and 5 where a = 0 and a = 2/3(g1) + 1/3(g2) respectively. Comparing
these two cases, while 75% of V2Λ(0) area is IIR, V2Λ(2/3(g1) + 1/3(g2)) has
only 25%. The objective is to estimate the Euclidean distance between two
points from Hamming distance between those two points with as low MSE as
possible. We believe that minimizing MSE is equivalent to minimizing the area of
IIRs by choosing vector a. As we can see, when moving vector a, V2Λ(2/3(g1)+
1/3(g2)) is the best choice to achieve minimum percentage of ineffective regions.
In this research, for two-dimensional space, we used V2Λ(2/3(g1) + 1/3(g2)).
The centroid of V2Λ(2/3(g1)+1/3(g2)) is the lattice’s deep hole [9], which is the
point of the plane furthest from the lattice.

4 Simulation of Two-Dimensional Indexing Schemes

A two-dimensional nested lattice and a Gray indexing scheme were
implemented and simulations were ran with the two input distribution cases
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Fig. 4. Voronoi region V2Λ(0). Fig. 5. Voronoi region V2Λ(a), where
a = 2/3(g1) + 1/3(g2).

Table 1. Case (a): Nested lattice and Gray indexing scheme simulation information.

Indexing scheme Metric distance NMSE

Gray code dE vs. dH 113.7115

Lattice code dE vs. dWH 106.8708

Lattice code dE vs. dFD 91.7450

which are described in Sect. 3.2. For fair comparison, we used: dimension n = 2,
fundamental volume equal to one (V (Λ) = 1), level m = 7 means 14 bits per
hash value, 104 two-dimensional real input data points (or vectors) x ∈ [0, 2m−1]2

uniformly distributed in Case (a) and 104 additional two-dimensional Gaussian
noise vectors N(0,σ2) in Case (b). Particularly, these two indexing schemes are
based on two corresponding quantizers, therefore quantization error depends on
the lattice (and is slightly better for the hexagonal lattice). The density of points
relates the possible number of hash values to the quantization error, and that
is why we fairly compared lattice and Gray quantizer with fundamental volume
equal to one.

When the input vectors x and x′ are uniformly distributed, as in Case (a)
in Sect. 3.2, the (dE , dH) for every sample pairs in the dataset, along with its
linear predictor function for Gray indexing are shown in Fig. 6. Similarly, the (dE ,
dWH) and (dE ,dFD) for every possible pairs, along with their linear predictor
functions for nested lattice indexing are shown in Figs. 7 and 8, respectively.
Table 1 depicts the NMSE and other details about this comparison simulation.
The smaller the NMSE, the better the linearity the indexing scheme can achieve.

When the input x is uniformly distributed and x′ is Gaussian distributed, as
in Case (b) in Sect. 3.2, we adjust noise intensity by changing Gaussian variance
σ2. The (dE , dH), (dE ,dFD) between original vectors x and noisy vectors x′

are computed and fitted by linear predictor functions. Figure 9 represents the
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Fig. 6. Case (a): The Hamming distance versus the Euclidean distances of Gray index-
ing.

Fig. 7. Case (a): The weighted Hamming distance versus the Euclidean distances of
nested lattice indexing.

variation of NMSE values of linear predictor functions as a function of noise
variance σ2 for two-dimensional Gray indexing and lattice indexing.

We observe that, nested lattice indexing generally have better performance
than Gray indexing. In Case (a), the combination of nested lattice indexing and
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Fig. 8. Case (a): The first difference distance versus the Euclidean distances of nested
lattice indexing.

Fig. 9. Case (b): The variation of NMSE as a function of noise variance.

first difference distance reduces approximately 20% NMSE compared to Gray
indexing. In Case (b), on average, nested lattice indexing have smaller NMSE
than Gray indexing.
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5 Conclusion

In this paper, we developed a nested lattice indexing scheme that is suitable for
content-based hash functions to increase the robustness. In addition, weighted
Hamming distance, first difference distance and a coset lattice with shift vector
a = 2/3(g1)+1/3(g2) were proposed to efficiently reflect the Euclidean distance.
As a result, the NMSE of nested lattice indexing scheme was reduced 20% com-
pared to Gray indexing scheme. As future work, we will apply higher dimensional
lattices with the expectation of a better relationship between metric distance and
Euclidean distance. To demonstrate the effectiveness of lattice-based hashing, we
plan to apply it to image’s speeded up robust features (SURF) [11] to quantize
and index SURF-based feature vectors to final hash values.
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