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Abstract—Low density lattice codes (LDLC) can be decoded
efficiently using iterative decoding, and approach the capacity of
the AWGN channel. In the iterative LDLC decoder the messages
are Gaussian mixtures. In any implementation, the Gaussian
mixtures must be approximated. This work describes a three/two
Gaussian parametric LDLC decoder. Internally at the variable
node the periodic Gaussian mixtures are approximated with three
or two Gaussians, while the messages between nodes are single
Gaussians. The proposed approximation is more accurate than
the previously-proposed approximation. Numerical results shows
that for moderate dimension, e.g. n = 1, 000, the two Gaussian
approximation is sufficient for accurate performance. But for
large dimension, e.g. n = 10, 000, three Gaussians are needed.

I. INTRODUCTION

Lattice codes are codes over the real numbers and can be
seen as the Euclidean-space analog of linear codes. Shannon
showed that codes with very long random Gaussian-distributed
codewords can approach the AWGN capacity [1], and now it is
known that lattice codes can also achieve the AWGN capacity
[2] [3] [4].

Many high dimensional lattices can be constructed from
codes. A practical way of constructing lattices is via Con-
struction A [5]. Construction A considers mapping a p-ary
code of length n into the Euclidean space. High dimensional
lattices can be constructed by applying Construction A to low
density parity check codes (LDPC), for example.

Another type of high dimensional lattice construction given
by Sommer, Feder and Shalvi [6], called low density lattice
codes (LDLC), has the property that the inverse generator
matrix is sparse. The decoding of LDLC lattices can be
implemented by using a belief propagation (BP) algorithm on a
sparse graph. At a symbol error rate of 10−5, the LDLC belief
propagation decoder attains 0.6 dB from the unconstrained
AWGN channel capacity [7].

Nazer and Gastpar [8] introduced a scheme called compute-
and-forward based on physical-layer network coding (PLNC).
Where there are multiple users and multiple relays, the idea
is that the transmitted signals at each user are n-dimensional
lattice points and each relay decodes an integer combination
of these lattice points from the noisy observations, which
is again a lattice point, instead of decoding the transmitted
signals individually. Recent studies show that LDLC lattices
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are a suitable and practical approach for PLNC [9]. But how
to efficiently and practically decode LDLC lattices is still an
open question.

In the LDLC belief propagation decoder the messages
passed between check and variable nodes are continuous
functions. In any implementation, these continuous functions
must be approximated. In the original implementation [6],
these messages were approximated by a discretely quantized
function. The amount of quantization, typically 1024 bins,
is impracticably large, but this gives the best-known perfor-
mance. For the AWGN channel, the messages are precisely
represented using a mixture containing an infinite number
of Gaussians. This again is impractical, so it is natural to
approximate this with a finite mixture of Gaussians.

Various parametric LDLC decoding algorithms have been
proposed. In [10] a decoder using a Gaussian mixture re-
duction algorithm was introduced, where all possible pairs
of Gaussians on a list are searched and the closest pairs
are replaced with a single Gaussian. Further, using a single
Gaussian as the message between the variable and check
nodes leads to reduced memory requirements with a minor
performance penalty [11]. This was followed by work by Yona
and Feder [12], where the Gaussian mixture approximation
is made by taking the dominating Gaussian in the mixture.
This process is done by searching in tables, sorted in terms of
the mixing coefficients. These relatively complicated processes
of sorting and searching need to be performed at every
message multiplication at the variable node. In [13] a single-
Gaussian moment matching (SGMM) approximation was used
internally at the variable node for every incoming message, and
density evolution noise thresholds were presented. But finite-
dimensional results were not given.

This paper presents a parametric decoding algorithm for
LDLC lattices. In the proposed algorithm the infinite Gaus-
sian mixtures are approximated with three or two Gaussians,
which are nearby to the channel message. Accordingly, we
call this the “three/two Gaussian parametric LDLC decoder”.
Approximations with a higher number of Gaussians improves
the performance, but with a modest increase in complexity.

In this paper, we consider the accuracy of the approximation
by evaluating the KL divergence. This gives insight into the
performance-complexity tradeoff for LDLC decoding. The
three/two Gaussian approximation is more accurate than the



SGMM used in [13]. The accuracy is confirmed using numer-
ical simulations. For dimension n = 1000 the approximation
using two Gaussians presents similar performance to the
quantized algorithm. And for dimension n = 10, 000 the ap-
proximation using three Gaussians presents better performance
than the approximation using two Gaussians.

II. BACKGROUND

A. Lattice and Low Density Lattice Codes

A lattice Λ is an additive subgroup of Rn. A matrix G,
whose columns are the basis vectors, is called the generator
of the lattice. A lattice point is defined as:

x = Gb, (1)

where x ∈ Rn and b ∈ Zn are column vectors.
A lattice codeword x is transmitted over the AWGN chan-

nel. Then it is received as:

y = x + z, (2)

where z is the additive Gaussian noise with 0 mean and
variance σ2, and zi ∼ N (0, σ2) for i = 1, 2 . . . , n.

A low density lattice code (LDLC), introduced by Sommer
et al. [6], is an n-dimensional lattice code defined by a non-
singular generator matrix G satisfying the condition that the
inverse generator matrix H = G−1 is sparse.

The non-zero elements of the inverse generator H are called
the generator sequence h, with h1 ≥ h2 ≥ · · · ≥ hd > 0 where
d denotes the degree of the inverse generator matrix. The signs
of the generator sequence entries are randomly changed to “−”
with probability one-half.

B. Products of Gaussian mixtures

Let f(w) be a mixture of N Gaussians,

f(w) =

N∑
i=1

ciN (w;mi, vi), (3)

with mean mi, variance vi and mixing coefficients ci > 0 for
i = 1, 2 . . . , N and

∑N
i=1 ci = 1.

The product of two Gaussian mixtures f(w) =
∑N
i=1 fi(w)

and g(w) =
∑M
j=1 gj(w) is f(w) · g(w). The product of

two components fi(w) = c1N (w;m1, v1) and gj(w) =
c2N (w;m2, v2) is a single Gaussian s(w) = cN (w;m, v)
with mean m, variance v and mixing coefficient c given by:

1

v
=

1

v1
+

1

v2
(4)

m

v
=
m1

v1
+
m2

v2
(5)

c =
c1c2√

2π(v1 + v2)
e−

(m1−m2)2

2v1+2v2 . (6)

The Gaussian product f(w) ·g(w) is the mixture of the N ·M
products obtained using the pair-wise operation above.

C. Moment Matching Approximation

The “moment matching approximation” is the single-
Gaussian approximation of a Gaussian mixture f(w), given
by (3), with a single Gaussian q(w) = N (w;m, v) which
minimizes the Kullback-Leibler divergence between f(w) and
q(w). The moment-matching approximation (MM) finds the
single Gaussian q(w) which has the same mean m and
variance v as f(w). The mean m and variance v is given
by:

m =

N∑
i=1

cimi (7)

v =

N∑
i=1

cim
2
i −

( N∑
i=1

cimi

)2

. (8)

This operation is denoted as:

q(w) = MM
(
f(w)

)
. (9)

III. THREE/TWO GAUSSIAN APPROXIMATION

In this section we describe an approximation of the product
of a single Gaussian and a Gaussian mixture, which is key
for understanding the behavior of the three/two Gaussian
parametric LDLC decoding algorithm. Analysis is performed
by evaluating the Kullback-Leiber divergence.

The single Gaussian Y (w) represents the channel message
and has mean ma and variance va. The Gaussian mixture
R(w) represents the check-to-variable node messages and is a
periodic mixture of Gaussians with period 1

|h| and parameters
mc and vc, and is given by:

R(w) =

∞∑
i=−∞

N (w;mc +
i

h
, vc). (10)

And let R̃(w) be the summation in (10) restricted to some
finite integer set B.

We want to approximate an infinite Gaussian mixture
Y (w)R(w) with Y (w)R̃(w), which consists of a finite number
of Gaussians. In Fig. 1-(a), Y (w) and R(w) are illustrated. In
Fig. 1-(b) the true product Y (w)R(w) and the single-Gaussian
moment matching (MM) approximation of Y (w)R(w) is
shown. The true product and the MM approximation are
visually similar, but a difference exists in the tails, which
results in a poor approximation. This poor approximation in
the Gaussian messages causes errors to accumulate as the
LDLC iterative decoding progresses.

A. Gaussian Neighbors Selection

Here we consider the |B| = 3 and |B| = 2 Gaussians which
are neighbors near ma. Let the 2-Gaussian set be B = {b1, b2},
and let the 3-Gaussian set be B = {b0, b1, b2}, with b0 = b1−1
and b2 = b1 + 1.

For the 2-Gaussian set, we select two Gaussians from the
periodic mixture, which are close to the mean ma. Find b1
such that:

b1
h

+mc < ma <
b1 + 1

h
+mc, (11)
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Fig. 1. Multiplication of a Gaussian mixture and a single Gaussian. and
the approximation with a Single Gaussian. This operation takes place at the
variable node.

for h > 0, which is:

b1 = b−h(mc −ma)c. (12)

And for the 3-Gaussian set we choose the nearest Gaussian,
and the two neighbors of nearest Gaussian. That is:

b0 = b1 − 1, (13)
b1 = dh(mc −ma)c, and (14)
b2 = b1 + 1, (15)

where d·c denotes rounding to nearest integer.
The resulting mixtures are:

R̃(w) = N (w;
b1
h

+mc, vc) +N (w;
b2
h

+mc, vc), (16)

for the 2-Gaussian case. And:

R̃(w) = N (w;
b0
h

+mc, vc) +N (w;
b1
h

+mc, vc)

+N (w;
b2
h

+mc, vc). (17)

for the 3-Gaussian case. Since R̃(w) consists of three or
two Gaussian then Y (w)R̃(w) also consists of three or two
Gaussians.

B. Kullback-Leibler Divergence Analysis

The Kullback-Leibler (KL) divergence is a measurement of
the dissimilarity between two probability distributions, and it
is equal to zero when the two distributions are the same. The
KL divergence between Y (w)R(w) and the approximation
Y (w)R̃(w) is given by:∫ ∞

−∞
Y (w)R(w) log

Y (w)R(w)

Y (w)R̃(w)
dw. (18)

While selecting a sufficiently small number of Gaussians
we want to minimize the KL divergence. Towards that end,
the KL divergence is characterized for these approximations.
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Fig. 2. KL divergence for MM(Y (w)R(w)) (dashed-line), 3-Gaussian
approximation (solid-line) and 2-Gaussian approximation (dotted-line)

The KL divergence is a five-parameter function, because
the single Gaussian Y (w) is described by ma and va and
the Gaussian mixture R(w) by mc, vc and h. But the KL
divergence (18) depends only on the difference mc −ma, so
set ma = 0 without loss of generality, reducing the number of
parameters to four. Deriving analytically the KL divergence is
not possible, so we evaluate the KL divergence numerically.

In Fig. 2 the KL divergence for the single-Gaussian moment
matching approximation (dashed-line), three-Gaussian approx-
imation (solid-line) and two-Gaussian approximation (dotted-
line) are shown, using typically observed values for va and vc
under LDLC decoding. We present all values for mc, but not
all are equally likely because mc is not uniformly distributed.
The worse case is when h = 1. Fig. 2-(a) shows vc = 0.088,
corresponding to an early decoding iteration. Here, even the
MM approximation presents a KL divergence of less than
10−2. Empirically we have observed that a KL divergence
of greater than 10−2 is a poor approximation for the proposed
LDLC decoding algorithm. But KL divergence of less than
10−3 at least gives visually similar Gaussian functions.

Fig 2-(b) shows vc = 0.011, corresponding to intermediate
iterations of LDLC decoding, where the MM presents worse
KL divergence. The KL divergence for two-Gaussian approx-
imation is always less than 10−2 and the three-Gaussian ap-
proximation is even better. This suggests that the two-Gaussian
approximation may be sufficient. The simulation results will
show that this is often true, but when the dimension is very
large, the three-Gaussian approximation is more reliable.

IV. THREE/TWO GAUSSIAN PARAMETRIC DECODING

A parametric LDLC decoding algorithm is presented here.
The variable-to-check message along edge k is a single
Gaussian denoted fk(w). The check-to-variable message along
edge k is a single Gaussian denoted p̃k(w). Single Gaussians



are represented by its mean and variance. Internally at the vari-
able node, messages are represented by mixtures of multiple
Gaussians.

A. Three/Two Gaussian Parametric Decoding Description

For the AWGN channel, the received message is

y(w) = N (w; yk, σ
2). (19)

Check Node: The incoming messages are d single Gaussians
fi(w) = N (w;mi, vi) for i = 1, 2 . . . , d. The output message
p̃i(w) at the convolution step is a single Gaussian with mean
m̃ and variance ṽ given by:

m̃i = − 1

hi

d\i∑
j=1

hjmj (20)

ṽi =
1

h2
i

d\i∑
j=1

h2
jvj (21)

The computation of m̃i and ṽi can be performed using a
forward-backward recursion.

Variable node: The messages coming from the check nodes
are single Gaussian N (w; m̃i, ṽi). Then the expansion step
(periodic with period 1/|hi| if B = Z) is approximated by:

R̃i(w) =
∑
b∈B

N (w;mi(b), ṽi), (22)

where the mean of each Gaussian is:

mi(b) = m̃i +
b

hi
, (23)

for b ∈ B and the set B represents a subset of the integers,
e.g. |B| = 3 or 2, as described earlier. The message fi(w) sent
back to the check node is a single Gaussian approximated by:

fi(w) = MM
(
yk(w)

d\i∏
j=1

R̃j(w)
)
, (24)

where yk(w) = N (w; yk, σ
2) is the channel message, and

R̃i(w) is the approximation of the periodic expansion. To
maintain low storage and low complexity, a single Gaussian
is used in the messages between the variable and check
nodes, and this single Gaussian message is found by moment
matching.

B. Forward-backward recursion

The computation of the output at the variable node fk(w)
can be implemented by a forward-backward recursion. This
recursion is distinct from previously described forward-
backward approaches in how the channel value Y (w) is
handled [10]— in the three/two Gaussian parametric decoding
algorithm the channel message is multiplied last.

The forward recursion is defined as:

αk(w) = αk−1(w) · R̃k(w) (25)

for k = 2, 3, . . . , d, with α1(w) initialized as equal to R̃1(w).
The backward recursion βk(w) is similarly computed for k =

d−1, d−2, . . . , 1 with βd initialized as equal to R̃d(w). Then,
combine the forward and backward recursion to obtain:

f̃k(w) = αk−1(w) · βk(w). (26)

Finally the single Gaussian output at the variable node is
calculated using the moment matching approximation:

fk(w) = MM
(
yk(w) · f̃k(w)

)
. (27)

C. Three/Two Gaussian Parametric Decoding Complexity

In this section a description of the complexity is given.
The complexity of the three/two Gaussian parametric decod-
ing algorithm is dominated by the forward and backward
algorithm which is O(n · t · 3d−1) and O(n · t · 2d−1)
for 3-Gaussian approximation and 2-Gaussian approximation
respectively, where t is the number of iterations, n is the lattice
dimension and d is the degree of the LDLC inverse generator
matrix. The storage required is 4 · n · d, means and variances
needed for the nd variable messages and nd check messages.
Internally at the variable node, the storage is temporary and
does not depend on n.

The complexity of the quantized BP decoding algorithm [6]
is O(n · t · d · L∆ ) where ∆ is the probability density function
resolution and L is the range length, and is dominated by the
discrete Fourier transform operations. The complexity for [10]
is O(n · d · t ·K2 ·M4), dominated by the moment matching
algorithm, and for [12] is O(n · d · t · K · M3), dominated
by sorting and searching in tables, where K is the number
of replications and M the number of Gaussian used in the
mixtures.

D. Three/Two Gaussian Parametric Decoding Algorithm

In this section the three/two Gaussian parametric decoding
algorithm is summarized.
Input: The received message y = Gb + z, the channel

variance σ2, the inverse generator H and the maximum
number of iterations iter max.
Output: The estimated information b̂.
1) Variable node k, for k = 1, 2, . . . , n, sends to all

connected check nodes the message yk and σ2 from the
channel.

2) At the check node every message p̃i(w), a single Gaus-
sian, for i = 1, 2, . . . , d, to be sent to the variable node
is computed. The mean is computed as in equation (20)
and the variance is given in equation (21).

3) At the variable node k, the ith message, for i =
1, 2, . . . , d, to be sent to the check node is calculated.
The expansion step is calculated by selecting three or
two Gaussians in the mixture as described in Sec. III-A.

4) The selected mixtures are multiplied, except the message
i, to calculate

fi(w) = MM
(
yk(w)

d\i∏
j=1

R̃j(w)
)
. (28)

5) Steps 2-4 are repeated until the maximum number of
iteration iter max is reached.



6) The final estimation is made by combining all message
in variable node, where x̂k is the mean of:

MM
(
yk(w)

d∏
j=1

R̃j(w)
)
. (29)

7) Finally the received message is estimated by

b̂ = dHx̂c (30)

V. NUMERICAL RESULTS

The all-zeros codeword was simulated over the AWGN
channel. The inverse generator matrix was generated as in
[6], with the generator sequence h = {1, 1√

d
, . . . , 1√

d
}, where

α =
∑d

i=2 h
2
i

h2
1

< 1, a necessary condition for exponential
convergence of the message variance for the BP decoder. The
inverse generator was further normalized in order to satisfy
n
√
|det(H)| = 1.
Different lattice dimensions n = 100, n = 1000 and

n = 10, 000 were simulated, and the inverse generator H
has degree d = 3 for dimension n = 100, and d = 7 for
dimension n = 1000 and n = 10000. The symbol error
rate (SER) versus the gap from the unconstrained capacity
was evaluated. The unconstrained AWGN channel capacity
corresponds to σ2 = 1

2πe .
The convergence in message variance is dominated by

the edge with the generator sequence h with the greatest
absolute value (e.g h ≈ ±1), called the “dominant message”.
Three cases were simulated, (a) three Gaussian only, (b) two
Gaussian only and (c) when the dominant edge only has three
Gaussians and others edge have two Gaussians.

As shown in Fig. 3 the three/two Gaussian parametric
decoding algorithm performs nearly as well as the quantized
algorithm [6] in the SER case. For dimension n = 1000 the
approximation using two Gaussians is sufficient for accurate
performance. For n = 10, 000 the approximation using three
Gaussians presents a better performance than the approxima-
tion using two Gaussians.

We hypothesize that the gap that appears is due to use the
single Gaussian message at the variable node output, which is
maintained to keep the storage requirements low. This could
be improved if the message between check and variable nodes
are approximated with a greater number of Gaussians, but a
greater memory is needed.

VI. CONCLUSION

In this work we presented the three/two Gaussian parametric
decoding algorithm for low density lattice codes, which is a
reliable and efficient decoding algorithm. The three/two Gaus-
sian parametric decoding algorithm maintains a low storage
requirement. This is because the messages between variable
and check nodes are only single Gaussian functions.

Approximating infinite Gaussian mixtures internally at the
variable node with three or two Gaussians results in a better
approximation than a single Gaussian approximation, with re-
spect to the Kullback-Leibler divergence. The three/two Gaus-
sian parametric decoding algorithm presents nearly similar
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Fig. 3. SER vs the gap from capacity for dimension n = 100, n = 1000,
n = 10, 000

performance compared to the quantized decoding algorithm.
These characteristics of the three/two Gaussian parametric
decoder algorithm makes it a suitable candidate for hardware
implementation.
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