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Abstract—Write-Once Memory (WOM) codes are designed
for data storage, which allow re-writing on n cells that can
change their bit value from 0 to 1 but not vice versa. This
paper focuses on applying “WOM codes” to cooperative wireless
communications. Due to the characteristics of WOM codes, the
Asymmetric Multiple Access Channel (AMAC) (also referred to
as the MAC with degraded messages) is considered, which is a
conventional Multiple Access Channel (MAC), where one user
can observe the other user’s message. We describe an AMAC
system where WOM codes are used to deal with the interference
between two users. For a specific AMAC model, WOM codes
can achieve the AMAC capacity, and using WOM codes for the
AMAC with no errors leads to a low-complexity decoder. Finally,
we comment of how the AMAC model can be applied to the relay
channel. While we consider primarily the AMAC with no errors,
this study forms a foundation for future work on the AMAC with
errors.

I. INTRODUCTION

The motivation of this work is reduction complexity in
wireless communications that it is possible using coding
techniques.

A Multiple Access Channel (MAC) is a system which has
two separated users where each one simultaneously commu-
nicates data using a common channel [1]. The Asymmetric
Multiple Access Channel (AMAC) with two encoders is a
MAC where one of the users has access to the other user’s
message, and to its own private message [2]. In this scheme,
one user can encode both messages whereas the other user
encodes only its own message.

In addition to the AMAC topic, codes for Write-Once
Memory (WOM) (e.g. flash memory) is also important for the
understanding of the system proposed in this work. A WOM
consists of a number of write-once bit locations (wits). Each
wit initially represents a bit value of 0 that can be irreversibly
overwritten with a bit value 1. Observing the state of the
WOM medium, it is possible to reuse it using WOM codes
by introducing redundancy into the recoded bit sequence, and
to determine how to update the content of the memory with a
new bit sequence [3].

Rivest and Shamir demonstrated how to reuse such a write-
once memory multiple times using coding techniques [4]. A
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coding scheme which can write a variable of cardinality v1
for the first write, a variable of cardinality v2 for the second
write and so on, to the n binary cells defined, a total of t times
writting, which Rivest and Shamir called ⟨v⟩t/n-WOM codes
[4], where v = v1, . . . , vt.

WOM codes were designed for data storage applications,
however, they have never previously been used for wireless
communications. This paper is inspired in part by the applica-
tion of WOM codes to reducing read latency in memories
[5]. Hence, we focus on and show how to apply existing
WOM codes to the AMAC (and, thereby, relay channel with
a noiseless link between the sender and the relay).

The major advantage of applying WOM codes to the AMAC
is reducing the complexity of decoding. Numerous schemes for
joint iterative decoding of the two transmitted codewords at
the receiver (e.g. LDPC codes for the MAC [6]) have been
proposed. The proposed coding scheme aims to efficiently
separate the two codewords at the receiver, without using
successive interference cancellation. This low-complexity ap-
proach is appealing for power-constrained applications.

II. SYSTEM DESCRIPTION

A. 2-user AMAC

This section describes the AMAC. The key differences
between the MAC and the AMAC are: (1) User 2 knows the
message of User 1 and (2) for the capacity, the input distribu-
tion is optimized over p(x2|x1)p(x1) rather than p(x1) ·p(x2),
where p(x1), p(x2) are the probability distribution for User 1’s
and User 2’s codewords, respectively.

Some notations are introduced; U1 and U2 denote the mes-
sage sequence sent by User 1 where U1 ∈ {1, 2, 3, ...2nR1}
and User 2 where U2 ∈ {1, 2, 3, ...2nR2}. User 1 sends code-
words from a codebook C1 and User 2 sends codewords from
a codebook C2; X1

1 , X
1
2 , ..., X

1
n ∈ C1 and X2

1 , X
2
2 , ..., X

2
n ∈ C2

denote user variables corresponding to a codeword. Let f1 :
{1, 2, ...2nR1} → C1, f2 : {1, 2, ..., 2nR1}×{1, 2, ..., 2nR2} →
C2, which denote the encoding of the first and second users,
respectively. The message U1 is encoded into a codeword
X1

1 , X
1
2 ...X

1
n given by f1(U1). Similarly, U2, follows the

rule with the addition that User 2 knows the message U1,
is encoded by X2

1 , X
2
2 , ..., X

2
n = f2(U1, U2).
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Fig. 1. Binary Symmetric AMAC — system diagram

The channel is characterized by its input sequence
X1

1 , X
1
2 , ..., X

1
n and X2

1 , X
2
2 , ..., X

2
n (in the case of only

two senders), and a set of conditional probability measures
p(y|x1, x2) on the output sequence Y1, Y2, ..., Yn given the
inputs sequence X1

1 , X
1
2 , ..., X

1
n, and X2

1 , X
2
2 , ..., X

2
n.

Definition 2.1: A (two users) discrete memoryless multiple-
access channel is denoted by {(X 1,X 2),Y, p(y|x1, x2)},
where X1 ∈ X 1 and X2 ∈ X 2 are the input, Y ∈ Y is
the output, and p(·|x1, x2) is a probability mass functions on
Y indexed by the input data x1 ∈ X 1, x2 ∈ X 2. The channel
is memoryless if

P (y1, ..., yn|x1
1, x

1
2, ..., x

1
n, x

2
1, x

2
2, ..., x

2
n)

=
n∏

j=1

p(yj |x1
j , x

2
j ) (1)

where x1
j , x2

j and yj denote the j-th bit of the input and output
sequence.

B. Capacity of the AMAC
In a MAC, multiple users send data at the same time

sharing the channel, however they interfere with each other.
The capacity of the MAC is well-known [1] and given here
for reference.

Theorem 2.1: The MAC capacity region is the closure of
the convex hull of the set of points (R1, R2) satisfying:

R1 ≤ I
(
X1;Y |X2

)
, (2)

R2 ≤ I
(
X2;Y |X1

)
, (3)

R1 +R2 ≤ I
(
X1, X2;Y

)
(4)

over all distributions p(x1) · p(x2) on X 1 × X 2.
If User 2 knows U1, this multiple access memoryless

channel is regarded as the AMAC (Fig.1). The capacity region
is given in [2].

Theorem 2.2: The AMAC capacity region is the closure of
the convex hull of the set of points (R1, R2) satifying:

R2 ≤ I
(
X2;Y |X1

)

= H
(
X2|X1

)
−H

(
X2|X1, Y

)
, (5)

R1 +R2 ≤ I
(
X1, X2;Y

)

= H (Y )−H
(
Y |X1, X2

)
(6)

TABLE I
JOINT INPUT DISTRIBUTION p(x1, x2) ON X 1 × X 2

X2

p(x1, x2) x2 = 0 x2 = 1 p(x1)

x1 = 0 αp2 p1 − αp2 p1

X1
x1 = 1 (1− α)p2

1− p1
−(1− α)p2 1− p1

p(x2) p2 1− p2

over all joint distributions p(x1, x2). Note that the AMAC
capacity region is similar to the MAC capacity region, however
one restriction (2) is removed.

C. Binary Symmetric AMAC

This section describes the noise model used in this paper,
which is called the Binary Symmetric AMAC and is pictured
in Fig.1. It also describes a parameterized input distribution
for the channel.

The AMAC capacity region will be characterized using the
joint input distribution p(x1, x2) on X 1 × X 2, with three
variables p1, p2,α. Note that p1 and p2 denote the probablity
on X 1 × X 2, respectively, and that p(X1 = 0) = p1 and
p(X2 = 0) = p2. Also, X 1 = X 2 = {0, 1} and Y = {0, 1, 2}.

Definition 2.2: Parameterized joint input distribution for the
binary symmetric AMAC.

• User 2 knows the message of User 1, so X1 and X2 are
jointly distributed according to p(x1, x2) given by Table
I.

• The joint distribution p(x1, x2) depends on a parameter
α, which is bounded as:

max(0,
p1 + p2 − 1

p2
) ≤ α ≤ min(1,

p1
p2

).

If α = p1, then X1 and X2 are independent.
Definition 2.3: We define the binary symmetric AMAC as

an AMAC with an independent BSC for each user:
• Input data X1, X2 corresponds to channel output Y 1,

Y 2, respectively, passed through each Binary Symmetric
Channel (BSC) with error probability pe.



TABLE II
CONDITIONAL DISTRIBUTION p(y|x1, x2) FOR BINARY SYMMETRIC

AMAC

!!!!!!x1, x2 Y = 0 Y = 1 Y = 2

0, 0 (1− pe)2 2pe(1− pe) p2e
0, 1 (1− pe)pe (1− pe)2 (1− pe)pe
1, 0 (1− pe)pe (1− pe)2 (1− pe)pe
1, 1 p2e 2pe(1− pe) (1− pe)2

• Conditional probability distributions p(y1|x1), p(y2|x2)
are given by:

p(yi = 0|xi = 0) = p(yi = 1|xi = 1) = 1− pe,

p(yi = 0|xi = 1) = p(yi = 1|xi = 0) = pe

where i = 1, 2.
• The two BSC outputs are y1 ∈ {0, 1} and y2 ∈ {0, 1}.

Thus, the channel output Y is the sum Y = Y 1 + Y 2,
which sets y ∈ {0, 1, 2}.

• The conditional probability distribution between each
encoder and decoder is, p(y|x1, x2) =∑

y1,y2
p(y|y1, y2)p(y1|x1)p(y2|x2) and is given by Ta-

ble II.
The capacity region for the binary symmetric AMAC is the

closure of the convex hull of the set of point (R1, R2) which
satisfy (5) and (6).

D. WOM codes and their capacity
Write once bits (or wits) are an array of bits with 2 possible

values, which are 0 and 1. The initial state of every wit is 0,
which can be irreversibly programmed to 1.

An ⟨v⟩t/n binary WOM code is coding scheme that uses
n-bit (or wits) to represent one of v = 2k values as codewords,
where k is the number of bits in the information word, so that
it can be written a total of t times [4].

In this paper, we treat the well-known ⟨22⟩2/3 WOM-code,
which is designed for the storage of two bits twice using only
three cells. The encoding and decoding rules for this WOM
code are represented in Table III, which shows four values and
two codebooks. The codebook C1 represents the first write and
codebook C2 represents the second write, each one with four
codewords of length n = 3. For more details on WOM codes
construction you may refer to Cohen et al. [7].

The rate of the ith write is given by:

Ri =
log2 vi

n

since there are vi = 2ki messages on write i, and there are n
bits, where i = 1, 2, ..., t.

Theorem 2.3: For a binary WOM 2-write codes capacity
region is given by:

R1 ≤ h(p), (7)
R2 ≤ 1− p (8)

for 0 ≤ p ≤ 0.5, where h(·) represents the binary entropy
function [8]. ⟨22⟩2/3 WOM codes have a rate pair (R1, R2) =
(2/3, 2/3) [4].

TABLE III
WOM CODE ⟨22⟩2/3

Message First Write C1 Second Write C2
X1

1X
1
2X

1
3 X2

1X
2
2X

2
3

00 000 111
01 001 110
10 010 101
11 100 011

III. AMAC WITH NO ERRORS

A. AMAC using WOM codes
This section explains how WOM codes are used for the

AMAC. For the binary symmetric AMAC with no errors
pe = 0, the explanation is straightforward as follows: (1) The
encoder for U1 uses the WOM codebook of the first write C1 to
achieve a rate R1. (2) The encoder for U2 refers the message
U1 and uses the WOM codebook of the second write C2 if
U1 ̸= U2 (and if U1 = U2, Encoder for U2 outputs the same
codeword as U1) to achieve rate R2. (3) Since the channel has
no errors, the decoder receives a sequence Y1, Y2, ..., Yn which
is the real-number addition of both codewords X1

1 , X
1
2 ...X

1
n

and X2
1 , X

2
2 , ..., X

2
n.

A property of WOM codes is that the second write knows
the current state of the memory. In the AMAC system, this
corresponds to User 2 knowing User 1’s codeword. Thus, the
AMAC is more appropriate than the MAC to apply WOM
codes to cooperative wireless communications.

When Y = 0 and Y = 2, the decoder can find easily the
pair (X1, X2) = (0, 0) and (X1, X2) = (1, 1), respectively.
However, if Y = 1, it produces an uncertainty, i.e. the
decoder cannot distinguish between (X1, X2) = (1, 0) or
(X1, X2) = (0, 1). A property of binary WOM 2-write codes
is that in any position where X1

j = 1, then X2
j also is 1. Thus,

(X1, X2) = (1, 0) never occurs, and Y = 1 is always decoded
as (X1, X2) = (0, 1).

The rate defined for WOM codes is the same as the rate for
the AMAC, where n represents the number of WOM code bits
as well as the number of BSCs uses (AMAC) per user. The
rates are also the same, in the AMAC case, user i can transmit
one of 2nRi messages, which is identical to the WOM code
definition of rate.

B. Capacity region with no errors
We here compare the capacity region of binary WOM 2-

write codes and the AMAC with no errors pe = 0, in order
to utilize binary WOM 2-write codes for wireless communi-
cations.

The AMAC capacity region can be calculated following (5)
and (6) with joint input distribution p(x1, x2). I(X1, X2;Y )
has maximum value 1.585, (for which I

(
X2;Y |X1

)
≈

0.918), indicated by (a) in Fig. 2, when

p(X1 = 0, X2 = 0) = p(X1 = 1, X2 = 1) = 1/3,

p(X1 = 0, X2 = 1) = p(X1 = 1, X2 = 0) = 1/6, (a)

which corresponds to Y having a uniform distribution.
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Fig. 2. The AMAC with no errors and WOM 2-write codes capacity region

On the other hand I(X2;Y |X1) has maximum value 1,
(for which I

(
X1, X2;Y

)
= 1), also indicated by (b) in Fig.

2, when

p(X1 = 0, X2 = 0) = p(X1 = 0, X2 = 1) = 0,

p(X1 = 1, X2 = 0) = p(X1 = 1, X2 = 1) = 1/2. (b)

Other points in the achievable rate region were found by an
exhaustive search over p1, p2 and α (See Table I), and the
convex hull is shown in Fig.2.

C. Comparison of WOM codes and the AMAC

For the AMAC, if the input distribution is chosen as:

p(X1 = x1, X2 = x2) =

{
0 if x1 = 1, x2 = 0,

1/3 otherwise. (c)

Then, the rate pair (R1, R2) ≈ (0.918, 0.667) is on the
boundary of the AMAC capacity region. For the WOM code,
this rate pair corresponds to the unrestricted-rate capacity
CWOM of binary WOM 2-write codes, which is the maximum
of the achievable sum-rates given by:

CWOM = max
(R1,R2∈RWOM )

(R1 +R2)

= max
p∈[0, 12 ]

(h(p) + (1− p)), (9)

where RWOM denotes the capacity region of WOM 2-write
codes given in Theorem 2.3. This sum is maximized when
p = 1/3, implying

R1 ≈ 0.9183, R2 =
2

3
,

CWOM = log2 3 ≈ 1.585. (10)

Using the WOM code, the corresponding input distribution
for C1 is p1 = 2/3 (i.e. the probability of a one is 1/3). The
input distribution for C2 can be shown to be p2 = 1/3 (i.e.
the probability of a one is 2/3) [6].

Finally, we observe that the binary WOM 2-write capacity-
achieving codes can achieve the AMAC capacity with no
errors, and the WOM codes capacity region touches the
AMAC one only at the point (R1, R2) ≈ (0.918, 0.667),
indicated by (c) in Fig. 2.
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Fig. 3. Low Complexity Decoding using Threshold

TABLE IV
(A)ENCODING RULES WHEN U1 = U2 (B)ENCODING RULES WHEN

U1 ̸= U2

(a)
U1 C1
0 0 0 0 0
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

U2 C2
0 0 0 0 0
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

(b)
U1 C1
0 0 0 0 0
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

U2 C2
0 0 1 1 1
0 1 1 1 0
1 0 1 0 1
1 1 0 1 1

IV. LOW-COMPLEXITY DECODING

This section describes the low complexity decoding which
is achieved owing to the key property of WOM codes where
a bit value 1 can not be changed into a bit value 0. Thus, a
bit value 0 is not assigned into a codeword X2 where in the
same position a codeword X1 has a bit value 1. In order to
explain the ideas, we use (3,2) WOM codes as an example
and consider the special case U1 = U2, where two different
codebooks are required for User 2.

Table IV shows how to encode each user’s data into code-
word in the case of U1 = U2 and U1 ̸= U2, in more detail.
User 1’s 2-bit data is encoded into a 3-bit codeword. (1) If
User 2’s 2-bit data is the same as User 1’s, its data is encoded
into a 3-bit codeword using Table IV-(a). (2) If User 2’s 2-bit
data is different from User 1’s, its 2-bit data is encoded into
a 3-bit codeword using Table IV-(b).

Once the decoder receives the Y sequence it is needed to
separate it into two estimated sequences. We set a threshold
for each user. If each element of the Y1Y2...Yn sequence is
above a threshold, the estimated bit of X̂1

1 X̂
1
2 ...X̂

1
n should be

1; otherwise, beneath the threshold each bit of X̂1
1 X̂

1
2 ...X̂

1
n

should be 0. In summary, for User 1:

X̂1
j =

{
0 if Yj = 0, 1

1 if Yj = 2,

and for User 2:

X̂2
j =

{
0 if Yj = 0

1 if Yj = 1, 2

where j = 1, 2, ..., n.
Let us show a concrete example. A pair of messages is

transmitted over an AMAC. Suppose that User 1 transmits a
message U1 = [10], and User 2 transmits a message U2 = [11]
at the same time. To encode each message, Table IV-(b) is used
because U1 ̸= U2. User 1 generates a codeword X1

1X
1
2X

1
3 =

[010] that corresponds to the first WOM code C1, and User 2
generates X2

1X
2
2X

2
3 = [011] as the second WOM code C2. A
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TABLE V
MAXIMUM VALUES OF MUTUAL INFORMATION OF THE AMAC ACHIEVABLE

RATE REGION WITH ERRORS

!!!!!!
pe 0 0.01 0.02 0.03 0.04

max I(X1, X2;Y ) 1.585 1.437 1.330 1.240 1.159
max I(X2;Y |X1) 1.000 0.890 0.810 0.743 0.684

0.05 0.06 0.07 0.08 0.09 0.10
1.087 1.021 0.961 0.905 0.853 0.804
0.631 0.583 0.539 0.498 0.460 0.426

bit by bit real-number addition for both codewords are taken
place (recall there are no errors), and the decoder receives the
sequence Y1Y2Y3 = [021]; as shown in Figure 3, we obtain
the estimated value X̂1

1 X̂
1
2 X̂

1
3 = [010] and X̂2

1 X̂
2
2 X̂

2
3 = [011]

by each threshold, which were the transmitted codewords.
Using this scheme, the decoder can recover the transmitted

data without errors.

V. PRELIMINARY STUDIES FOR PRACTICAL APPLICATIONS

Here we outline the preliminary studies on practical appli-
cations to channels with errors.

A. AMAC Capacity Region with errors

We here find the binary symmetric AMAC capacity region
with errors pe ≥ 0 (Fig.4). It is clear that for pe = 0 (i.e.
with no errors), the AMAC capacity region is greater than the
WOM codes capacity region. We expect this is true for pe > 0
as well. Hence, the AMAC region decreases, with increasing
error probability pe (Fig. 4). Note that Table V shows each
maximum value of (5) and (6) with errors which depend on
various joint input distributions.

B. Relay channel using WOM codes

This section describes a relay channel using WOM codes.
This system consists of three nodes: a source node (S), a relay
node (R), and a destination node (D) which is regarded as
Block Markov coding [1], where codes are used in successive
time slots.

We assume that the source can observe both message U1

and U2, whereas the relay can observe only message U1. The

relay node helps the transmission of the source. The transmis-
sion protocol of the proposed system is described as follows:
(1) During the first time slot, at the source, message U1 and
U2 are encoded into a codeword X2

1X
2
2...X

2
n ∈ C2 (note that

U1 is an empty message at this time) and broadcasted to
both the relay and the destination nodes. At the relay, the
message U2 is re-constructed by performing channel decoding
using side information U1. (2) In the second time slot, at the
relay, the re-constructed message is encoded using C1 into
a codeword X1

1X
1
2 ...X

1
n and transmitted to the destination

node; at the same time, a new codeword X2
1X

2
2 ...X

2
n ∈ C2

is generated from the current message U1 and U2 at the
source node and broadcasted to both the relay and the des-
tination nodes. Finally, the destination node can obtain both
codewords X1

1X
1
2 ...X

1
n and X2

1X
2
2 ...X

2
n at the second time

slot. The source (S) corresponds to User 2, and the relay (R)
corresponds to User 1 in the AMAC because the source knows
message U1 and U2 (i.e. User 2 knows User 1’s message);
therefore, the proposed WOM codes for the AMAC can be
applied to the relay channel with block Markov coding.

VI. CONCLUSION

We showed how to apply binary WOM 2-write codes
to the AMAC and demonstrated that binary WOM 2-write
codes can be used for the AMAC with no errors. In addi-
tion, binary WOM 2-write codes touch the boundary of the
capacity region of the AMAC with no errors at the point
(R1, R2) = (0.918, 0.667) where WOM codes attain its
capacity. Hence, binary WOM 2-write codes can be used for
cooperative wireless communication systems with no errors,
and we described low-complexity decoding with codewords
of length 3. This scheme can be applied to the case of longer
codes.
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