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Abstract

In this paper, we consider a number of system im-
provements that have been proposed for convolutional
turbo codes, and apply them to turbo-Hadamard codes
(THC). Our findings are as follows. 1. Asymmetrical
THC, employing differing constituent codes, improves
the waterfall region performance compared to symmet-
rical THC. 2. Punctured THC have improved perfor-
mance in both the waterfall and error floor regions, rel-
ative to non-punctured codes of the same rate. 3. An
LDPC code, when serially concatenated with an inner
THC code, can correct low weight errors to improve the
error floor performance. 4. Parallel-schedule decoding
of THC can converge significantly faster than conven-
tional serial-mode decoding, leading to a reduction in
decoder complexity.

1. INTRODUCTION

Information hiding and wideband data communi-
cations are applications which can benefit from pow-
erful low-rate error-correcting codes, such as recently
proposed turbo-Hadamard codes (THC) [1]. In in-
formation hiding applications, low-rate codes can be
used to reliably embed information into digitized au-
dio or video. Wideband data communications can use
low-rate error-correcting codes to replace the spread-
ing code in traditional direct-sequence spread spectrum
systems.

Hadamard codes are low-rate block codes with good
distance properties, and have been used in commu-
nication systems for synchronization and bandwidth
spreading. THC codes adopt Hadamard codes so that
they may be used in turbo codes, and are briefly re-
viewed in Section 2. It is reported that symmetric
THC codes can potentially achieve successful decod-
ing at Ep/No ~ —1.3 dB, which is 0.29 dB away from
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Figure 1: Structure of a convolutional-Hadamard code-
word.

the low-rate Shannon limit [2]. However, these codes
have a high error floor, and are complex to decode.

To address these problems, we take a number of
system improvements studied for convolutional turbo
codes, and apply them to THC codes. In Section 3.1,
we show that asymmetric THC codes have better per-
formance in the waterfall region than symmetric codes.
Takeshita, et al. showed that asymmetric convolutional
turbo codes have better performance in both the wa-
terfall and error floor regions [3]. Various asymmetric
designs have been presented in [9] [10] [11] [12].

For convolutional turbo codes, punctured multiple
turbo codes outperform unpunctured turbo code with
only two component codes [4] [9]. This is possible be-
cause increasing the number of component codes in-
creases the interleaving gain, and leads to a lower error
floor even though the codes are punctured. In Section
3.2, we show that this applies to punctured THC codes
as well. Favorable performance-complexity tradeoffs
are obtained by using these punctured codes, which
obtain good performance on trellises with fewer states.

We consider the serial concatenation of an outer
LDPC code and an inner THC code in order to reduce
the observed error floors. Parallel-concatenated turbo
codes have a relatively high error floor due to a small
multiplicity of low-weight codewords. For improving
this error floor, various methods have been presented.
In [5], a scheme to improve the error floor of convolu-
tional turbo codes by using high rate BCH codes was
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Figure 2: Trellis section for a convolutional Hadamard
code with C(1,1/3)s and r = 3.

proposed. In [8] and [7], the serial concatenation of an
outer LDPC code and inner turbo code was proposed.
However, it was shown that the concatenation of an
LDPC and turbo code gave worse performance than a
Reed-Solomon code at moderate block length [7]. In
Section 3.3, we show that for low-rate THC codes, the
concatenation with an outer LDPC code is effective at
correcting low-weight errors. In particular, we observe
error floors for THC systems, but these error floors
disappear when a high-rate LDPC code is added. As a
side benefit, the LDPC code acts as a soft-input stop-
ping condition on the THC turbo iterations when the
LDPC decoder detects a valid codeword.

In Section 3.4, we show that for decoding THC
codes, a parallel decoding schedule has better con-
vergence performance than the usual serial decoding
schedules. This is consistent with results for multiple
convolutional turbo codes, where parallel-mode turbo
decoding converges faster than serial-mode decoding
[6].

Section 4 is the conclusion.

2. TURBO-HADAMARD CODES

The component code in THC codes, convolutional
Hadamard codes (CHC) are low-rate codes with good
distance properties, and have high output Hamming
weight for low input weight sequences. The vector X
of N information bits is split into K = N/r blocks of r
bits xx, k =1,2,..., K, with X = {x1,%2,...,Xx}. A
single parity bit is ¢j,, is computed for each block. The
bits ¢}, are inputs to a rate 1, S-state convolutional code
C with a specified generator polynomial, to produce gg.
An order-r Hadamard code encodes {xy, gx } to produce
the systematic codeword {Xg, qx, Px}, with parity pg.

Table 1: Asymmetric Configurations for M = 4

Component | Generator Polynomial
Encoder Code A Code B
ENC1 (L 1/3)8 (L 1/3)8
ENC2 (1,3)s (1,3)s
ENC3 (1,1/3)s (1,3)s
ENC4 (1,3)s (1,1/3)s

Fig. 1 shows the structure of the CHC codeword.
The CHC code has a trellis representation, with the
same number of states as the convolutional code C),
and parallel transitions which correspond Hadamard
codewords. Fig. 2 shows the trellis for a CHC code
with convolutional code C' (1,1/3)s and an order r = 3
Hadamard code. The circled, underscored and remain-
ing bits represent g, X; and pg, respectively. The
CHC systematic bits xj, are not transmitted, as these
are already sent as the systematic bits of the THC code.

THC codes are a parallel concatenation of M CHC
codes, separated with M — 1 interleavers with length
N. The decoding of THC codes is performed as in mul-
tiple parallel turbo codes, where extrinsic information
is shared between the constituent codes’ decoders. and
is decoded using the BCJR algorithm. The trellis has
a large number of parallel transitions, which are com-
puted using the structural properties of the Hadamard
code. Turbo decoding proceeds for I; iterations. Refer
to [1] for details on THC and CHC codes.

3. PROPOSED IMPROVEMENTS

3.1. Asymmetric THC

To compare the performance of symmetric and
asymmetric codes, we consider r = 5, M = 4,5 =
2,N = 1000 THC codes. We use a symmetric code
with four (1,1/3)s component convolutional codes, and
two asymmetric designs, Code A and Code B which
use mixtures of (1,3)s and (1,1/3)s component convo-
lutional codes, as indicated in Table 1.

Simulation results are shown in Fig. 3. As can
be seen, both asymmetric Codes A and B achieve a
gain of nearly 0.1 dB in the waterfall region, making
asymmetric codes a promising candidate to improve the
noise thresholds found in [2].

3.2. Punctured THC

In this section, we compare punctured and unpunc-
tured THC of the same rate. A pseudo-random punc-
turing pattern is used, where one parity bit is randomly
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Figure 3: BER and FER of R = 5/113 asymmetric and
symmetric THC codes, with M =4, r =5, N = 1000,
I, = 50.

punctured from the vector py of each component de-
coder. The parity-check bits g were not punctured,
as this disproportionately reduced the strength of the
strength of the BCJR transition metrics. This pattern
gives the BER performance averaged over all possible
puncturing patterns. Further improvements may be
possible by choosing specific puncturing patterns. If P
is the number parity bits punctured per trellis section,
then the code rate R is:

r

- r+M@2r —P—r)’ (1)

where P = 0 gives the code rate for an unpunctured
code.

We evaluate M = 4 THC codes punctured with
P = 1, and unpunctured M = 3 THC codes, both
with rate R ~ 3/18. It has been observed that gains in
the waterfall region can be had for increasing M, for
M < 4, while gains in the error floor region continue
for increasing M [1].

For the M = 4 punctured code, an S = 2 generator
polynomial (1,1/3)g is used. For the punctured code,
one parity bit is randomly punctured from the vector
P of each component encoder. For the M = 3 unpunc-
tured code, S = 2,4 generator polynomials (1,1/3)s
and (1,6/7)s are considered. For both codes, r = 3
and the number of decoding iterations is I; = 50. The
BER and FER performance is shown in Fig. 4.

For a fixed number of states S = 2, the punctured
code significantly outperforms the unpunctured code
in both the waterfall and error floor region. The punc-
tured code achieves BER= 107° at E},/Ny ~ 0.7 dB, an
improvement of about 0.5 dB relative to the unpunc-
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Figure 4: BER and FER performance of R ~ 3/18
punctured and unpunctured codes with N = 999,
r = 3, I; = 50. For punctured, M = 4, generator
polynomial (1,1/3)g and for unpunctured, M = 3, gen-
erator polynomial (1,1/3)s and (1,6/7)s.

tured code. The much lower error floor of the punc-
tured code may be attributed to its higher interleaving
gain.

We also compare the punctured code with an un-
punctured code using a trellis with S = 4 generator
polynomial (1,6/7)s. The punctured code has better
performance in the waterfall region, despite having a
simpler trellis.

3.3. LDPC-THC Concatenation

In this section, we consider the serial concatenation
of an outer LDPC code with a THC code, so that the
input to the THC code is an LDPC codeword. Fig.
5 shows the block diagram of the encoder, where L
denotes the overall number of information bits.

The decoder for the hybrid LDPC-THC system is:

1. Perform one iteration of THC turbo decoding (se-
rial mode).

2. Perform syndrome check; if the LDPC syndrome
is 0, then stop decoding.

3. Perform I iterations of LDPC decoding using the
sum-product algorithm. If after any iteration the
syndrome is 0, then stop decoding.

4. If the number of turbo iterations is less than I3, go
to step 1, otherwise stop. (Extrinsic information
from the sum-product algorithm is not used by
the turbo decoder.)
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Figure 5: Encoder structure for the LDPC-THC con-
catenation.

This algorithm is shown as a flowchart in Fig. 6.

In simulations, we compare our proposed LDPC-
THC system with a standard THC code. The LDPC-
THC system uses a (3,27)-regular LDPC code with
block length 999, and a THC code with N = 999,
M = 3, r = 3, and S = 2 generator polynomial
(1,3)s. The overall rate of the hybrid concatenated
code is R = 4/27 = 0.15. The maximum number of
decoding iterations for the outer sum-product decoder
is Iy = 10. The parameters of the standard THC code
are N =999, M = 3, r = 3, and S = 2 generator
polynomial (1,1/3)s, with rate R = 3/18 = 0.17. We
consider I; = 5,10, 50 iterations.

THC decoder
(serial-mode)

Figure 6: Flowchart for iterative decoding of LDPC-
THC codes.
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Figure 7: BER and FER performance of LDPC-THC
concatenated code with overall rate R = 0.15 and gen-
erator polynomial (1, 3)g, and standard THC code with
rate R = 0.17 and generator polynomial (1,1/3)s. For
both codes N =999, r =3, M = 3.

The BER and FER performance of these codes are
compared in Fig. 7. In the waterfall region, the stan-
dard code has an better performance. However, in the
SNR range of 1.3-1.6 dB, an error floor for the stan-
dard THC appears, and the BER of the LDPC-THC
code continues to improve. This general trend was con-
sistant as we varied the THC code, by using differing
values of M, S, as well as using the asymmetric and
punctured THC codes. We believe this favorable code
performance is attributable to the good distance spec-
trum of LDPC codes coupled with the low rate of THC
codes.

Significantly, with the LDPC code detecting valid
codewords, superior performance can be obtained in
a small average number of iterations. Fig. 8 shows
the average number of iterations I; required for con-
vergence versus Ej,/Ny. For example, at E, /Ny = 1.4,
convergence was obtained in 1.9 iterations, consider-
ably less than the 50 iterations required by the stan-
dard code.

3.4. Decoder Scheduling

In standard serial-mode decoding, each of M de-
coders operate sequentially, with the extrinsic output
of decoder i passed to decoder ¢ + 1. In parallel-mode
decoding, all decoders operate simultaneously, where
each decoder’s a priori information is obtained from
the M — 1 other decoders.

Fig. 9 shows the convergence behavior at Ej, /Ny =
—0.3 dB for symmetric and asymmetric THC codes,
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Figure 8: Average number of iterations I;, for a THC
code with N =999,r = 3, M = 3 and a (3,27)-regular
LDPC code with I, = 10. Rate R ~= 0.17.

as a function of the number of iterations. Serial and
parallel iterations have been normalized to have the
same complexity. It can be seen that the parallel-mode
decoding of the symmetric code converges much more
quickly than the serial-mode decoding of the same code,
conferring a significant complexity advantage on the
parallel schedule. This is consistent with previous re-
sults for multiple convolutional turbo codes [6]. Also
shown in Fig. 9 is the convergence for serial and parallel
mode decoding of the asymmetric codes of the previous
section.

4. CONCLUSIONS

Turbo-Hadamard codes have previously been shown
to be effective low-rate codes, but have problems with
high error floors and high decoding complexity. We
have shown that the waterfall region of these codes can
be improved by using asymmetric component codes.
The error floor can be reduced by using punctured
codes and by using an outer LDPC code. Decoder com-
plexity can be reduced by using a parallel schedule, or
by using the outer LDPC code as a stopping condition.
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