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Abstract—While it is known that spatially-coupled low-density
lattice codes (SC-LDLC) have better decoding performance than
conventional (non-coupled) LDLC lattices, in this paper it is
shown that their encoding complexity is also lower. Since non-
zero elements are mainly in lower triangular entries of the sparse
inverse generator matrix of SC-LDLC, iterative encoding with
the Gauss-Seidel method performs well. The convergence speed
of iterative encoding is evaluated by both the mean square error
(MSE) and the symbol error rate between a given integer vector b
and the inversely generated integer vector from the codeword of
b. Numerical experiments show that the convergence of encoding
for SC-LDLC is 3 times faster than that of the conventional
LDLC, at an MSE of 10−10 for dimension n = 10000.

I. INTRODUCTION

The additive white Gaussian noise (AWGN) channel is an
important channel both from theoretical and practical points
of view. In 1959, Shannon found the capacity of the AWGN
channel using random coding [1]. Due to the lack of structure,
random codes are not practical as channel codes. Almost
40 years later, it was proved that lattice codes achieve the
channel capacity [2], [3]. Although lattice codes have elegant
structure, they are not efficiently decodable codes, i.e. their
decoding complexity is not linear in the dimension. In 2008,
Sommer et al. proposed efficiently decodable lattice codes
called low-density lattice codes (LDLC), by defining a sparse
inverse generator matrix [4]. Since Sommer et al. did not
use shaping methods, the term LDLC lattices is used in this
paper. Although LDLC lattices can be decoded efficiently
using belief-propagation (BP) algorithm, capacity-achieving
LDLC lattices have not so far been constructed. The noise
threshold of LDLC lattices in [4] appeared within 0.5 dB of
the capacity of the unconstrained-power AWGN channel.

In [5], we developed a new LDLC lattice construction,
called spatially-coupled (SC) LDLC lattices, based upon spa-
tial coupling principles [6]. Evaluation was performed using
Monte Carlo density evolution using a single-Gaussian ap-
proximated BP decoder [7]. While the conventional lattice
construction leaves a gap of 0.5 dB to capacity, the SC-LDLC
lattice construction reduces this gap to 0.33 dB from capacity1,

1Previously we reported 0.22 dB gap from capacity [5], but the correct
value is 0.33 dB.

of the unconstrained power channel.
Although the decoder’s computational complexity is only

O(n), generating lattice points requires computational com-
plexity of O(n2) in general. In [4], Sommer et al. suggested
that linear computational complexity encoding can be ac-
complished using the Jacobi method, which is an iterative
algorithm for determining the solution of a system of linear
equations. Sommer et al. described that the convergence of
the method was guaranteed by the nature of the sparse
inverse generator matrix of LDLC lattices. However, they did
not investigate convergence speed of such iterative encoding
methods. Since processing over many iterations is time- and
power-consuming, not only convergence conditions but also
convergence speed is important for practical applications. In
this paper, we evaluate the convergence speed of encoding
using the Gauss-Seidel method, another iterative algorithm [8].
Numerical experiments show that the SC-LDLC encoder with
the Gauss-Seidel method has significantly faster convergence
speed than the LDLC encoder with the Gauss-Seidel method
because of the spatially-coupled structure.

II. LDLC AND SC-LDLC LATTICES

A. Lattices

An n-dimensional lattice Λ is defined by an n-by-n genera-
tor matrix G. The lattice consists of the discrete set of points
x = (x1, x2, . . . , xn)T for which

x = Gb, (1)

where b = (b1, . . . , bn)T is from the set of all possible integer
vectors, bi ∈ Z. The transpose of a vector x is denoted xT.
Lattices are linear, in the sense that x1 + x2 ∈ Λ if x1 and
x2 are lattice points. It is assumed that G is n-by-n and full
rank (note SC-LDLC lattices allow G to have additional rows
which are linearly dependent).

The decoding performance of lattices are evaluated over
the unconstrained-power AWGN channel [4], [5]. Let the
codeword x be an arbitrary point of the lattice Λ. This
codeword is transmitted over an AWGN channel, where noise
zi with noise variance σ2 is added to each codeword sym-
bol. Then the received sequence y = (y1, y2, . . . , yn)T is
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yi = xi + zi, for i = 1, 2, . . . , n. The maximum-likelihood
decoder selects x̂ ∈ Λ as the estimated codeword, and a
decoding error is declared if x̂ �= x. The capacity of this
channel is the maximum noise power at which a maximum-
likelihood decoder can recover the transmitted lattice point
with error probability as low as desired for sufficiently large
block length. In the limit that n becomes asymptotically large,
there exist lattices which satisfy this condition if and only if
[9]:

σ2 ≤ |det(G)|2/n

2πe
. (2)

In the above |det(G)| is the volume of the Voronoi region,
which is inversely proportional to lattice density.

B. LDLC lattices

An LDLC lattice is a lattice which has a sparse inverse
generator matrix H. Since the inverse generator matrix H =
G−1 of LDLC lattices is sparse, LDLC lattices can be decoded
using BP [4]. An (n, α, d) LDLC lattice is defined by the n-
by-n matrix H which has row and column weight d, where
each row and column has one entry of weight ±1 and d − 1
entries with weight which depends upon α. More precisely,
the matrix H is defined as:

H = P′
1 + w

d∑
i=2

P′
i, (3)

where

P′
i = SiPi. (4)

Si denotes a random sign change matrix, Pi denotes a random
permutation matrix, and

w =
√

α

d − 1
.

We choose 0 ≤ α < 1, so that BP decoding of LDLC lattices
will converge exponentially fast [4]. The permutation matrices
are not chosen in a totally random manner but so as to generate
H having exactly one ±1 and exactly d − 1 ±w’s in each
column and row. The random sign change matrix Si is a
square, diagonal matrix, where the diagonal entries are +1
or −1 with probability 1/2.

C. Spatially-Coupled LDLC lattices

We define an (N,α, d, L) SC-LDLC lattice as a dimension
N(L−d+1) lattice with an NL×NL inverse generator matrix
H[L] as described by Eq. (7). The structure of H[L] is similar
to the parity check matrix of tail-biting convolutional codes.
In Eq. (7), H(l) = P′(l)

1 +w
∑d

i=2 P′(l)
i is an inverse generator

matrix of an (N,α, d) LDLC lattice for l ∈ {1, . . . , L}, and
each P′(l)

i represents a distinct matrix of the form of Eq. (4),
for distinct l and i.

In this construction, N(d − 1) integers are set to 0. The
integer vector of form:

b̃ =
[

b
0N(d−1)

]
,

is used, so that if the (N,α, d, L) SC-LDLC lattice
has a lattice point x = (x(1), . . . ,x(l), . . . ,x(L))T and
x(l) = (x(l)

1 , . . . , x
(l)
N ), then H[L]x = b̃, where b =

(b(1), . . . ,b(l), . . . ,b(L−d+1))T and b(l) = (b(l)
1 , . . . , b

(l)
N ), is

an information integer vector, and, 0N(d−1) is the all zero
column vector of length N(d−1). The inverse matrix of H[L]

is defined as G̃[L]. Since we set 0N(d−1) to the last d − 1
sections of b̃, The sub-matrix G[L] which is from column 1
to N(L − d + 1) of G̃[L] can be used for generating lattice
points. Therefore a lattice point in the dimension N(L−d+1)
SC-LDLC lattice is generated as

x = G[L]b = G̃[L]b̃. (5)

The dimension of the SC-LDLC lattice is, therefore, less
than the number of elements in x, which is n = NL.
Dimension ratio is defined as

RL =
N(L − d + 1)

NL
= 1 − d − 1

L
. (6)

The ratio RL converges to 1 with increasing L, with a gap
of O(1/L). Therefore, this dimension loss is negligible for
sufficiently large L. We observe that the noise threshold of
the (N , 0.8, 7, L) SC-LDLC lattices, with sufficiently large
L, is very close to the theoretical limit [5].

III. ENCODING WITH THE GAUSS-SEIDEL METHOD

Generally, a lattice encoder generates a lattice point x using
Eq. (1). For LDLC lattices, G is not sparse in general, and
so the encoder requires computational complexity and storage
of O(n2). However, b = Hx is a system of linear equa-
tions which can be solved using iterative methods. One such
method, the Jacobi method, can be described as a “parallel”
approach, finding a candidate solution x(t) on iteration t, using
the previous solution x(t−1). This approach was suggested by
Sommer et al., observing that encoding complexity is O(n),
since H is sparse [4].

The Gauss-Seidel method is another iterative method. The
Gauss-Seidel method is a “serial” approach; in each iteration,
each element of the candidate solution is computed in turn.
To perform computations serially, the Gauss-Seidel method
decomposes the matrix into upper- and lower-triangular parts.
In this section, LDLC and SC-LDLC encoders with the Gauss-
Seidel method are described. The Gauss-Seidel method has
faster convergence speed than the Jacobi method. Moreover
the SC-LDLC encoder with the Gauss-Seidel method performs
well because of the spatially-coupled structure.

A. LDLC Encoder with the Gauss-Seidel Method

Before explanation of the Gauss-Seidel Method, we define
the matrix H as a row-permuted version of the sparse inverse
generator matrix H, such that H has ±1 in the diagonal entries
(non-zero diagonal elements are required by the Gauss-Seidel
method). For example, a pictorial view of a matrix H for
the (100, 0.8, 7) LDLC lattices is shown in Fig. 1. Also the
vector b is a permuted version of the integer vector b, such
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H[L] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P′(1)
1 wP′(L−d+2)

d · · · wP′(L)
2

wP′(1)
2 P′(2)

1

. . .
...

...
...

. . . wP′(L)
d

wP′(1)
d wP′(2)

d−1

. . . . . .
. . . . . . . . . P′(L−d+1)

1

. . . . . . wP′(L−d+1)
2 P′(L−d+2)

1

. . .
...

...
. . .

wP′(L−d+1)
d wP′(L−d+2)

d−1 · · · P′(L)
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Fig. 1. Pictorial view of a row-permuted matrix H of the (100, 0.8, 7) LDLC
lattices. Red (resp. blue) dots represent positive (resp. negative) coefficients.
Dark (resp. light) dots represent ±1 (resp. ±w) coefficients.

that the ith element of b equals the element of b for which
the corresponding row of H has ±1 at the ith location.

Using the Gauss-Seidel method [8], an LDLC encoder
calculates several iterations of the form:

x(t + 1) = (L + D)−1(b − Ux(t)), (8)

where D is the diagonal matrix with the diagonal elements
of H, and L (resp. U) has the lower (resp. upper) triangular
elements without the diagonal elements of H. Therefore, H
is decomposed as:

H = L + D + U.

Denote t as the index of iteration and x(0) is initialized with
0n. The convergence properties are well-studied, and is related
to the spectral radius of the matrix (L+D)−1U [8]. However,
convergence may still occur even if properties are not satisfied,
and arguments concerning convergence are beyond the scope
of this paper.

The element-wise equation of Eq. (8) is as follows

xi(t + 1) =
1

hi,i

(
bi −

∑
j∈J

i
∩{j|j<i}

hi,jxj(t + 1)

−
∑

j′∈J
i
∩{j′|j′>i}

hi,j′xj′(t)
)
,

where xi(t + 1) is the ith entry of x(t + 1), hi,j is the (i, j)
entry of H, and J i is the column index set of the non-zero
elements in the row i of H. The computation of xi(t+1) uses
the elements of x(t + 1) that have already been computed,
and the elements of x(t) that have not yet been computed at
iteration t + 1.

Consider a sparse inverse generator matrix H[L] of the
SC-LDLC lattices. Non-zero elements are mainly in lower
triangular entries of H[L] without the first N(d−1) rows, see
Eq. (7). Since the Gauss-Seidel method uses already-computed
elements of x(t+1) at iteration t+1 for xi(t+1) in the case
that the non-zero elements are in J i∩{j|j < i}, it is expected
that the convergence speed of the encoding of the SC-LDLC
lattices with the Gauss-Seidel method is faster than that of the
LDLC lattices.

B. SC-LDLC Encoder with the Gauss-Seidel Method

An SC-LDLC encoder with the Gauss-Seidel method gen-
erates a codeword vector x(l)(t + 1) at section l and iteration
t + 1 by Eq. (9). The matrix P′(l)

d is row-permuted version
of the P′(l)

d , such that H[L] has ±1 in the diagonal entries.
For example, a pictorial view of a matrix H[L] for a (5, 0.8,
7, 20) SC-LDLC lattice is shown in Fig. 2. The vector b(l)

is a permuted version of the integer vector b(l), such that the
ith element of b(l) equals the element of b(l) for which the
corresponding row of P′(l)

1 has ±1 at the ith location.
All elements of x(0) are initialized with 0. From Eq. (9), it

is observed that the SC-LDLC encoder uses the elements of
x(t)(l) computed at the previous iteration for the first d − 1
sections. For remaining sections, the SC-LDLC encoder uses
only the elements of x(t + 1)(l) computed at the current
iteration. Intuitively it is expected that the convergence speed
of the encoding of SC-LDLC lattices with the Gauss-Seidel
method is faster than that of LDLC lattices.
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(
x(l)(t + 1)

)T

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(P′(l)
1 )T

(
(b(l))T − w

l−1∑
m=1

P′(l−m)
m+1

(
x(l−m)(t + 1)

)T

− w

d−1∑
m=l

P′(L−m+l)
m+1

(
x(L−m+l)(t)

)T
)

for 1 ≤ l < d,

(P′(l)
1 )T

(
(b(l))T − w

d−1∑
m=1

P′(l−m)
m+1

(
x(l−m)(t + 1)

)T
)

for d ≤ l ≤ L

(9)

Fig. 2. Pictorial view of a row-permuted matrix H[L] of the (5, 0.8, 7, 20)
SC-LDLC lattices. Red (resp. blue) dots represent positive (resp. negative)
coefficients. Dark (resp. light) dots represent ±1 (resp. ±w) coefficients.

Due to the spatially-coupled structure of H[L], the SC-
LDLC encoder can be implemented using a transversal filter
architecture. The SC-LDLC encoder architecture is shown in
Fig. 3. The encoder consists of transversal filter with ring
FIFOs. This encoder is simple because the encoder does not
need to manage routing connections with all the elements of
x for computations differently from the LDLC encoder.

Fig. 3. Architecture of the iterative encoder of SC-LDLC lattices. Note that
section index (l) points at (l + L) if the (l) is negative.

IV. SIMULATION RESULTS

Convergence speed of the encoding with the Gauss-Seidel
method is evaluated using Monte-Carlo simulations.

We generate 1000 sparse inverse generator matrices for each
lattice ensemble and evaluate 100 randomly generated integer
vectors2 for each matrix to compute the average. Mean square
error (MSE) at iteration t is calculated by

MSE(t) =
(b − Hx(t))T (b − Hx(t))

n
,

where n is the length of b. Fig. 4 shows MSE(t) for (1000,
0.8, 7) and (10000, 0.8, 7) LDLC lattices, and (50, 0.8, 7,
20) and (500, 0.8, 7, 20) SC-LDLC lattices. (1000, 0.8, 7)
LDLC and (50, 0.8, 7, 20) SC-LDLC

(
resp. (10000, 0.8, 7)

LDLC and (500, 0.8, 7, 20) SC-LDLC
)

lattices are the same
dimension n = 1000 (resp. n = 10000). It is observed that
convergence speed becomes faster with increasing dimension
n. Convergence of the (500, 0.8, 7, 20) SC-LDLC lattices is
almost 3 times faster than that of the (10000, 0.8, 7) LDLC
lattices at an MSE of 10−10. It is also observed that the
slopes of the MSE(t) curves for the dimension n = 1000
both LDLC and SC-LDLC lattices change around an MSE of
10−5. We conjecture that this is caused by small cycles in the
H, similar to error floors of low-density parity-check codes.
Section size N does not seem to affect the convergence of
SC-LDLC lattices because there are small differences in the
MSE(t) between the (50, 0.8, 7, 20) and (500, 0.8, 7, 20) SC-
LDLC lattices. Fig. 5 shows MSE(t) for the (50, 0.8, 7, L)
SC-LDLC lattices for L = 20, 100, 200 and 500. We observe
that convergence speed accelerates with increasing coupling
factor L. From the results in Fig. 5, we can obtain sufficiently
accurate codewords for transmission with few iterations if L
is sufficiently large.

We also show symbol error rate (SER) performance in
Fig. 6. The SER at iteration t is calculated by

SER(t) =
∑n

i=1 I[bi �= (Hx(t))i]
n

,

where I[·] is an indicator function that returns 1 if an argument
is true, otherwise returns 0, and (·)i denotes ith element of
an argument vector. The dimension of lattices in Fig. 6 is
1000, therefore 8 iterations is sufficient for SC-LDLC lattices
with the Gauss-Seidel method to vanish encoding symbol error
from expectations. On the other hand, 21 iterations is neces-
sary for LDLC lattices. In addition, the Gauss-Seidel method
converges slightly faster than Jacobi method for conventional
LDLC lattices, and significantly faster for SC-LDLC lattices.

2In the simulations, bi is uniformly distributed over {−10, · · · , 10} for
i ∈ {1, · · · , n}.
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)

lattices are the same dimension n = 1000
(resp. n = 10000). The convergence of SC-LDLC lattices is much faster than
that of LDLC lattices at each dimension.
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Fig. 5. The number of iterations versus mean square error of b. We observe
that the convergence speed of SC-LDLC lattices accelerates with increasing
coupling factor L.

V. DISCUSSION

We evaluated the convergence performance of iterative
encoding with the Gauss-Seidel method for LDLC and SC-
LDLC lattices. Numerical experiments showed that the con-
vergence of SC-LDLC lattices is significantly faster than that
of LDLC lattices because of the spatially coupled structure.

The Gauss-Seidel method separates the matrix into lower
and upper triangular parts. The sparse inverse generator matrix
of SC-LDLC lattices is dominated by the lower-triangular
components, and since the upper-triangular part is smaller,
this may help explain the higher convergence rates for the
SC-LDLC lattices.

Note that if SC-LDLC lattices existed where H is purely
lower-triangular, then encoding would be particularly straight-
forward and could be implemented by a simple forward-
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Fig. 6. The number of iterations versus symbol error rate of b. The Gauss-
Seidel method (GS) and the Jacobi method (Jacobi) are evaluated for both
(1000, 0.8, 7) LDLC and (50, 0.8, 7, 20) SC-LDLC lattices. The Gauss-Seidel
method converges slightly faster than Jacobi method for conventional LDLC
lattices, and significantly faster for SC-LDLC lattices.

substitution. As in many previous papers, shaping was not
considered here because of the unconstrained power scenario
(i.e. Poltyrev setting). It should be further noted that if a purely
lower-triangular matrix is available, then a power constraint
can be easily introduced by using cubic shaping, see [10].
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