
Channel Quantizers that Maximize Random Coding
Exponents for Binary-Input Memoryless Channels

Hideki Yagi
Center for Frontier Science and Engineering
The University of Electro-Communications

Chofu-shi, Tokyo 182-8585, Japan
Email: yagi@ice.uec.ac.jp

Brian M. Kurkoski
Dept. of Information and Communication Engineering

The University of Electro-Communications
Chofu-shi, Tokyo 182-8585, Japan

Email: kurkoski@ice.uec.ac.jp

Abstract—The problem of finding the optimum output quan-
tizer for a given discrete memoryless channel is investigated,
where the quantizer output has fewer values than the channel
output. While mutual information has received attention as an
objective function for optimization, the focus of this paper is use
of the random coding exponent, which was originally derived
by Gallager, as criteria. Two problems are addressed, where
one problem is a partial problem of the other. The main result
is a quantizer design algorithm, and a proof that it finds the
optimum quantizer in the partial problem. The quantizer design
algorithm is based on a dynamic programming approach, and is
an extension of a mutual-information maximization method. For
the binary-input case, it is shown that the optimum quantizer
can be found with complexity that is polynomial in the number
of channel outputs.

I. INTRODUCTION

A fundamental problem for designers of digital circuits that
implement communication algorithms is how to quantize nu-
merical values with as few bits as possible. There is inevitably
a performance-complexity tradeoff: decreasing the number of
bits used to represent these values will decrease complexity, at
the expense of performance. In practice, many circuit designers
use fairly ad hoc approaches, for example, using a uniform
quantizer and optimizing the step size.

Recently, however, there have been efforts to give an infor-
mation theoretic foundation to the problem of channel quan-
tization. The most fundamental question is how to optimally
quantize the output of a channel, and recent work deals with
optimality in the sense of maximizing mutual information.
For the binary-input AWGN channel, it is straightforward to
optimally quantize to three discrete output levels by maximiz-
ing over a single parameter [1]. For more than three outputs,
non-uniform quantization provides higher mutual information
than uniform quantization [2]. For a fixed quantizer, upper
bounds on the capacity exist, and “locally optimal” quantiza-
tion methods appear effective [3]. But by changing the focus
from continuous-output channels to discrete output-channels,
it becomes possible to find the globally optimal quantizer,
using a dynamic programming approach [4]. Thus, mutual
information is a well-studied metric for optimizing channel
quantizers.
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The focus of this paper is an information theoretic metric not
previously considered for channel quantization: the random
coding exponent. There exists at least one code of block length
n and rate R for which the probability of decoding error, Pe,
can be upper bounded by:

Pe ≤ 2−nEr(R), (1)

where Er(R) is the random coding exponent [5]. It is well-
known that the random coding exponent is a tight lower
bound on the true error exponent for a range of rates near
the channel capacity. The maximization of the random coding
exponent may be interpreted as the minimization of the
probability of decoding error for a given discrete memoryless
channel (DMC), which may be a finely quantized version of
a continuous-output channel, and a given R.

Whereas mutual information is a metric concerned with
asymptotically long block lengths, the random coding error
exponent allows us to form an upper bound on the error
probability of maximum likelihood decoding for fixed block
length codes, e.g., an ensemble of random codes [5]. When
the code length is sufficiently large (but can be fixed), then
the bound (1) also applies to an ensemble of non-binary
low-density parity-check (LDPC) codes [6]. Since channel
quantization algorithms can be applied to implementation
of LDPC decoders [7], the random coding exponent may
ultimately be a more suitable metric for finite-length codes.

The main result of this paper is to show how to find the
quantizer for a DMC which maximizes metrics based on the
random coding exponent. The quantizer reduces the number of
discrete outputs to a smaller number of discrete quantizer out-
puts, for a DMC, an input distribution, and a rate R. Following
previous work [4], a dynamic programming approach is used.
However, since the metric is the random coding exponent and
not mutual information, the core technical contribution of this
paper is new necessary conditions on optimality. Whereas this
paper is restricted to DMCs, a continuous output channel can
be approximated with arbitrarily small discrepancy by a finely
quantized channel.

It should be noted that in the 1960s and 1970s the channel
cutoff rate was considered as an information theoretic cri-
terion. In addition, mutual information can be expressed in
terms of the random coding exponent, as will be discussed in
the following section. From these observations, the problem
considered in this paper can be viewed as a unified approach
for the design of good quantizers. This is a step in the
direction of a framework which can maximize the random
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Fig. 1: A discrete memoryless channel followed by a quantizer. Given pj ,

Pi|j , 0 ≤ ρ ≤ 1, and K, find Qk|i which maximizes Ẽ0(ρ; Q).

coding exponent, the cut-off rate, and mutual information for
any binary-input DMC.

The outline of this paper is as follows. In Sect. II back-
ground and the main result are given; the main result is a
Theorem which states that the optimal quantizer can be found
with polynomial complexity. Also, the relationship among
the random coding exponent, the cut-off rate and mutual
information is given. Then, Sect. III gives necessary conditions
for optimality, which are needed in proving the Theorem.
Sect. IV gives the quantizer design algorithm itself.

II. MAIN RESULTS

A. Background
Let us consider a DMC followed by an output quantizer

as shown in Fig. 1. Let X, Y and Z be random variables
corresponding to the input, the output, and the quantized
symbol, respectively. The alphabets of these random variables
are denoted by X ,Y , and Z , and the alphabet sizes are
J , I and K, respectively. Define probability distributions as
follows:

pj = Pr(X = j), j = 1, . . . , J,

ri = Pr(Y = i), i = 1, . . . , I,

qk = Pr(Z = k), k = 1, . . . , K,

Pi|j = Pr(Y = i|X = j),
Qk|i = Pr(Z = k|Y = i), and

Tk|j = Pr(Z = k|X = j) =
∑

i

Qk|iPi|j .

We denote probability distributions {pj |j = 1, . . . , J} and
{Qk|i|k = 1, . . . , K, i = 1, . . . , I} by p and Q, respectively.
The sum

∑
i, etc. means the sum over the whole alphabet∑I

i=1, etc. Except for Lemma 2 (given in the next section),
this paper makes the restriction that J = 2.

B. Random Coding Exponent and Main Result
For a given DMC, an input distribution pj , and a rate R,

define

E0(ρ, T ) = − log
∑

k

[∑
j

pjT
1

1+ρ

k|j
]1+ρ

(2)

for 0 ≤ ρ ≤ 1. This function was introduced by Gallager [5],
and is sometimes called the Gallager function. It has been
shown that E0(ρ, T ) is a minus logarithm of a function which

is convex (lower convex) in pj and concave (upper convex)
in Tk|j . Since the probability distribution of the quantized
channel T is a function of the quantizer Q, the Gallager
function can also be expressed as

Ẽ0(ρ, Q) = − log
∑

k

[∑
j

pj

( ∑
i

Pi|jQk|i
) 1

1+ρ
]1+ρ

(3)

for 0 ≤ ρ ≤ 1. Since any affine transform of an argument
does not affect the convexity (concavity) of the function, this
function is also also a minus logarithm of a concave function
in Qk|i for fixed Pi|j . The random coding exponent is defined
as

Er(R) = max
p

max
0≤ρ≤1

{
Ẽ0(ρ, Q) − ρR

}
, (4)

where the first maximization is taken over all input probability
distributions. For fixed p, ρ and R, the random coding expo-
nent for the original DMC is E0(ρ, P )−ρR, whereas that for
the quantized channel is Ẽ0(ρ,Q) − ρR. For simplicity, we
also call Ẽ0(ρ, Q)−ρR the random coding exponent for fixed
p, ρ, and R. For any 0 ≤ ρ ≤ 1, there is a relation between
these exponents,

E0(ρ, P ) − ρR ≥ Ẽ0(ρ,Q) − ρR. (5)

This is confirmed as follows: first, we define

F0(ρ, P ) =
∑

i

[ ∑
j

pjP
1

1+ρ

i|j
]1+ρ

. (6)

By a variant of Minkowski’s inequality [5, p. 524], we can
easily show

F0(ρ, P ) ≤
∑

k

[ ∑
j

pj

( ∑
i

Qk|iPi|j
) 1

1+ρ

]1+ρ

. (7)

Taking the minus logarithm on both sides, we obtain (5).
Our ultimate goal is to find the quantizer Q which maxi-

mizes Er(R) for a given R. The key lies in the derivation of a
solution in a simplified problem; for given P , p, R, and K, find
the quantizer Q which maximizes the random coding exponent
Ẽ0(ρ,Q)− ρR for any given ρ. This problem is equivalent to
maximizing the Gallager function Ẽ0(ρ,Q) itself when R and
ρ are fixed.

The following theorem is the main result of this paper.
Theorem. For any binary-input DMC, there exists an algo-

rithm with complexity at most I3 that finds the quantizer Q∗
satisfying

Q∗ = arg max
Q∈Q

Ẽ0(ρ,Q), (8)

for any given input probability distribution p and 0 ≤ ρ ≤ 1.

Remark 1. In order to prove the Theorem, we will show
Lemma 3 in Sect. III-B. Using Lemma 3, it can also be shown
that the number of candidate solutions for the quantizer that
maximizes Er(R) for a given R is less than IK−1, so we can
find such a quantizer with polynomial-order complexity of I .
From this perspective, the simplified problem for maximizing
the Gallager function is fundamental, and so will be considered
in detail.
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C. Connection with Other Criteria
While this paper concentrates on the random coding expo-

nent, in this subsection the close relationship among the ran-
dom coding exponent, the cut-off rate and mutual information
is illustrated.

It has been shown in [5] that

I(X;Z) = lim
ρ→+0

Ẽ0(ρ,Q)
ρ

. (9)

The exponent Ẽ0(ρ,Q) − ρR for a fixed ρ is decreasing in
R, and as R increases, the optimum ρ∗ that maximizes the
random coding exponent (4) monotonously decreases. When
R reaches the mutual information I(X; Z), then the optimum
ρ∗ is zero. When we let ρ be sufficiently small, our problem
corresponds to maximizing mutual information.

The channel cutoff rate was suggested as a criterion for
designing quantizers by Wozencraft and Kennedy [8] in the
1960s. Massey [9] went on to emphasize the importance of the
cutoff rate as a receiver design criterion, and gave an algorithm
to find a channel quantizer which maximizes the cutoff rate
for the binary-input AWGN channel. Lee [10] extended these
results to channels with non-binary inputs. For a given DMC,
the cut-off rate for an input distribution pj is defined as

R0(Q) = − log
∑

k

[∑
j

pj

( ∑
i

Pi|jQk|i
) 1

2
]2

. (10)

It is clear that restricting our problem to the case ρ = 1 reduces
the problem to maximizing the cut-off rate.

III. CONCAVE MINIMIZATION AND A NECESSARY

CONDITION FOR OPTIMALITY

A. Concave Minimization
Since only Q can be altered for maximization of Ẽ0(ρ, Q) in

this problem, it suffices to find a quantizer Q which minimizes

F̃0(ρ,Q) =
∑

k

[ ∑
j

pj

( ∑
i

Qk|iPi|j
) 1

1+ρ
]1+ρ

. (11)

The function F̃0(ρ,Q) is regarded as a new objective function
to be minimized. Thus, we want to find

Q∗ = arg min
Q∈Q

F̃0(ρ,Q), (12)

where the left hand side is equal to that of (8). The new
objective function F̃0(ρ,Q) is concave in Qk|i. The problem
considered here is concave minimization [11].

Lemma 1. [11, Theorem 1.19] A concave (convex) function
f : S → R attains its global minimum (maximum) over a
convex set S at an extreme point of S.

Thus, in the context of concave minimization, the optimal
solution is one of extreme points of the (convex) feasible
region. Since the feasible region of our problem is the set of
all probability distributions Q, its extreme points correspond
to I × K matrices each of whose rows has only one element
1. We shall refer to these matrices as deterministic matrices.
We have the following lemma.

Lemma 2. For any DMC and any K, the optimal quantizer
Q∗ is deterministic. That is, Q∗

k|i ∈ {0, 1}, for all i and k.

Proof: The lemma can be proved by considering the fact
that all the extreme points of the feasible region correspond
to deterministic matrices.

Thus, it suffices to find an optimum quantizer in the class
of deterministic quantizers, which has also been shown in [12]
for the AWGN channel. To illustrate the implication of Lemma
2, we show the following example.

Example 1. Consider the binary-input errors and erasure
channel, with the transition matrix:

P =
[

1 − a − b a b
b a 1 − a − b

]
, (13)

for a, b ≥ 0 and a + b ≤ 1. This channel is symmetric in
the sense of [5], so the uniform input distribution gives the
largest random coding exponent and mutual information for
the original DMC. Suppose the three outputs, called 0, erasure
and 1, are to be quantized to two levels (K = 2). One might
expect that symmetry should be maintained by mapping the
erasure symbol to the two output symbols with probability
0.5 each. However, as Lemma 2 shows, this probabilistic
assignment has larger objective function (i.e., smaller random
coding exponent) than mapping the erasure symbol to either
0 or 1 with probably one. Thus, there are two optimum
quantizers; one quantizer divides the output alphabet as {1, 2}
and {3} and the other quantizer divides the output alphabet
as {1} and {2, 3}. These optimal quantizers lack symmetry
between the channel input and quantizer output. If one wants
to maintain the symmetry, one suggestion is to time-share
these optimum quantizers with the same fraction of time. It is
easy to see that probability distribution of the quantizer outputs
is uniform in this case.

The number of deterministic quantizers (deterministic ma-
trices) is KI . A naive optimization approach would be to
search over all KI candidate solutions, which is searching
over all deterministic quantizers. This has complexity which
is exponential in I . However, a more efficient algorithm exists
for maximizing the mutual information for the uniform input
distribution as shown in [13], and it will be shown that this also
applies to the problem considered in this paper; maximizing
the Gallager function with non-uniform input distributions.
The key observations are (i) the same necessary condition for
optimum quantizers under the mutual information criteria is
valid, and (ii) the efficient algorithm developed in [13], can
also be used to minimize the Gallager function.

B. Necessary Condition for Optimality
Without any loss of generality for binary-input channels, it

is assumed that the outputs of the DMC are indexed in such
a way that the following is satisfied:

P1|1
P1|2

<
P2|1
P2|2

< · · · <
PI−1|1
PI−1|2

<
PI|1
PI|2

. (14)

Here, strict inequalities are used because if
Pi0|1
Pi0|2

= Pi0+1|1
Pi0+1|2

for some i0 ∈ Y , then outputs i0 and i0 + 1 can be combined

to a single output with
Pi0|1+Pi0+1|1
Pi0|2+Pi0+1|2

, to form a new channel

with I−1 outputs. The original channel and the new channel
have the same value of the objective function.

Lemma 3 stated below gives a necessary condition for
the quantizer to be optimal. It is key for proving that the
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quantizer design algorithm proposed in [13], produces the
optimal quantizer with the new objective function F̃ (ρ,Q),
as well. Let Ak, k = 1, . . . , K, be the set of channel output
symbols quantized to k.

Lemma 3. For the quantizer which minimizes the objective
function F̃ (ρ,Q), Ak, k = 1, . . . , K, consists of consecutive
channel outputs, when the channel outputs are sorted according
to (14).

Proof: The quantization problem considered here is an
example of impurity-minimization partitions from machine
learning [15]. Defining the backward channel P̃j|i = Pr(X =
j|Y = i) for the given DMC Pi|j and a fixed input distribution
pj , the sorting condition (14) can also be expressed as

P̃1|1 < P̃1|2 < · · · < P̃1|I . (15)

Theorem 1 in [15] states that, if the objective function is
concave in T̃j|k = Pr(X = j|Z = k), then the optimal K

partitions consist of K convex subsets of {P̃1|i | i = 1, . . . , I}.
Here, a partition corresponds to the set of channel outputs that
map to a single quantizer output. It is easily shown that the
objective function F̃ (ρ,Q) is concave in T̃j|k using a variant
of Minkowski’s inequality [5, p. 524]. Restricting to binary-
input DMCs, it is clear that the lemma holds.

Lemma 3 implies that, if (14) holds, then each quantizer
output of the optimum quantizer consists of consecutive chan-
nel outputs. We call these quantizers consecutive quantizers.
It is readily seen that the number of consecutive quantizers is(

I−1
K−1

)
, and a brute-force search requires O(IK−1) complexity.

Since the number of deterministic quantizers is O(KI), this
reduces the candidate solutions significantly (recall that we
consider the situation in which I is large while K is relatively
small). When K is large, such a brute-force search becomes
infeasible. In the next section, we show that an algorithm for
the finding optimum quantizer with complexity at most O(I3).

Remark 2. We use the fact that the channel quantization prob-
lem can be viewed as an instance of impurity-minimization
partitions from machine learning. While restricted to binary-
input DMCs, one can extend the claim of Lemma 3 to mem-
oryless channels with any finite input alphabet and (possibly
continuous) output alphabet using [15, Theorem1].

Remark 3. Given the parameters p∗ and ρ∗ that gives Er(R)
for a fixed R, the addressed problem is equivalent to finding
the quantizer that maximizes Er(R), and hence, the optimum
quantizer should also be a consecutive quantizer from Lemma
3. The number of candidate solutions is also

(
I−1
K−1

) ≤ IK−1.
For each candidate Q, we can perform the maximization in
ρ by taking the partial derivative [5, Sect. 5.6] and in p by
the Arimoto-Blahut algorithm [16], [17]. The complexity for
this maximization does not depend on I , and we can find the
quantizer that maximizes Er(R) in O(IK−1) time.

C. Examples
We show some examples of optimum quantizers that max-

imize the objective function and mutual information [13] for
a given DMC.

Consider a class of binary-input DMCs with I = 5, and the
output symbols are quantized into K = 3 quantizer outputs.
According to Lemma 3, the set of candidates for the optimum

TABLE I: The set of candidate quantizers with I = 5 and K = 3 satisfying
the necessary condition given by Lemma 3.

Quantizer A1 A2 A3

Q1 {1,2,3} {4} {5}
Q2 {1,2} {3,4} {5}
Q3 {1,2} {3} {4,5}
Q4 {1} {2,3,4} {5}
Q5 {1} {2,3} {4,5}
Q6 {1} {2} {3,4,5}

TABLE II: The optimum quantizers under the two criteria with the objective
value Ẽ0(ρ, Q)−ρR (denoted by “RCE val.”) with ρ = 1/2. ”MI criterion”
stands for the mutual information criterion, while ”RCE criterion” means the
random coding exponent criterion. The rightmost column shows the difference
of Ẽ0(ρ, Q) − ρR.

DMC # MI criterion RCE criterion difference
quantizer RCE val. quantizer RCE val.

1 Q3 0.09272 Q2 0.10804 0.01532
2 Q2 0.07598 Q4 0.09276 0.01678
3 Q6 0.09857 Q5 0.11338 0.01481
4 Q2 0.05333 Q6 0.06418 0.01084

quantizer is {Q1, ..., Q6} shown in Table I. Here, we have(
I−1
K−1

)
= 6 quantizers satisfying the necessary condition of

Lemma 3.
We randomly generate DMCs satisfying the sorting con-

dition (14), and we show examples in which the optimum
quantizer that maximizes the objective function Ẽ0(ρ,Q)−ρR
is different from the optimum one that maximizes mutual
information I(X;Z). In order to see the effect of two dif-
ferent criteria, we choose R = I(X; Z)/2 and ρ = 1/2
for convenience, where I(X; Z) is attained by the optimum
quantizer under the mutual information criterion. In Table II,
the optimum quantizers under the two criteria are shown with
their objective value Ẽ0(ρ,Q) − ρR. The rightmost column
shows the difference of Ẽ0(ρ,Q)−ρR for respective optimum
quantizers, and these values show that the error probability of
ML decoding for the optimum quantizer under the random
coding exponent criterion decays much faster than that for
the optimum quantizer under the mutual information criterion,
as the block length n increases. To show the difference
between the optimum quantizers under the two criteria, the
curves for Ẽ0(ρ∗, Q∗)− ρ∗R are depicted in Fig. 2. Here, the
maximization in ρ is performed for the quantizers shown in
Table II at each rate.

IV. EFFICIENT QUANTIZER DESIGN ALGORITHM

An effective algorithm for finding the optimum quantizer re-
quiring time and space complexity at most O(I3) is presented.
Before presenting the algorithm, we give some preliminaries.

A. Partial Objective Function
For a deterministic quantizer, which is of interest due to

Lemma 2, the objective function can be expressed as

F̃0(ρ,Q) =
∑

k

[ ∑
j

pj

( ∑
i∈Ak

Pi|j
) 1

1+ρ

]1+ρ

, (16)

since Qk|i = 1 iff i ∈ Ak.
Under the quantization mapping from channel outputs to

quantizer outputs, the preimage of quantizer output m is Am.
The partial objective function ιm for this output is:

ιm =
[∑

j

pj

( ∑
i∈Am

Pi|j
) 1

1+ρ

]1+ρ

, (17)
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Fig. 2: An example of exponents Ẽ0(ρ∗, Q∗)−ρ∗R for optimum quantizers
over DMC 1 under the two criteria. The maximization in ρ is performed for
two quantizers at each rate.

Fig. 3: Trellis-type illustration showing the relationship between state metrics
for I = 5 and K = 3.

so the total objective function is

F̃0(ρ,Q) =
∑

k

ιk. (18)

Further, let consecutive channel outputs a′ + 1 to a, with
a′ < a ≤ I , be assigned to a single quantizer output k. That
is, Ak = {ak−1 + 1, . . . , ak}. For these sets of consecutive
outputs, we denote by ι(ak−1 → ak) the partial objective
unction ιk, i.e.,

ι(ak−1 → ak) = ιk (19)

for this assignment. The values of ι(a → a′) for all a, a′ such
that 1 ≤ a < a′ ≤ I will be used as metrics of a quantizer
design algorithm.

B. Quantizer Design Algorithm
The Quantization Algorithm, proposed in [13], is a quantizer

design algorithm and is the realization of a dynamic program.
Although the metrics here are different from those in [13], we
do not need to change the algorithm itself. Here, we briefly
review the algorithm.

The algorithm has a state value Sk(i), which is the minimum
value of the partial objective function when channel outputs
1 to i are quantized to quantizer outputs 1 to k. This can

be computed recursively by conditioning on the state value at
time index k − 1:

Sk(a) = min
a′

(
Sk−1(a′) + ι(a′ → a)

)
, (20)

where the minimization is taken over a′ ∈ {k− 1, . . . , a− 1}.
Clearly, SK(I) is the minimum value of the total objective
function. The path S0(0), S1(a1), . . . , SK(aK) which gives
the minimum of the total objective function corresponds to the
optimum quantizer whose boundaries are {a1, a2, . . . , aK}.
The relationship between the states metrics are illustrated in
a trellis-type diagram in Fig. 3, for I = 5 and K = 3. In
the trellis-type diagram, a metric value ι(a′ → a) calculated
by (17) and (19) is assigned to the edge from Sk(a′) to
Sk+1(a) for all pair (a′, a) such that a′ ∈ {0, 1, . . . , I − 1}
and a ∈ {a′ +1, . . . , t} (where t = min{a′ +1+I−K, I}) at
each k = 1, . . . , I − 1. The flow of the algorithm is the same
as in [13], and hence is omitted.

The complexity of this algorithm is not greater than I3 [4],
and this complexity reduces that required for a brute-force
approach, which is O(IK−1) from Lemma 3. This complexity
result, along with the proof of optimality, proves the Theorem.
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