
Message-Passing Decoding of Lattices
Using Gaussian Mixtures

Brian Kurkoski
University of Electro-Communications

Tokyo, Japan

kurkoski@ice.uec.ac.jp

Justin Dauwels
Massachusetts Institute of Technology, Cambridge, MA

Harvard Medical School, Boston, MA

justin@dauwels.com

Abstract— A belief-propagation decoder for low-density lattice
codes, which represents messages explicitly as a mixture of
Gaussians functions, is given. In order to prevent the number
of functions from growing as the decoder iterations progress, a
method for reducing the number of Gaussians at each step is
given. A squared distance metric is used, which is shown to be
a lower bound on the divergence. For an unconstrained power
system, comparisons are made with a quantized implementation.
For a dimension 100 lattice, a loss of about 0.2 dB was found; for
dimension 1000 and 10000 lattices, the difference in error rate
was indistinguishable. The memory required to store the mes-
sages is substantially superior to the quantized implementation.

I. INTRODUCTION

Recently, a new lattice construction and decoding al-

gorithm, based upon the ideas of low-density parity check

codes has been introduced. So-called low-density lattice codes

(LDLC) are lattices defined by sparse inverse generator matrix,

and are decoded using a belief-propagation algorithm, with

complexity that is linear in the lattice dimension. Sommer,

Feder and Shalvi, who proposed this lattice and decoder,

decoded a lattice with dimension 106, and a noise threshold

appeared within 0.6 dB of the channel capacity of a system

which does not constrain the transmit power [1].

In belief-propagation decoding of LDLC codes the mes-

sages are continuous functions. When the channel is AWGN,

these messages are a mixture of Gaussian functions. This

is appealing for a decoder implementation, but unfortunately

as the iterations progress the number of Gaussians in the

mixture grows quite rapidly, and a naive implementation using

Gaussians is infeasible. Thus, in prior work, the decoder

messages were quantized. In Section II, the assumed com-

munications system, LDLC codes, and the Gaussian-mixture

belief-propagation decoder are reviewed.

This paper describes an implementation of the belief-

propagation LDLC decoder which represents the messages as

mixtures of Gaussians. The key component is an algorithm

B. Kurkoski was supported in part by the Ministry of Education, Sci-
ence, Sports and Culture; Grant-in-Aid for Scientific Research (C) number
19560371. J. Dauwels was supported in part by post-doctoral fellowships
from the King Baudouin Foundation and the Belgian American Educational
Foundation (BAEF). Part of this work was carried out at the RIKEN Brain
Science Institute, Saitama, Japan.

which approximates a Gaussian mixture by a smaller number

of Gaussians.

The proposed algorithm compares the distance between all

possible pairs of Gaussians in an input list, and combines

the closest two by replacing them with a single Gaussian.

This proceeds iteratively until a stopping condition is reached.

While the Kullback-Leibler (KL) divergence would be an

appropriate distance measure, it cannot be found in closed

form, and a lower bound on the KL divergence is used instead.

This lower bound is the squared distance, can be computed

in closed form, and thus is used as the distance metric. The

two Gaussians are replaced by a single Gaussian using the

method of moments, which minimizes the KL divergence. This

algorithm, which we refer to as the Gaussian mixture reduction

algorithm, is described in Section III.

A related technique is the iterative pairwise replacement al-

gorithm for reducing the order of a Gaussian mixture in kernel

density estimation [2]. For compressed sensing, this algorithm

was applied to find the solution to an underdetermined system

of equations, when there is an a priori distribution on the

unknowns [3]. This inference algorithm has some similarities

with LDLC decoding.

The Gaussian mixture reduction algorithm is then applied

to the LDLC belief-propagation decoder. Minor refinements of

the belief-propagation algorithm are required for efficient im-

plementation. By numerical evaluation, the proposed algorithm

has error-rate performance very close to the quantized imple-

mentation. While it is difficult to compare the computational

complexity of the two algorithms, the proposed technique uses

substantially less memory. The proposed LDLC decoder and

the complexity considerations are discussed in Section IV.

II. LOW-DENSITY LATTICE CODES

A. Lattices and the Unconstrained Power System

An n-dimensional lattice Λ is defined by an n-by-n gener-

ator matrix G. The lattice consists of the discrete set of points

x = (x1, x2, . . . , xn) ∈ R
n with

x = Gb, (1)

where b = (b1, . . . , bn) is the set of all possible integer

vectors, bi ∈ Z. Lattices are linear, in the sense that x1 +x2 ∈
Λ if x1 and x2 are lattice points.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

2489978-1-4244-2571-6/08/$25.00 ©2008 IEEE

We consider the unconstrained power system, as was used

by Sommer, et al. Let the codeword x be an arbitrary

point of the lattice Λ. This codeword is transmitted over

an AWGN channel, where noise zi with noise variance σ2

is added to each code symbol. Then the received sequence

y = {y1, y2, . . . , yn} is:

yi = xi + zi, i = 1, 2, . . . , n. (2)

A maximum-likelihood decoder selects x̂ as the estimated

codeword:

x̂ = arg max
x∈Λ

Pr(y|x). (3)

The received codeword is correct if x = x̂ and incorrect

otherwise.

Notably, the transmit power ||x||2 is unbounded. Instead, the

system is constrained by the codeword density, measured by

the volume of the lattice’s Voronoi region, given by |det(G)|.
Poltyrev showed [4] that for sufficiently large n, there exists

a lattice for which the probability of error becomes arbitrarily

small, if and only if,

σ2 ≤ |det(G)|2/n

2πe
. (4)

Significantly, Poltyrev’s work allows for separation of the

design of the lattice from the design of some shaping region

which enforces the power constraint. This setting is convenient

for examining LDLC codes, since the code, which is the same

as the lattice, is linear, and the absence of a power constraint

simplifies the decoder.

B. LDLC Codes

A low-density lattice code is a lattice with a non-singular

generator matrix G, for which H = G−1 is sparse. It is

convenient to assume that det(H) = 1/ det(G) = 1. An (n, d)
regular LDLC code has an H matrix with constant row and

column weight d. In a magic square LDLC, the values of the

d non-zero coefficients in each row and each column have

the values h1, h2, . . . , hd. For convenience, these values are

sorted as h1 ≥ h2 ≥ · · · ≥ hd > 0. The signs of these entries

of H are pseudo-randomly changed to minus with probability

one-half.

C. LDLC Belief-Propagation Decoder

The LDLC belief-propagation decoding algorithm estimates

the a posteriori probability Pr(xi|y). As with decoding low-

density parity check codes, the decoding algorithm may be

presented on a bipartite graph. For regular LDLC codes, there

are nd variable-to-check messages qk(z), and nd check-to-

variable messages rk(z), k = 1, 2, . . . , nd. Since the variables

xi are continuous, the messages are functions.

A Gaussian with mean m and variance v is denoted as:

N (z; m, v) =
1√
2πv

e−
(z−m)2

2v . (5)

Because the channel noise is Gaussian, all messages are

mixtures of Gaussians. The message f(z) is a mixture of N
Gaussians:

f(z) =
N∑

i=1

ci N (z; mi, vi) , (6)

where ci ≥ 0 are the mixing coefficients with
∑N

i=1 ci =
1. In this way, the message f(z) can be described by a

list of triples of means, variances and mixing coefficients,

{(m1, v1, c1), . . . , (mN , vN , cN)}
For the AWGN channel, node i has channel output yi,

and channel message is yi(z) = N (
z; yi, σ

2
)

(we distinguish

between yi and yi(z)). The initial variable-to-check message

for edge k is qk(z) = yi(z), if edge k is connected to variable

node i.
In describing the Gaussian mixture decoder, initially assume

that the input messages to the variable node and check node

consist of a single Gaussian. That is N = 1 and qk(z) and

rk(z) are of the form N (z; mk, vk).
Check node Without loss of generality, consider check node

inputs k = 1, . . . , d−1 and output d. The corresponding non-

zero coefficients from H are h1, . . . , hd. The output rd(z) is:

rd(z) =
∞∑

b=−∞
N (z; md(b), vd) , (7)

where,

md(b) = −
∑d−1

k=1 hkmk + b

hd
, and (8)

vd =
∑d−1

k=1 h2
kvk

h2
d

. (9)

Variable Node. Similarly, consider the variable node inputs

k = 1, . . . , d − 1 and output d. For notational convenience,

let the channel message be r0(z) = N (z; m0, v0), with m0 =
yi, the received symbol at node i, and v0 = σ2, the channel

variance. The output message qd(z), the product of these input

messages, will also be a Gaussian,

qd(z) = kd N (z; md, vd) , (10)

where,

1
vd

=
d−1∑
k=0

1
vk

,
md

vd
=

d−1∑
k=0

mk

vk
, (11)

and,

kd =
√

vd

(2π)d−2
∏

i vi
exp

(
− vd

2

d−2∑
i=0

d−1∑
j=i+1

(mi − mj)2

vivj

)
. (12)

For the general case where the input consists of a mixture

of Gaussians, each element of the output mixture can be found

by conditioning on one element from each input mixture and

performing the above computations, at both the check node

and the variable node.

Consider the variable node, with inputs rk(z) which are a

mixture of Nk Gaussians, (m(i)
k , v

(i)
k , c

(i)
k) for k = 0, . . . , d−1

and i = 1, 2, . . . , Nk (N0 = 1, the channel message). For

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

2490

each input k, condition on one Gaussian ik ∈ {1, . . . , ck}.

This contributes one Gaussian to the output mixture qd(z),
where the mean and variance is computed from (11), using

m
(ik)
k and v

(ik)
k . The mixing coefficient for this Gaussian is

kd

∏d−1
k=1 c

(ik)
k , where kd is given by (12). The check node

output can be computed in a similar way.

The number of Gaussians in each mixture grows rapidly

as the iterations progress. In practice, the sum in eqn. (7)

may be taken over some set of I integers. On any iteration,

if each check node input is a mixture of N Gaussians, then

the output will be a mixture of INd−1 Gaussians. A similar

argument is made at the variable node, so that the check node

input on the following iteration is a mixture of Id−1N (d−1)2

Gaussians. The initial mixture consists of a single Gaussian,

and so the number of Gaussians in the check node input

mixture after iteration i is greater than I(d−1)2i−1
. Thus, a

naive implementation of this Gaussian mixture decoder is

prohibitively complex.

III. GAUSSIAN MIXTURE REDUCTION ALGORITHM

In Section III-A, a method which finds a single Gaussian

which is a good approximation of a mixture of two Gaussians,

is described. Further, to evaluate the goodness of the approx-

imation, a distance metric between these two distributions

is given. In Section III-B, the proposed Gaussian mixture

reduction algorithm is described, which uses this distance

metric to reduce a mixture of an arbitrary number of N
Gaussians to a mixture of a smaller number of Gaussians.

A. Approximating a Mixture of Two Gaussians with a Single
Gaussian, and Their Distance

When approximating a true distribution p(z), by an approx-

imate distribution q(z), a reasonable approach is to choose

q(z) in such a way that the Kullback-Leibler divergence

KL(p||q) is minimized. For distributions with support Z , the

KL divergence is given by:

KL(p‖q) =
∫

z∈Z
p(z) log

p(z)
q(z)

dz. (13)

When q(z) is a Gaussian, selecting the mean and variance to

be the same as those of p(z) will minimize the divergence;

this is sometimes known as “moment matching.” In particular,

if p(z) is a mixture of two Gaussians we have the following.

Lemma 1: The single Gaussian with mean m and variance

v which minimizes the divergence from the mixture of two

Gaussians c1 N (z; m1, v1) + c2 N (z; m2, v2) is given by:

m = c1m1 + c2m2, and (14)

v = c1(m2
1 + v1) + c2(m2

2 + v2)
−c2

1m
2
1 − 2c1c2m1m2 − c2

2m
2
2. (15)

For convenience, we use the following notation. Let ti, i = 1, 2
denote the triple (mi, vi, ci), where c1 + c2 = 1. The single

Gaussian which satisfies the property of Lemma 1 is denoted

as:

t = MM(t1, t2), (16)

where t = (m, v, 1), with m and v as given in (14) and (15).
While it is easy to find the mean and variance of the single

Gaussian q(z) which minimizes the divergence, the divergence

itself does not appear to have a closed form. Computing the

divergence numerically is complex. Instead, we compute a

lower bound on the divergence, the squared difference.

Definition The squared difference SD(p||q) between two

distributions p(z) and q(z) with support Z is defined as:

SD(p||q) =
∫

z∈Z
(p(z) − q(z))2dz. (17)

The squared difference is non-negative and zero if and only

if p = q. The squared difference is symmetric.

For discrete distributions with support A, the squared differ-

ence forms a lower bound on the divergence. The L1 distance

between p(a) and q(a) is
∑

a∈A |p(a) − q(a)|. The divergence

is lower bounded by [5, Sec. 12.6]:

KL(p||q) ≥ 1
2 ln 2

(∑
a∈A

|p(a) − q(a)|
)2

. (18)

Expanding the square on the right-hand side of (18), the sum

of the squares |p(a) − q(a)|2 is equal to SD(p||q), and the

cross terms are all non-negative. Thus, the L1 distance is

lower bounded by the squared distance and we have proved

the following.

Lemma 2: For any two discrete distributions p and q:

KL(p||q) ≥ 1
2 ln 2

SD(p||q). (19)

It is reasonable to assume that Lemma 2 holds for well-

behaved continuous functions as well.

Computing the squared distance between two Gaussians

and a single Gaussian is tractable (computing the L1 distance

requires evaluation of error functions, and is not considered

for complexity reasons). In Section III-B, it will be convenient

to have a function which describes the penalty of replacing

two Gaussians with a single Gaussian. Define the Gaussian
quadratic loss GQL(p) as the squared difference between a

distribution p and the Gaussian distribution with the same

mean m and variance v as p:

GQL(p) = SD(p‖N (m, v)). (20)

Lemma 3: For the distribution which is the mixture of two

Gaussians t1 = (m1, v1, c1) and t2 = (m2, v2, c2) with c1 +
c2 = 1, the Gaussian quadratic loss is given by:

GQL(t1, t2) =
1

2
√

πv
+

c2
1

2
√

πv1
+

c2
2

2
√

πv2

− 2c1√
2π(v + v1)

e
− (m−m1)2

2(v+v1) − 2c2√
2π(v + v2)

e
− (m−m2)2

2(v+v2)

+
2c1c2√

2π(v1 + v2)
e
− (m1−m2)2

2(v1+v2) , (21)

where m and v are given in (14) and (15), respectively.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

2491

M
ix

. R
ed

.

M
ix

. R
ed

.

Mix. Red.

M
ix

. R
ed

.

M
ix

. R
ed

.

bd−1bd−1a1a1

qk

r1 r2 rd−1 rd

√
y

√
y

ak−1 bk bd−2a2

Fig. 1. Forward-backward variable node decoding, with Gaussian mixture reduction applied after each step.

Even when the mixture is not normalized, the GQL is

computed by first normalizing the mixing coefficients. Let

t1 = (m1, v1, c1) and t2 = (m2, v2, c2) with c1 + c2 �= 1.

Then ci = ci/(c1 + c2), i = 1, 2, and GQL(t1, t2) is defined

to be equal to GQL(t1, t2) as found using Lemma 3.

B. Approximating N Gaussians with M Gaussians
This section describes the Gaussian mixture reduction al-

gorithm, which combines Gaussians in a greedy pair-wise

fashion until a stopping condition is reached. Of the Gaussians

remaining at each step, the two with the lowest GQL distance

metric are replaced by the single Gaussian with the same

moments, resulting in one fewer Gaussians. This process is

repeated iteratively until a stopping condition is reached.
The algorithm input is a mixture of N Gaussians, f(z), as

defined in (6), given as a list of triples. The algorithm output is

a list of M triples of means, variances and mixing coefficients,

{ (mm
1 , vm

1 , cm
1), . . . , (mm

M , vm
M , cm

M) } with
∑M

i=1 cm
i = 1,

that also forms a Gaussian mixture g(z). With M ≤ N , the

output mixture should be a good approximation of the input

mixture, g(z) ≈ f(z). The algorithm is denoted as g(z) =
GMR(f(z)).

Two conditions must be satisfied for the algorithm to stop.

First, the GQL gives the error incurred as a result of combining

at each step, and combining continues while the GQL is

greater than a specified threshold θ. This local, one-step error

is a surrogate for a global error metric. Second, the algorithm

continues combining as long as the number of Gaussians is

greater than the specified Mmax.
Gaussian Mixture Reduction Algorithm

1) Input:

a) List L = {t1, t2, . . . , tN} of N triples describing

a Gaussian mixture.

b) Two stopping parameters, θ and Mmax.

2) Initialize:

a) The current search list, C, is the input list: C ← L.

b) The length of current list, M c ← N .

c) The current error, θc is the minimum GQL between

all pairs of Gaussians:

θc ← min
ti,tj∈C,i �=j

GQL(ti, tj).

3) Greedy combining. While θc < θ or M c > Mmax:

a) Determine the pair of Gaussians (ti, tj) with the

smallest GQL:

(ti, tj) ← arg min
ti,tj∈C,i �=j

GQL(ti, tj).

b) Add the single Gaussian with the same moment as

ti and tj to the list:

C ← C ∪ MM(ti, tj).

c) Delete ti and tj from list: C ← C \ {ti, tj}.

d) Decrement the current list length: M c ← M c − 1.

e) Recalculate the minimum GQL:

θc ← min
ti,tj∈C,i �=j

GQL(ti, tj).

4) Output: list of M triples given by C.

It is desirable to repeat step 3 as long as the current reduced

Gaussian function C remains a good approximation of the

input function L, however both stopping conditions must be

satisfied. The one-step GQL error may be greater than the

specified threshold θ if the number of remaining Gaussians

is not yet Mmax. On the other hand, the number of output

Gaussians may be less than Mmax, if the one-step error is

sufficiently low.

At each step, the new Gaussian minimizes the divergence

with the two it replaced, which is locally optimal. However,

by Lemma 2 since the squared distance metric is only a lower

bound on the divergence, it is not guaranteed that the pair with

the lowest divergence will be selected. Further, this is a greedy

algorithm, and no claims are made about its global optimality.

IV. LDLC DECODING USING GAUSSIAN MIXTURE

REDUCTION

A. LDLC Decoder

The Gaussian mixture reduction algorithm is applied to the

belief-propagation decoder to stop the exponential growth of

the number of Gaussians in each mixture. In order to apply the

algorithm efficiently, the following refinement is necessary.

For any LDLC decoder, the complexity at both the check

node and variable node can be reduced by decomposing the

computations using a forward-backward-type algorithm. The

outputs are found by combining recusively-computed forward

messages a(z) and backward messages b(z).
For the Gaussian-mixture LDLC decoder in particular, the

Gaussian mixture reduction algorithm is applied after each

forward and backward recursion step, and is illustrated for

the variable node in Fig. 1. The forward messages at step

k are ak(z) and ak(z), before and after mixture reduction,

respectively. The forward recursion is initialized as:

a0(z) =
√

y(z). (22)

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

2492

0 1 2 3 4 5 6 7 8
10

7

10
6

10
5

10
4

10
3

10
2

10
1

 n=100

Distance from Capacity (dB)

P
ro

b.
 o

f s
ym

bo
l e

rr
or

 n=1000

n=10000

Uncoded
(100,3), GM, =2,Mmax=100

(100,3), GM, =0.05,Mmax=100
(100,3), Quantized decoder
(1000,6), GM, =2, Mmax=10

(1000,6), GM, =0.01, Mmax=10
(1000,6), Quantized decoder
(10000,6), GM, =2, Mmax=10
(10000,6), Quantized decoder

Fig. 2. Symbol error rate for gaussian mixture (GM) and quantized decoder.

Two operations are performed at each recursion step. First,

compute the message ak(z). Then, the Gaussian mixture

reduction algorithm is applied. For k = 1, 2 . . . , d,

ak(z) = ak−1(z) · rk(z), and (23)

ak(z) = GMR(ak(z)). (24)

The backward messages bk(z), bk(z) are found similarly,

including initialization bd(z) =
√

y(z). When y(z) is a single

Gaussian,
√

y(z) is also Gaussian with the same mean and

twice the variance. By initializing in this way, many of the

periodic elements of r1(z) and rd(z), after multiplication

by
√

y(z), have very small mixing coefficients, which are

combined by the Gaussian mixture reduction algorithm. This

effect persists as the forward-backward recursions proceed,

and in both directions. The output message rk(z) is the product

ak−1(z) · bk(z), and so the output message properly includes

(
√

y(z))2.

At the check node, a similar forward-backward decompo-

sition can be performed, and the Gaussian mixture reduction

algorithm is applied after each recursion step. Gaussian mix-

ture reduction is applied to the summand N (z; md(b), vd) in

(7), but not to the periodic message rk(z).
As iterations progress, the message variances decrease to-

wards a single narrow Gaussian. But due to quantization

effects, two peaks may not align, and the variable-node product

will have a large error, leading to instabilities. This was

avoided by setting a minimum variance for a mixture. A

message variance vi is replaced by max(vi, γ · σ2), where

γ is a constant, perhaps 0.05, and σ2 is the channel noise

variance, so the minimum value scales with the channel noise.

The quantized implementation uses a distinct method to avoid

instabilities [1].

Simulation results comparing the proposed decoder with the

quantized decoder are shown in Fig. 2. For the dimension 100

lattice, the performance loss was no greater than 0.2 dB. For

1 2 3 4 5 6 7 8
6

5

4

3

2

1

 0

M, number of Gaussians per message

D
is

tr
ib

ut
io

n
on

 M
 (

lo
g 10

)

Fig. 3. Distribution of M for qk(z), decoding a (1000, 6) lattice, θ = 0.05,
distance to capacity 2 dB, iteration number 5.

the dimension 1000 and 10000 lattice, there was no discernible

performance loss at high signal-to-noise ratios. One-step error

threshold θ = 0.05, 2 were considered.

B. Complexity

The complexity of the decoding algorithm is proportional to

M4, where M is the number of Gaussians in a mixture. In each

step of the node decomposition, the two inputs (e.g. a1, r2)

produce an output (e.g. a2) consisting of M2 Gaussians. In the

Gaussian mixture reduction algorithm, the primary complexity

is computing the initial GQL between k pairs, requiring k2

operations. With k = M2, we obtain an overall complexity

proportional to M4. In an investigation of the (1000, 6) code, it

was observed that the average number of Gaussians decreased

for increasing signal-to-noise ratio and increasing one-step

error θ. When θ = 0.05 values of M greater than 8 were

observed, but rarely (see Fig. 3), and for θ = 2, values

larger than 3 were never observed. Single Gaussian messages

were always most common. Thus, while the complexity is

proportional to M4, the distribution of M depends indirectly

on other parameters.

The complexity of the quantized algorithm is dominated

by a discrete Fourier transform of size 1/Δ where Δ is

the quantization bin width, Δ = 1/128 was used in the

simulations. It is difficult to directly make comparisons of the

computational complexity of the two algorithms.

The memory required for the Gaussian mixture reduction

algorithm, however, is significantly superior to the quantized

algorithm. The proposed algorithm requires storage of 3M (for

the mean, variance and mixing coefficient), for each message.

The quantized algorithm, however used 1024 quantization

points for each message.

REFERENCES

[1] N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,” IEEE
Transactions on Information Theory, vol. 54, pp. 1561–1585, April 2008.

[2] D. W. Scott and W. F. Szewczyk, “From kernels to mixtures,” Techno-
metrics, vol. 43, pp. 323–335, August 2001.

[3] S. Sarvotham, D. Baron, and R. G. Baraniuk, “Compressed sensing re-
construction via belief propagation,” Tech. Rep. ECE-06-01, Department
of Electrical and Computer Engineering, Rice University, July 2006.

[4] G. Poltyrev, “On coding without restrictions for the AWGN channel,”
IEEE Transactions on Information Theory, vol. 40, pp. 409–417, March
1994.

[5] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley,
1991.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

2493

