Precoders for Message-Passing Detection of Partial-Response Channels

Brian M. Kurkoski, Paul H. Siegel, and Jack K. Wolf¹ Department of Electrical and Computer Engineering University of California, San Diego, USA

{kurkoski,psiegel,jwolf}@ucsd.edu

Abstract — Parallel message-passing detectors for partial-response channels have the property that a bit is estimated using channel symbols in a window of size W centered upon that bit. Distinct input sequences that produce the same output sequence result in undesirable failure of window decoders, but precoding can eliminate this input-to-output mapping ambiguity. For a class of partial-response channels, we show necessary and sufficient conditions on a precoder to unambiguously map input sequences to output sequences.

I. INTRODUCTION

It is well-known that the BCJR algorithm is an instance of the sum-product algorithm [1], and it can be described by applying a serial schedule to a message-passing graph. When a parallel schedule is applied to such a graph, a new algorithm results, and it has been considered for detection on partialresponse channels [2]. This algorithm estimates a bit using channel symbols in a window of size W centered upon that bit. It can distinguish some, but not all of the possible transmitted sequences, even in the absence of noise.

symbols We will represent ofа sequence $\ldots, a_{i-1}, a_i, a_{i+1}, \ldots$ using delay operator notation a(D); also, we will write a_1^W to mean a_1, \ldots, a_W . We consider the system shown in Fig. 1. The precoder input is the binary sequence x(D). The partial-response channel has input a(D) and output y(D). In this paper, we are considering partial-response channel polynomials of the form $h(D) = (1-D)^m (1+D)^n$, for integers $m, n \ge 0$, m and n not both zero. The window detector matched to the channel produces as its estimate $\hat{a}(D)$, and the output of the postcoder with transfer function f(D) is $\hat{x}(D)$.

Definition Let a(D) and a'(D) be two distinct partialresponse channel input sequences (or preimages), and let y(D) = h(D)a(D) and y'(D) = h(D)a'(D). If $y_i = y'_i$ for $i = 1, \ldots, W$, then y_1^W is an ambiguous output sequence.

II. PRECODERS FOR MESSAGE-PASSING DETECTORS

Ambiguous output sequences will lead to failure of the window algorithm because the detector must choose between the distinct input sequences a_1^W and a'_1^W with equal probability; choosing the wrong input sequence generally results in a large number of bit errors. In systems with additive white Gaussian noise operating at high signal-to-noise ratio, ambiguous output sequences are the dominant source of bit errors, particularly when the window size W is small. Thus, we are motivated to eliminate errors due to ambiguous output sequences.

The solution is to introduce a precoder, which maps binary user data x(D) to the channel preimage a(D). Lemma 1 gives

Fig. 1: Block diagram of the system under consideration.

necessary and sufficient conditions for a precoder to eliminate the problem of ambiguous output sequences.

Lemma 1 Consider a binary input partial-response channel with transfer function $h(D) = (1 - D)^m (1 + D)^n$ (integers $m, n \ge 0$), preceded by a binary input, binary output precoder with transfer function 1/f(D). An ambiguous output sequence of length W greater than or equal to some constant $W_{m,n}^*$ corresponds to a unique precoder input sequence if and only if:

When $W \ge W_{m,n}^*$, ambiguous output sequences correspond exactly to null error sequences, which are bi-infinite sequences $\varepsilon_a(D) = a_\infty(D) - a'_\infty(D)$ such that $||\varepsilon_a(D)h(D)|| = 0$ [3]. Let x'(D) be the preimage of a'(D). In the proof of Lemma 1, we found restrictions on the coefficients of f(D) such that $x_1^W = x'_1^W$, when $a_1^W - a'_1^W$ is a substring of a null error sequence.

The following values of $W_{m,n}^*$ were found by computer search: $W_{1,0}^* = 1$ (dicode), $W_{1,1}^* = 1$ (PR4), $W_{1,2}^* = W_{1,3}^* = 4$ (EPR4, E²PR4).

We note that precoders have been used in the past to avoid the effects of quasi-catastrophic error propagation in partialresponse systems [4]. This use of precoders is similar to, but distinct from the use discussed in this paper.

References

- F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, "Factor graphs and the sum-product algorithm," *IEEE Transactions* on *Information Theory*, vol. 47, pp. 498–519, February 2001.
- [2] B. M. Kurkoski, P. H. Siegel, and J. K. Wolf, "Joint messagepassing decoding of LDPC codes and partial-response channels," *IEEE Transactions on Information Theory*, vol. 48, pp. 1410-1422, June 2002.
- [3] S. A. Altekar, M. Berggren, B. E. Moision, P. H. Siegel, and J. K. Wolf, "Error-event characterization on partial-response channels," *IEEE Transactions on Information Theory*, vol. 45, pp. 241-247, January 1999.
- [4] G. David Forney, Jr. and A. R. Calderbank, "Coset codes for partial response channels; or, coset codes with spectral nulls," *IEEE Transactions on Information Theory*, vol. 35, pp. 925– 943, September 1989.

 $^{^1\,\}mathrm{The}$ authors are with the Center for Magnetic Recording Research at UCSD.