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Abstract—Low density lattice codes (LDLC) are high dimen-
sional lattices with a sparse inverse generator matrix, that can be
decoded efficiently using iterative decoding. In the iterative LDLC
decoder the messages are Gaussian mixtures, and for any imple-
mentation, the Gaussian mixtures must be approximated. This
work describes a parametric LDLC decoding algorithm, where
internally at the variable node infinite Gaussian mixtures are
approximated with three or two Gaussians, while the messages
between nodes are single Gaussians. Strengths of the algorithm
include its simplicity and suitability for analysis. Analysis is per-
formed by evaluating the Kullback-Leibler divergence between
the true messages and the three/two Gaussian approximation.
The approximation using three or two Gaussians is more accurate
than previously proposed approximations. Also, noise thresholds
for the proposed LDLC decoder are presented, the proposed
decoder reduces the noise thresholds 0.05 dB compared to
previous parametric decoders. The numerical results show that
for n = 100 and n = 1, 000 the two-Gaussian approximation is
the same as the full-complexity decoder. But when the dimension
is n = 10, 000, a three-Gaussian approximation is needed.

Index Terms—low-density lattice codes, parametric decoder,
lattice decoder

I. INTRODUCTION

Lattice codes are codes over the real numbers which possess
great potential to become an efficient, practical and reliable
communication scheme for the AWGN channel. Shannon
showed that codes with very long random Gaussian-distributed
codewords can approach the AWGN capacity [1], and now it is
known that lattice codes can also achieve the AWGN capacity
[2–4]. Lattices are especially appealing for multi-terminal
Gaussian networks, where the encoder and the channel use
the same real algebra.

Low density lattice codes (LDLC), introduced by Sommer,
Feder and Shalvi [5], are high-dimensional lattices defined
by a sparse inverse generator matrix. The construction and
decoding of LDLCs resemble low density parity check codes
(LDPC), that is, using a belief propagation (BP) decoding
algorithm on a sparse graph. It was reported that the LDLC
belief propagation decoder attains a symbol error rate of 10−5

at 0.6 dB from the unconstrained AWGN channel capacity.
Already, relaying and physical layer network coding schemes
that use LDLCs have been described [6–10].

In the LDLC belief propagation decoder the messages
passed between check and variable nodes are continuous
functions. In any implementation, these continuous functions

Ricardo Antonio Parrao Hernandez and Brian M. Kurkoski are with
School of Information Science at the Japan Advanced Institute of Sci-
ence and Technology, Ishikawa, Japan e-mail: ricardo.parrao@jaist.ac.jp,
kurkoski@jaist.ac.jp. Part of this work appeared in the proceedings of the
IEEE Iformation Theory Workshop (ITW 2015), Jeju, Korea.This work was
supported by JSPS Kakenhi Grant Number 26289119

must be approximated. In the original implementation [5],
these messages were approximated by a discretely quantized
function. The amount of quantization, typically 1024 bins, is
impracticably large.

A computationally efficient approach is to represent the
messages as a mixture of Gaussian functions. For the AWGN
channel, the messages are precisely represented using a mix-
ture containing an infinite number of Gaussians. This is also
impractical, so it is natural to approximate these messages with
a finite mixture of Gaussians.

Parametric LDLC decoding algorithms employ Gaussian
mixtures to approximate the messages. An LDLC decoder
using a Gaussian mixture reduction algorithm was introduced
in [11]. All possible pairs of Gaussians on a list are searched
and the closest pairs are replaced with a single Gaussian.
Further, using single Gaussians as the messages between the
variable and check nodes leads to reduced memory require-
ments with a minor performance penalty [12]. Yona and
Feder [13] presented a parametric decoder, where the Gaussian
mixture approximation is made by taking the dominating
Gaussian in the mixture. This process is done by searching
in tables, which are sorted in terms of the mixture coeffi-
cients. But these relatively complicated operations, whether
the Gaussian mixture reduction or sorting, must be performed
at every multiplication at the variable node, on each iteration.
Such operations may not be suitable if LDLC decoders are
to be implemented in hardware. In [14] a single-Gaussian
moment matching (SGMM) approximation was used internally
at the variable node for every incoming message, and density
evolution noise thresholds were presented. The SGMM is
computationally efficient but finite-dimensional results were
not given.

This paper presents a parametric decoding algorithm for
LDLC lattices. In the proposed algorithm the infinite Gaussian
mixtures are approximated with three or two Gaussians, which
are nearby to the channel message. Accordingly, we call this
the “three/two Gaussian parametric LDLC decoder”.

The major advantage of the proposed LDLC decoding
algorithm is a favorable performance-complexity tradeoff as
compared to previous parametric decoding algorithms such as
the GMR algorithm [11] and the table search algorithm [13].
For small to medium-dimension lattices of n ≤ 1000, the
tradeoff is particularly favorable using M = 2 Gaussians in
the approximation, we show performance practically indistin-
guishable from the GMR algorithm, but complexity signifi-
cantly lower. For higher-dimensional lattices of n = 10000,
the two-Gaussian approximation has some performance loss,
which is recovered by increasing to an M = 3 Gaussian
approximation.
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Another advantage of the proposed algorithm is that it is
nearly parameter-free; the only parameter selection of interest
is using M = 2 or M = 3 Gaussians. This is in contrast
to other LDLC decoders that have algorithmic parameters,
e.g. threshold parameters and list size of the GMR algorithm.
In addition, the approximation used at the variable node is
particularly susceptible to numerical analysis. We show the
accuracy of the approximation by evaluating the Kullback-
Leibler (KL) divergence. This gives some insight into the
performance-complexity tradeoff for LDLC decoding, and
shows that the three/two Gaussian approximation is more
accurate than the SGMM used in [14].

In addition, this paper evaluates the noise thresholds for
the three/two Gaussian parametric decoding algorithm, and
compares them to those of the single Gaussian decoding [14].
The proposed decoder reduces the noise threshold 0.05 dB for
node degree d = 7. The best-known LDLC noise thresholds
were given in [15] for spatially-coupled LDLC lattices but
finite-length results were not given. Also, the noise thresholds
of the “dithered” LDLC construction [5] are found.

The structure of the paper is as follows. Section II gives a
definition of lattices and describes low density lattice codes.
Section III describes the operations over Gaussian mixtures
and the moment matching approximation. Section IV gives
the three/two Gaussian approximation algorithm and its anal-
ysis using KL divergence. Section V describes the three/two
Gaussian parametric decoding algorithm, its complexity and
convergence properties. Section VI shows the numerical re-
sults for different lattice dimensions, and finally, Section VII
summarizes the paper.

II. LATTICES AND LOW DENSITY LATTICE CODES

A lattice Λ is an additive subgroup of Rn. A matrix G,
whose columns are the basis vectors, is called the generator
matrix of the lattice. A lattice point is defined as:

x = Gb (1)

where x ∈ Rn and b ∈ Zn are column vectors.
The Voronoi region of a lattice is defined as the set of all

points that are closer to a lattice point than to any other. The
volume of the Voronoi region is given by |det(G)|.

A lattice codeword x is transmitted over the AWGN chan-
nel. Then it is received as:

y = x + z, (2)

where the vector z is additive Gaussian noise with 0 mean and
variance σ2, zi ∼ N (0, σ2) for i = 1, 2 . . . , n.

A maximum-likelihood decoder estimates x̂ as the received
codeword:

x̂ = argmax
x∈Λ

Pr(y|x). (3)

If x = x̂ the correct codeword is received, or an error occurred
otherwise.

Because we consider only the unconstrained lattice trans-
mission, this paper considers the volume-to-noise ratio (VNR)
as an analog to signal-to-noise ratio. The VNR is defined as:

V NR =
|det(G)|2/n

2πeσ2
. (4)

The lattice capacity is when σ2 = 1
2πe [16], which corre-

sponds to V NR = 0dB.

A. Low Density Lattice Codes

A low density lattice code (LDLC), introduced by Sommer
et al. [5], is an n-dimensional lattice code defined by a non-
singular generator matrix G satisfying the property that the
inverse generator matrix H = G−1 is sparse.

We consider LDLC lattices with regular latin square matrix
H with row/column degree d. We choose the values for
the d non-zero elements, called the generator sequence h,
to satisfy h1 ≥ h2 ≥ · · · ≥ hd > 0. The signs of the
generator sequence entries in the inverse generator matrix H
are randomly changed to “− ” with probability one-half.

A necessary condition to achieve exponential convergence
of the message variance is to select the generator sequence
such that:

α =

∑d
i=2 h

2
i

h2
1

< 1 (5)

holds [5].

B. LDLC Decoder

Similar to low density parity check (LDPC) codes, a bi-
partite graph is defined with variable nodes corresponding
to a single element of the lattice codeword x = Gb and
check nodes corresponding to a check equation of the form∑
k hkxik is an integer, where ik are the positions of the

non-zero elements at the corresponding row of the inverse
generator H, and the integer is unknown. An edge connects
variable node i and check node j if and only if Hi,j 6= 0.

In [5] an iterative decoder for LDLCs was presented. The
iterative decoder passes messages over the bipartite graph, and
the messages between variable and check nodes are real func-
tions. For the AWGN channel these functions are Gaussian
mixtures. For implementation these Gaussian mixture needs
to be quantized, accordingly we call it “quantized” algorithm
and is as follows:

• Initialization: Each variable node k sends the function
fk(w) to all d connected check nodes, which is a single
Gaussian given by:

fk(w) = N (w; yk, σ
2) =

1√
2πσ2

e−
(w−yk)2

2σ2 , (6)

for k = 1, 2 . . . , n, where y = Gb + z is the channel
message and z is the additive Gaussian noise with 0 mean
and variance σ2.

• Check-to-variable node message: On edge j the check-to-
variable node messages Rj(w) are calculated as follows:

1) Convolution: All messages except fj(w), are con-
volved after expanding each message by its coeffi-
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cient hj

p̃j(w) = f1(
w

h1
) ∗ · · · ∗ fj−1(

w

hj−1
)

∗ fj+1(
w

hj+1
) ∗ . . . fd(

w

hd
). (7)

for j = 1, 2 . . . d.
2) Stretching and periodic extension: The convolution

p̃j(w) is stretched by −hj , and extended to a
periodic function with period 1/|hj |:

pj(w) = p̃(−hjw). (8)

Rj(w) =

∞∑
i=−∞

pj(w −
i

hj
). (9)

• Variable-to-check node: On edge j the variable-to-check
node messages fj(w) are calculated in two steps:

1) Product : The product of all incoming messages,
except for the message j, is performed:

f̃j(w) = N (w; yk, σ
2)

d∏
l=1,
l 6=j

Rl(w). (10)

2) Normalization: f̃j(w) is normalized as:

fj(w) =
f̃j(w)∫∞

−∞ f̃j(w)dw
. (11)

These steps are repeated until the maximum number of itera-
tion is reached.
• Final decision: At the last iteration the product without

omitting any message is done:

f̃finalk (w) = N (w; yk, σ
2)

d∏
l=1

Rl(w). (12)

And the estimate the lattice point x̂ and the integer
information b̂ are

x̂k = argmax
w

f̃finalk (w) (13)

b̂ = bHx̂e. (14)

respectively.
The quantized algorithm requires high memory and high

computation time. Also, a poor choice of the quantization
resolution can produces errors, i.e. a zero output instead of
an impulse.

III. OPERATIONS ON GAUSSIAN MIXTURES

This section describes the product of Gaussian mixtures and
the moment matching approximation.

Let f(w) be a mixture of N Gaussians,

f(w) =

N∑
i=1

ciN (w;mi, vi), (15)

with mean mi, variance vi and mixing coefficients ci > 0 and∑N
i=1 ci = 1 for i = 1, 2 . . . , N .

A. Product over Gaussian mixtures

The product of two Gaussian mixtures f(w) =
∑N
i=1 fi(w)

and g(w) =
∑M
j=1 gj(w) is f(w) · g(w). The product of

two components fi(w) = c1N (w;m1, v1) and gj(w) =
c2N (w;m2, v2) is a single Gaussian s(w) = cN (w;m, v)
with mean m, variance v and mixing coefficient c given by:

1

v
=

1

v1
+

1

v2
(16)

m

v
=
m1

v1
+
m2

v2
(17)

c =
c1c2√

2π(v1 + v2)
e−

(m1−m2)2

2v1+2v2 . (18)

The Gaussian product f(w) ·g(w) is the mixture of the N ·M
products obtained using the pair-wise operation above.

B. Moment Matching Approximation

The “moment matching approximation”, is the single-
Gaussian approximation of a Gaussian mixture f(w), given
by (15), with a single Gaussian q(w) = N (w;m, v) which
minimizes the Kullback-Leiber divergence between f(w) and
q(w) [17, appdx. A]. The moment-matching approximation
(MM) finds the single Gaussian q(w) which has the same
mean m and variance v as f(w). The mean m and variance
v is given by:

m =

N∑
i=1

cimi (19)

v =

N∑
i=1

cim
2
i − (

N∑
i=1

cimi)
2. (20)

This operation is denoted as:

q(w) = MM(f(w)). (21)

IV. THREE/TWO GAUSSIAN APPROXIMATION

In this section we describe an approximation of the product
of a single Gaussian and an infinite Gaussian mixture, which is
key for understanding the behavior of the three/two Gaussian
parametric decoding algorithm. The exact product is also
infinite, and the motivation is to select those few Gaussians
which are dominant. By evaluation of the Kullback-Leiber
divergence, we show that selecting two or three Gaussians
gives good approximations.

Having a good approximation at the variable node is a
key step for accurate performance in the parametric LDLC
decoder. We have observed that the approximation in the
tails is very important. A poor approximation in the Gaussian
messages causes errors to accumulate as the LDLC iterative
decoding progresses.

Instead of calculating the periodic expansion over all inte-
gers, is convenient to use a reduced number of integers. Since
the periodic expansion takes place at the variable node, and
due to multiplication with the channel message, the resultant
periodic Gaussians that are far from the channel message have
near-zero mixing coefficients.
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Single Gaussian

Gaussian Mixture

2−Gaussian Approx.

True Product Y(w)R(w)

Single Gaussian Approx. MM(Y(w)R(w))

2-Gaussian Product Y (w)R̃(w)

R̃(w)

Y(w)

R(w)

Fig. 1: Multiplication of a Gaussian mixture and a single
Gaussian, and the approximation with a Ssngle Gaussian. This
operation take place at the variable node. (a) shows the indi-
vidual mixtures, (b) the true product and the approximations.

The single Gaussian Y (w) represents the channel message
and has mean ma and variance va with va = σ2. The Gaussian
mixture R(w) represents the incoming check-to-variable node
message and is a periodic mixture of Gaussians with period
1
|h| for h ∈ h, and parameters mc and vc, and R(w) is given
by:

R(w) =

∞∑
i=−∞

N (w;mc +
i

h
, vc). (22)

And let R̃(w) be the summation in (22) restricted to some
finite integer set B. We want to approximate an infinite
Gaussian mixture Y (w)R(w) with Y (w)R̃(w), which consists
of a finite number of Gaussians. In Fig. 1-(a) Y (w) and
R(w) are illustrated. In Fig. 1-(b) the true product Y (w)R(w)
and the single Gaussian moment matching approximation
MM

(
Y (w)R(w)

)
are shown. The true product and the MM

approximation are visually similar, but with a closer look at
the tails, a difference exists. The MM is a poor approximation
of Y (w)R(w), and empirically causes problems with iterative
decoding.

A. Gaussian Neighbors Selection

Here we consider the two cases of |B| = 3 and |B| = 2
Gaussians neighbors near ma. Let the two-Gaussian set be
B = {b1, b2} with b2 = b1 + 1, and the three-Gaussian set be
B = {b0, b1, b2}, with b0 = b1 − 1 and b2 = b1 + 1.

For the two-Gaussian set we select two integers, one less
than, and one greater than a non-integer estimate. Find b1 such
that:

b1
h

+mc < ma <
b1 + 1

h
+mc, (23)

for h > 0. That is,

b1 = b−h(mc −ma)c. (24)

And in the three-Gaussian set we choose the nearest Gaus-
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Fig. 2: KL divergence for the dominant message (h = 1),
for single Gaussian approximation (dotted line), two-Gaussian
approximation (solid line) and three-Gaussian approximation
(dash line). For vc = 0.088, which corresponds to an early
iteration.

sian and its two nearest neighbors. That is:

b0 = b1 − 1, (25)
b1 = dh(mc −ma)c, and (26)
b2 = b1 + 1. (27)

The resulting mixture is:

R̃(w) = N (w;
b1
h

+mc, vc) +N (w;
b2
h

+mc, vc), (28)

for the two-Gaussian set. And for three-Gaussian set it is:

R̃(w) = N (w;
b0
h

+mc, vc) +N (w;
b1
h

+mc, vc)

+N (w;
b2
h

+mc, vc), (29)

where R̃(w) is the approximation of R(w).

B. Kullback-Leiber divergence

In this section a heuristic analysis of the approximation
accuracy is shown, by evaluating the Kullback-Leiber diver-
gence. Clearly, the accuracy of the approximation depends
on the number of Gaussians taken. By selecting a small
number of Gaussians we want to minimize the KL divergence
between Y (w)R(w) and the approximation Y (w)R̃(w). The
KL divergence is given by:∫ ∞

−∞
Y (w)R(w) log

Y (w)R(w)

Y (w)R̃(w)
dw. (30)

When Y (w)R(w) and Y (w)R̃(w) are a mixture of Gaus-
sians, selecting mean and variance close to each other will
minimize the divergence. While the KL divergence between
two Gaussian mixtures is not analytically tractable in general,
various approximations for the KL divergence in general
Gaussian mixture models were proposed [18]. However, these
approximations are not suitable for the Gaussian mixtures
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Fig. 3: KL divergence for the dominant message (h = 1),
for single Gaussian approximation (dotted line), two-Gaussian
approximation (solid line). For vc = 0.011, which corresponds
to an intermediate iteration, and the single Gaussian is not
accurate.

which occur during the message passing decoding of lattices,
in the sense they do not give insight to the problem. Instead the
KL divergence is evaluated numerically, this has the advantage
of giving the exact value.

Figures 2–4 show the KL divergence for the single-Gaussian
moment matching approximation (dotted line), three-Gaussian
approximation (dash line) and two-Gaussian approximation
(solid line), using typically observed values for va and vc
under LDLC decoding. We present all values for mc, but not
all are equally likely because mc is not uniformly distributed.
The Kullback-Leiber divergence only depends on mc − ma,
so we set ma = 0. The worst case is when h = 1.

Fig. 2 shows vc = 0.088, corresponding to an early
decoding iteration. Here, even the MM approximation has
a KL divergence of less than 10−2. Empirically, we have
observed that a KL divergence of greater than 10−2 is a poor
approximation for the proposed LDLC decoding algorithm.
But KL divergence of less than 10−3 at least gives visually
similar Gaussian functions.

Fig. 3 shows vc = 0.011, corresponding to intermediate
iterations of LDLC decoding, where the MM presents worse
KL divergence. The KL divergence for two-Gaussian approx-
imation is always less than 10−2 and the three-Gaussian ap-
proximation is even better. This suggests that the two-Gaussian
approximation may be sufficient. The simulation results will
show that this is often true, but when the dimension is very
large, the three-Gaussian approximation is more reliable.

In Fig. 4 the MM presents a good approximation for the
non-dominant edge (hi < 1). The message on the edge with
the highest value in the generator sequence (hi = 1; dominant
edge) gives more reliable information during the message
passing. For this reason the dominant edge required more
accurate approximation.

In order to have a low complexity parametric decoding al-
gorithm a single Gaussian approximation is desired. However,
using a single Gaussian approximation is not accurate. As is
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Fig. 4: KL divergence for the non-dominant message (hi < 1),
for single Gaussian approximation (dotted line), two-Gaussian
approximation (solid line) and three-Gaussian approximation
(dash line), for vc = 0.527

shown in Fig. 1, the single Gaussian approximation presents a
large difference in the tails of the Gaussian distribution which
contribute significantly in the Kullback-Leiber divergence. In
the moment matching algorithm the tails are very important to
obtain a good approximation. For this reason the single Gaus-
sian approximation is not suitable for a good approximation.

Note that the approximation given in this section does not
minimize the Kullback-Leiber divergence, but is used because
it is efficient for a decoder to implement. By maintaining the
dominant Gaussians in the mixture, the approximation is a
good one, as we have shown in this section.

V. THREE/TWO GAUSSIAN PARAMETRIC DECODER

The proposed parametric LDLC decoding algorithm is
presented here. Internally at the variable node, messages are
represented by mixtures of Gaussians, but externally only
single Gaussians are used. There are two types of approx-
imations used internally at the variable node: (1) the 3/2
Gaussian approximation from Sec. IV-A, and (2) the SGMM
approximation used before variable node output; previous
work [12] has shown that a single Gaussian message from
the variable node to the check node is sufficient.

The variable-to-check message along edge k is a single
Gaussian denoted fk(w). The check-to-variable message along
edge k is a single Gaussian denoted Rk(w). Single Gaussians
are represented by its mean and variance. Thus, storage of
variable-to-check messages requires 2 · n · d elements, and
likewise for the check-to-variable messages.

A. Three/Two Gaussian Parametric Decoder Description

For the AWGN channel, let the received message be

yk(w) = N (w; yk, σ
2). (31)

• Check Node: The incoming messages are d single Gaus-
sians fi(w) = N (w;mi, vi). The output message p̃i(w)
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at the convolution step is a single Gaussian with mean
m̃i and variance ṽi given by:

m̃i = − 1

hi

d∑
j=1
j 6=i

hjmj (32)

ṽi =
1

h2
i

d∑
j=1
j 6=i

h2
jvj . (33)

The computation of m̃ and ṽ can be performed using a
forward-backward recursion.

• Variable node: The messages coming from the check
node are single Gaussian N (w; m̃i, ṽi). Then the ex-
pansion step (periodic with period 1/|hi| if B = Z) is
approximated by:

R̃i(w) =
∑
b∈B

N (w;mi(b), ṽi) (34)

where the mean m of each Gaussian is

mi(b) = m̃i +
b

hi
, (35)

and the set B represents a subset of the integers, e.g. two
or three. Rather than searching over all integers B = Z,
instead select two or three integers close to the channel
message, as described in previous section. The message
fi(w) sent back to the check node is a single Gaussian
approximated by:

pi(w) = yk(w)

d∏
j=1
j 6=i

R̃j(w), (36)

fi(w) = MM
(
pi(w)

)
, (37)

where yk(w) = N (w; yk, σ
2) is the channel message, and

R̃j(w) is the approximation of the periodic expansion. To
maintain low complexity, just a single Gaussian is used
in the messages between variable and check nodes. The
single Gaussian message to send to the check node is
calculated by the moment matching algorithm.

A forward-backward recursion can be used to reduce the
number of operations to calculate the variable-to-check node
messages, as shown in the next section.

B. Forward-backward recursion

Computing the output fi(w) at the variable node k can be
implemented by a forward-backward recursion. This recursion
is distinct from previously described forward-backward ap-
proaches [11] in how the channel value yk is handled — in the
three/two Gaussian parametric decoding algorithm the channel
message is multiplied last (although the channel message yk
is used to select the periodic Gaussians).

The forward-backward recursion is done as follows:
1) The forward recursion defined as:

αj(w) = αj−1(w) · R̃j(w), (38)

for j = 2, 3, . . . , d− 1, with α1(w) initialized as equal
to R̃1(w) .

2) The backward recursion βj(w) is computed, for j =
d− 2, d− 3, . . . , 1, as:

βj−1(w) = βj(w) · R̃j−1(w), (39)

with βd−1(w) initialized as the approximation R̃d(w).
3) Then combining the forward and backward recursion,

we get:
f̃i(w) = αi−1(w) · βi(w). (40)

4) Finally, the single Gaussian output of the variable node
is calculated by using the moment matching approxima-
tion:

fi(w) = MM
(
yk(w) · f̃i(w)

)
. (41)

C. Three/Two Gaussian Parametric Decoder Complexity

The complexity of the three/two Gaussian parametric de-
coding algorithm is dominated by the forward and backward
algorithm which is O(n·t·2d−1) if messages are approximated
by two Gaussians, and O(n · t · 3d−1) if three Gaussians are
selected, where t is the number of iterations, n is the lattice
dimension and d is the degree of the LDLC inverse generator
matrix.

For comparison, the complexity of the quantized BP decod-
ing algorithm [5] is O(n · t · d · L∆ ) where ∆ is the probability
density function resolution and L is the range length, and is
dominated by a discrete Fourier transform. The complexity
for [11] is O(n · d · t · K2 · M4), and is dominated by a
moment matching algorithm. And for [13] the complexity is
O(n ·d · t ·K ·M3), and is dominated by sorting and searching
in tables, where K is the number of replications and M the
number of Gaussian used in the mixtures. The common values
which present similar performance are n = 100, d = 5, L = 4,
∆ = 1

256 , M = 6 and K = 3. The parametric decoder
presented in [13] requires storing an n ·d list of M Gaussians.

In addition to the asymptotic complexity, we also compare
the computation time of the three/two Gaussian parametric
decoding algorithm with that of the GMR algorithm. The
performance of the GMR decoder presented in [11] depends
on two parameters, the Gaussian quadratic loss threshold θ
and the maximum number of Gaussians M . A small value
of θ presents a better approximation (and thus better perfor-
mance) but the computational complexity increases. In Fig.
5 a computation time comparison for one iteration between
the GMR decoder and the three/two Gaussian parametric
decoding algorithm is shown. We simulated 1000 codewords
for dimension n = 1000, at V NR = 2dB, and found
the average time for one iteration. The proposed decoding
algorithm presents a lower computation time for the values
of θ for which GMR decoding [11] has similar performance
measured using symbol-error rate (see Sec. VI) . The three/two
Gaussian parametric decoding algorithm is independent of the
value of θ. In fact, the only parameter is whether there are
two or three Gaussians.

In Fig. 6, the average number of iterations required for
decoder convergence is shown. We took a sample of 1000
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Fig. 5: Time comparison between GMR algorithm [11], with
M = 2 and M = 3, and the three/two Gaussian parametric
decoding algorithm, for lattice dimension n = 1000 and
V NR = 2.

converged codewords (non-converging cases are ignored) and
evaluated the mean of the number of iterations needed. The
average number of iteration reduces as VNR increases. The
use of three Gaussians does not reduce the average number
of iterations. The GMR decoder for M = 2 and θ = 0.5
required more iterations on average to converge. The three/two
Gaussian parametric decoding algorithm has lower complexity,
since the average number of iterations to converge is fewer,
and the time consumed for one iteration is constant for any
fixed VNR. As far as we are aware, convergence for LDLCs
has not been presented in the literature before.

The storage needed for the three/two Gaussian parametric
decoding algorithm is 2 · n · d. Because the message passed
between check and variable nodes are single Gaussians, these
messages are parameterized by two values, the mean and
the variance. Internally in the variable node the temporary
storage needed is 2d−1 and 3d−1, for the two-Gaussian and
three-Gaussian approximation respectively. The use of a larger
number of Gaussians as an approximation, increment the com-
plexity, where the storage required internally at the variable
node is 4d−1 or more.

D. Three/Two Gaussian Parametric Decoding Algorithm

The proposed decoding algorithm is as follows:
Input: The received message y = Gb + z, the channel

variance σ2, the inverse generator H and the maximum
number of iterations iter max.
Output: The estimated information b̂.
1) At variable node k, for k = 1, 2, . . . , n, send to all

connected check nodes the message yk and σ2.
2) At check node k every message p̃i(w) is a single

Gaussian, for i = 1, 2, . . . , d. The mean and variance
are computed as in equation (32) and (33).
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Fig. 6: Average number of iterations required for decoder
convergence in terms of the VNR, for LDLC dimension
n = 1000 and degree d = 7.

3) At the variable node k the R̃i(w) message, for i =
1, 2, . . . , d, is calculated by selecting 2 or 3 Gaussians
as describe in section IV-A.

4) The selecting mixtures are multiplied except the message
i, to calculate

d∏
j=1
j 6=i

R̃j(w). (42)

5) Then p(w)is calculated by multiplying the channel mes-
sage yk(w) as in equation (36).

6) A moment matching is performed to send back to the
check node a single Gaussian message fi(w).

7) Steps 2-6 are repeated until the maximum number of
iterations iter max is reached.

8) The final estimate x̂k is made by combining all messages
at the variable node, and x̂k is the mean of

MM
(
yk(w)

d∏
i=1

R̃i(w)
)
. (43)

9) Finally the received message is estimated by

b̂ = Hx̂. (44)

VI. NUMERICAL RESULTS

A. Noise Thresholds

Noise thresholds are used to evaluate the performance of
the three/two Gaussian parametric decoding algorithm. The
noise threshold is the lowest VNR for which three/two Gaus-
sian parametric decoding of asymptotically large-dimensional
lattice converges. Performing exact density evolution would
require the joint distribution for the mean and variance of
the messages sent between the variable node and check
node, which are the parameters used for the messages in the
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Fig. 7: Noise thresholds, measured in distance from capacity,
for three/two Gaussian decoder and the single Gaussian de-
coder [14], for various LDLC lattices with parameters d = 7
and α.

decoding algorithm. The evaluation of exact density evolution
for two variables is computationally demanding. Instead we
perform Monte Carlo density evolution which has been used
for non-binary low density parity check codes [19].

The evaluation of Monte Carlo density evolution is similar
to the one given in [14], and is as follows. We consider a lattice
construction with generator sequence h = {1, w, . . . , w},
where w is given by:

w =

√
α

d− 1
, (45)

and α is defined in (5), a necessary condition for exponential
convergence of the belief-propagation decoder [5]. We gener-
ate a data pool, consisting of two types of elements: ones with
label 1 denoted by P(1) and others with label w denoted by
P(w). P(1) consists in N(1) = 106 messages and P(w) consists
of N(w) = (d− 1) · 105 messages, i.e.

P(1) = {(m1, v1), . . . , (mN(1)
, vN(1)

)} (46)

P(w) = {(m1, v1), . . . , (mN(w)
,N(w)

)}, (47)

where m and v denote the mean and variance respectively.
The messages (ml, vl), for all l = 1, . . . , N(1) (l =

1, . . . , N(w) for the w label message), are initialized as follows.
The noise variance σ2 is assigned to vl, and ml is initialized
with the received symbol generated from N (0, σ2), since the
all zero codeword (lattice point) is assumed.

At each half iteration the variable/check node input consists
of one element of P(1) and d − 1 elements from P(w). The
check and variable nodes are computed as shown in Section
V-A, and stored in an output pool. The output pool becomes
the input pool for the next half iteration. The mean of the
variable-to-check node messages for the w labeled edge was
used to check for convergence. When the mean of all vi ∈
P(w) samples fell below to 0.001, within 50 iterations, then
convergence was declared.

The noise thresholds, obtained using the three/two Gaus-
sian parametric decoding algorithm and the single-Gaussian
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Fig. 8: Noise thresholds details, measured in distance from
capacity, for the three/two Gaussian parametric decoder with
different values of M = {2, 3, 4} and the single Gaussian
decoder [14], for various LDLC lattices with parameters d = 7
and α.

decoder [14], are shown in Fig. 7 for several values
of α and d = 7. In addition, the noise thresholds
for the sequence { 1

2.31 ,
1

3.17 ,
1

5.11 ,
1

7.33 ,
1

11.71 ,
1

13.11 ,
1

17.55},
and further normalized with 1

2.31 to obtain h =
{1, 0.73, 0.45, 0.32, 0.20.18, 0.13} for d = 5, d = 6 and d = 7
as proposed in [5] are shown; this LDLC is denoted as the
“dithered” code. In Fig. 8 a closer look at the noise thresholds,
shows that using M = 4 Gaussians for the approximation
does not significantly reduce the noise threshold compared
to M = 3 Gaussians. The noise thresholds for the three/two
parametric LDLC decoder are reduced by 0.05 dB compared
with the noise thresholds for the single-Gaussian decoder in
[14]. Interestingly, the noise thresholds for the considered
lattice construction are slightly better than the dithered code.

B. Finite-length results

To evaluate the three/two Gaussian parametric LDLC de-
coder the all zeros codeword was simulated over the AWGN
channel. The inverse generator matrix was generated as in
[5], with the generator sequence h = {1, 1√

d
, . . . , 1√

d
}. With

this choice of generator sequence we have α = d−1
d . The

inverse generator was further normalized in order to have
n
√
|det(H)| = 1.
Different lattice dimensions n = 100, n = 1000 and n =

10000 were simulated, and the inverse generator H has degree
d = 3 for dimension n = 100, and d = 7 for dimension
n = 1000 and n = 10000. The symbol error rate (SER; a
symbol error is b̂k 6= bk) vs. the VNR was evaluated.

In the three/two parametric decoder algorithm three cases
are simulated. The first and second case are when the approx-
imation is done by two and three Gaussians, and are denoted
by “2-Gaussian” and “3-Gaussian” respectively. Ideally the
message variance approaches 0 at the estimated lattice point.
This behavior is dominated by the message with the highest
generator sequence value (hi = 1) called “the dominant mes-
sage”. The third case is approximating the dominant message
by three Gaussians and the non-dominant messages (hi < 1)
are approximated with two Gaussians.
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As shown in Fig. 9 the three/two Gaussian parametric
decoding algorithm performs nearly as well as the quantized
algorithm [5] in SER, especially for dimension n = 1, 000. For
n = 10, 000 approximation with three Gaussians are needed
for similar performance to the quantized algorithm. In addition
a comparison using 4-Gaussians was evaluated. Even if the
approximation is performed using M = 4 Gaussians, which
implies a reduction in the KL divergence, this did not give any
visible improvement, due to the discrete nature of the decoder
errors.

Also a comparison with the GMR decoder [11] with M = 3
and θ = 0.1, similar parameters in terms of number of
Gaussians in the mixtures. The proposed decoding algorithm
has a better performance compared to the GMR algorithm
with similar parameters, and has lower complexity. The GMR
decoder with θ = 0.01 and M = 10, high complexity
parameters, performs nearly similar to the proposed decoder.

The constructed LDLC for d = 7 has α = 0.8571 and its
noise threshold is 0.68 as shown in Fig. 9. The gap to the noise
threshold for the three/two Gaussian parametric decoding
algorithm is 0.22dB at SER of 10−7 when the approximation is
done with three Gaussians for lattice dimension n = 10, 000.

VII. CONCLUSION

In this work we presented the three/two Gaussian parametric
decoding algorithm for low density lattice codes (LDLC),
which is a reliable and efficient decoding algorithm. In ad-
dition the proposed decoding algorithm maintains low com-
plexity. This is because the messages between variable and
check nodes are only single Gaussian functions.

The three/two Gaussian parametric decoding algorithm ap-
proximates the Gaussian mixture with only two or three Gaus-
sians which are close to the channel value. These selections
are more accurate approximations than the single Gaussian
approximation, in terms of the Kullback-Leiber divergence.

The advantages of the three/two Gaussian parametric decoding
algorithm are:

1) Reduces the noise thresholds compared to single Gaus-
sian decoders

2) Has low complexity not only in terms in computation
time per iteration but also in the average number of
iterations to converge. Convergence in terms of volume-
to-noise ratio for LDLC is presented for the first time
in the literature. The noise threshold analysis and the
average number of iteration presented in this work are
a guideline for LDLC lattice design.

3) Has symbol error rate nearly similar compared to the
best-known decoding algorithm.

4) Has only one parameter that is the number of Gaussians
(three or two) needed for approximating the messages.

These characteristics makes the three-two parametric decoder
algorithm attractive for different applications, such as those
where a compute-and-forward scheme [6] are used and/or
crypto-systems which use LDLC lattices [20].
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