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Abstract—Ideas of message passing are applied to the problem
of removing the effects of intersymbol interference (ISI) from
partial-response channels. Both bit-based and state-based parallel
message-passing algorithms are proposed. For a fixed number of
iterations less than the block length, the bit-error rate of the state-
based algorithm approaches a nonzero constant as the signal-
to-noise ratio (SNR) approaches infinity. This limitation can be
removed by using a precoder. It is well known that low-density
parity-check (LDPC) codes can be decoded using a message-
passing algorithm. Here, a single message-passing detector/de-
coder matched to the combination of a partial-response channel
and an LDPC code is investigated.

Index Terms—Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm,
iterative decoding, low-density parity-check (LDPC) code, max-
imum (MAP) decoder, message-passing algorithm,
partial-response channel, precoding, sum-product algorithm.

I. INTRODUCTION

T HE exponential growth in the bit densities of state-of-
the-art magnetic recording systems has increased the

storage capacity of hard disk drives, which has been a boon
for computer users. Capacities have increased to the point that
commodity hard drives can now be found in new applications
such as consumer video recording devices. However, further
increases in bit density are limited in part because shrinking bit
size on the surface of the magnetic medium produces degrada-
tion in signal-to-noise ratio (SNR) to the point that conventional
detectors and error-correcting schemes are overwhelmed.

A new class of error-correcting schemes based upon iter-
ative decoding, typified by low-density parity-check (LDPC)
codes [1] and turbo codes [2], can achieve target bit-error rates
(BER) at SNRs much lower than conventional error-correcting
approaches. As such, the application of iterative decoding to
magnetic recording systems holds promise for increasing bit
densities, although we are unaware of any mass-produced hard
drive yet using such an error-correction system.
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Any error-correcting scheme for magnetic recording systems
must cope with the intersymbol interference (ISI) present at high
bit densities. Partial response is a discrete channel model which
approximates the unequalized channel ISI. Conventional Viterbi
detectors, which are thede factostandard for eliminating ISI in
magnetic recording systems, are not applicable to systems using
iterative decoders, because they produce hard bit decisions. It-
erative decoders are most effective using soft or probabilistic
information as inputs. In applications of iterative decoding to
magnetic recording, some type of soft-output algorithm (often
the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [3]) replaces
the Viterbi algorithm as the partial-response channel detector.

Turbo codes have been shown to have excellent BER perfor-
mance on the additive white Gaussian noise (AWGN) channel
[4], [5]. These gains are preserved when turbo codes are applied
to the partial-response channel. A greater performance improve-
ment comes when the channel detector is incorporated within
the iterative decoder [6]–[9]. Thus, iterative decoding has been
extended beyond the error-correcting code, and the inclusion
of the channel detector in an iterative decoder has been called
“turbo equalization.”

In contrast to turbo codes which have received substantial
attention since their 1993 introduction, LDPC codes have led
a quiet existence from the 1960s, when they were first pro-
posed by Gallager, until the mid-1990s when interest in them
was rekindled. Gallager proposed a simple decoder that used
probabilistic decoding on a code defined by a sparse, random
parity-check matrix [1]. In 1981, Tanner showed how to con-
struct a bipartite graph, sometimes called a Tanner graph, repre-
senting the parity-check matrix of any code, and recognized that
Gallager’s decoding ideas could be applied to this graph [10].
Additional research in the mid-1990s has refined our notion of
what we shall refer to as the Gallager–Tanner (GT) algorithm,
and broadened our understanding of how codes can be decoded
on a graph.

The GT algorithm is a now classical algorithm for decoding
codes defined by an LDPC matrix, and has been shown to have
remarkable BER performance [11]. In describing the algorithm,
it is convenient to use a bipartite graph to represent the code and
the decoding operations; see Fig. 1. On this graph, messages
of bit probabilities are alternately passed between two types of
nodes, bit nodes (represented by circles) and parity-check nodes
(represented by squares). Connections between the two types
of nodes are defined by a parity-check matrix. Each node as-
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Fig. 1. Classical Tanner graph for a code with three information bits and nine parity bits.

Fig. 2. Block diagram of a partial-response system, possibly precoded, with channel detector.

sumes statistical independence of its inputs and uses elementary
rules of probability to calculate outputs, either combining the
soft estimates (at the bit nodes) or using the parity-check con-
straint (at the parity-check nodes). The alternation of messages
passing from bit nodes to parity-check nodes and back to bit
nodes forms one iteration. When the GT algorithm attempts to
decode a codeword, typically several iterations are performed
until the decoder converges to a valid codeword. The GT al-
gorithm is a type of message-passing algorithm. See [12] for a
more detailed description of the algorithm.

An appealing practical aspect of the GT algorithm is that
it consists of many small, independent decoding functions
(i.e., the bit nodes and the parity-check nodes). In principle,
hardware could implement circuits corresponding to these
independent decoders that operate in parallel, potentially
leading to a very-high-speed decoder. This aspect is particu-
larly important in magnetic recording applications, where data
rate requirements are high, and decoding delay must be low.
Kschischanget al.proposed a parallel decoder architecture for
turbo codes called “concurrent turbo decoding,” which likewise
could lead to a high-speed implementation [13].

An important theme of this paper is the design of a parallel
message-passing detector for partial-response channels, con-
ceived in the spirit of the GT algorithm, which we introduce in
Section II. In Section III, we demonstrate that for this proposed
detector, there are particular output sequences that cannot be
uniquely decoded to a single input sequence. We call such
sequencesambiguous output sequences, but show also that
precoding can eliminate this ambiguity. We show by computer
simulation that this algorithm, under appropriate constraints,
performs as well as the BCJR algorithm for particular par-
tial-response channels.

Previous proposals for applying LDPC codes to the mag-
netic recording channel have utilized two separate decoders: the
BCJR algorithm for channel detection and the GT algorithm
to decode an outer LDPC code. These two separate decoders
communicate soft information to each other and operate in ac-
cordance with the turbo principle. However, the LDPC code’s
advantage of low decoding delay is seriously degraded when
the serial BCJR algorithm (sliding-window variants, e.g., [14],
notwithstanding), is used as the detector.

Accordingly, in Section IV, we investigate a joint detector/de-
coder for an LDPC-coded partial-response channel that can op-
erate in a completely parallel manner, circumventing the high
delay of the BCJR algorithm. We find that BER is lowest when
a large number of “turbo” iterations are performed and a small
number of channel detector and LDPC code iterations are per-
formed, subject to the constraint that the total number of itera-
tions is fixed. Section V is a concluding summary.

II. PARALLEL MESSAGE-PASSING ALGORITHM FOR THE

DETECTION OFPARTIAL -RESPONSECHANNELS

We consider the following partial-response system. A data
source generates an independent and identically distributed bi-
nary sequence , ,
with zeros and ones equally likely. This is passed through a re-
cursive modulo- precoder, which has transfer function
where

of maximum degree (we also use to indicate modulo- ad-
dition). The output of the precoder and the input to the channel
is . The high-density magnetic recording medium and
readback process can be modeled as a partial-response channel
with binary inputs and multilevel outputs. The partial-response
channel transfer polynomial is given by ,
for a channel of degree, real. The partial-response channel
output is . It is followed by AWGN
and the received sequence observed by the channel detector
is . There are output symbols,
so the polynomials and have degree . We
assume that the partial-response model begins in the zero state
at time index and is terminated at the zero state after time
index , so the number of information bits is . An
example system with is shown in Fig. 2.

In this paper, we consider both nonprecoded systems (i.e.,
) and precoded systems (i.e., ). When there

is no precoder present, ; in such cases, we shall
use to refer to the input to the partial-response channel.
For systems that have precoders, the degree of the precoder will
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Fig. 3. The precoder and partial-response channel can be viewed as a single
state machine.

be less than or equal to the degree of the channel transfer poly-
nomial . For analysis purposes, both the precoder (which
represents an actual circuit) and the partial-response channel
model (which represents physical effects) can be combined into
a single transfer function, see Fig. 3. Although this transfer func-
tion is a combination of real and modulo-operations, it can be
expressed using a state-transition diagram. This state-transition
model is used by the partial-response detector and the detector
produces estimates for the precoder input directly.

We describe two types of message-passing algorithms for
a partial-response channel. Section II-A describes a detector
where the messages passed are bit probabilities and Section II-B
describes a detector where the messages passed are vectors of
state probabilities.

A. Bit-Based Message Passing

To build a message-passing detector for the partial-response
system, we made a graph similar to the bipartite graph of the
GT algorithm. But, where the GT algorithm has a parity-check
node, we replaced it with a “triangle” function node, which re-
ceives the noisy channel sample. A bit node, represented by a
circle, is connected to a triangle function node if the partial-re-
sponse transfer polynomial indicates a direct dependence
between that input and the corresponding channel output. The
message passed between nodes is the bit probability .
Both types of nodes generate bit probability messages using the
“sum-product update rule” [15], that is, the output message from
a node along edge is based upon on all inputs to that node
except the message from edge. Let represent the bits

and let represent those same bits except
bit for . The received sample at nodeis

. The message generated by the triangle function nodeand
passed to bit node, called is

(1)

The sum is performed over from the input al-
phabet and over from the output alphabet. The term

will be either zero or one; is
computed using knowledge that the channel noise is Gaussian;

will be for all nonzero terms in the summation;

are the prior probabilities which are factored into indi-
vidual probabilities because of the independence
of the source data. The term is the message generated by
bit node and passed to triangle function node. This message
is given by

(2)

In describing a message-passing schedule, as in [15], we as-
sume there is a global clock which synchronizes the generation
of new messages. A message-passing schedule on a graph is a
predetermined specification of messages that are passed at each
clock tick. For the proposed bit-based message-passing algo-
rithm, the following schedule is applied. First, all the triangle
function nodes simultaneously generate outputs, according
to (1), using prior input from the bit nodes , if available
(initialized to probability otherwise). Using that informa-
tion, bit nodes simultaneously generate messagesto send
to triangle function nodes, according to (2). This cycle is re-
peated for a fixed number of iterations, and terminates with
the bit nodes generating the final output . See Figs. 4
and 5 for bit message-passing graphs corresponding to the di-
code and EPR4
partial-response channels.

The message-passing graph constructed for the dicode
channel (Fig. 4) has no cycles, and cycle-free graphs are
necessary for exact solutions [16]. When the number of
iterations on the dicode graph is equal to, the number of bit
nodes in the graph, the algorithm will produce the same result
as the BCJR algorithm. However, in computer simulations,
detection of the dicode channel using this graph produced
performance similar to the BCJR algorithm for far fewer
iterations than ( is roughly 4500 for magnetic recording
systems). In particular, 16 iterations produced results that
were indistinguishable from BCJR performance at BER above

, see Fig. 6. An alternative explanation is that because the
dicode channel model has two states, the bit message contains
enough information to describe the state, and thus is emulating
the BCJR algorithm.

However, the message-passing graph for the EPR4 channel
(Fig. 5) has many short cycles, and so we cannot expect this al-
gorithm to produce an exact solution. This was verified by com-
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Fig. 4. A bit message-passing diagram for the dicode partial-response channel(h(D) = 1�D). The message passed isP [x = 1].

Fig. 5. A bit message-passing diagram for the EPR4 partial-response channel(h(D) = 1 +D �D �D ). The message passed isP [x = 1]. Dashed lines
added to enhance contrast.

Fig. 6. BER for bit-based message passing on the dicode channel without precoding.

puter simulation, see Fig. 7. For increasing iterations, BER per-
formance improved very slowly, even for a very large number
of iterations and very high SNR.

For the BER simulation results presented in this paper, com-
parisons are made with the appropriate dicode or EPR4 trun-
cated union bound [17].

B. State-Based Message Passing
The key to achieving BCJR-like performance for channels

with more than two states is to pass state information, not bit in-
formation. In the proposed state-based algorithm, the messages
passed are the state probabilities, represented in a vector; this
is in contrast to the algorithm of the previous subsection, where
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Fig. 7. BER for bit-based message passing on the EPR4 channel without precoding.

Fig. 8. A state message-passing diagram for a general partial-response channel. The message passed between the triangle function nodes is the state distribution
vectorP [s = m].

the message is a bit probability which can be represented by
a single number. Fig. 8 shows a state message-passing graph
for the general partial-response channel. In this graph, the tri-
angle is a state processing node which has four edges on which
it sends and receives three types of messages. One type of mes-
sage is a vector of state probabilities that are communicated
with its two neighboring triangle nodes. The other two types
of messages are probabilities corresponding to input symbols
and output symbols of the channel, and , respec-
tively. In an implementation, the dimension-two vector
can be readily represented as a single number, but because the
partial-response channel has three or more output symbols, the
message must be represented as a true vector. The
message-passing schedule is still parallel. Note that the graph
has no loops. This graph is similar to a Wiberg graph for trel-
lises [18], but we have omitted state nodes because they connect

two adjacent triangle function nodes and only act as a message
relay. A double line is drawn to indicate where state messages
are passed between nodes.

The proposed state-based partial-response channel detector
algorithm follows. Let be the state of the partial-response
channel with states, at time , . The
quantities and are the state messages that are
passed right and left, respectively, . These
state messages are produced simultaneously by each triangle
function node. Sums are performed over edges in the partial-
response trellis, as in [19]. For a partial-response trellis, there are

edges per trellis section, and the trellis is time-invariant. For
each trellis edge, the starting state is , the ending state
is , the associated input label is and the associated
output label is . Fig. 9 shows the correspondence between
a node of the message-passing graph and a trellis section.
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Fig. 9. A single section of the message-passing graph for the partial-response detector, and a corresponding trellis fragment.

Algorithm:

1. Initialize:

2. For each node , simultaneously gen-
erate the outputs , ,

(Node does not generate and node does not
generate .)

3. Repeat step 2 times
4. For each node , simultaneously gen-

erate

In steps 2 and 4, are proportionality constants
chosen so that probabilities sum to one.

For a fixed number of iterations, the output symbol esti-
mates and the input symbol estimates

that contribute to the decoding of a given bit are all in a
window of length , centered on that bit. Given only
the input information in the window, this algorithm produces the
a posterioriprobability (APP) estimate for that bit. We call this
the window-APP algorithm.

The algorithm we have described is a parallel schedule
applied to a message-passing graph. As has been observed by
Wiberg [18, Sec. 3.2], the BCJR algorithm can be represented
on a message-passing graph by using a serial schedule. Starting
with an initial state distribution for (usually given as

, ), we can compute at node

. Once is available, compute at node 1; likewise, for
. This is the recursive computation of the

state distributions in the forward direction, often called the
“alpha” or forward state metrics. Similarly, there are “beta”
or backward state metrics. Thus, the two different algorithms
can be described by applying appropriate schedules to a single
graph. Further, a variety of algorithms can be described by
applying different schedules to this graph. In Section III, only
the parallel schedule will be used.

III. W INDOW-APP ALGORITHM PROPERTIES

When the number of iterations for the proposed detector
algorithm is greater than or equal to the block length, the
window size for all bits encompasses the entire block, and the
algorithm produces the same APP outputs that the BCJR algo-
rithm produces. However, here we investigate the behavior of
the window-APP detector for values of much smaller than
the block length.

For partial-response channels that are not precoded, there
exist multiple distinct input sequences starting in distinct states
that produce identical output sequences within a window of
size . Such output sequences are calledambiguous output
sequences. For such sequences, even in the absence of noise,
this detector cannot distinguish which input sequence gener-
ated the observed output sequence and thus the detector has a
high probability of failure. The likelihood of such a decoding
failure depends upon the probability that initial states and input
sequences that lead to ambiguous output sequences will occur.
In turn, this probability is a decreasing function of the window
size. In the following analysis, we predict the probability of
bit error for such a detector, , in the absence of noise.

is the probability that there was a bit error in the
center of the window.

Whereas the probability of bit error for conventional detectors
approaches zero for increasing SNR, the probability of bit error
for this detector will asymptotically approach . Hence,
this quantity is the minimum probability of bit error that the
detector will achieve.

For the dicode channel there is only one ambiguous output
sequence in a window of length , the all-zero output se-
quence. The dicode channel has two states, . For
example with , the sequence
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Fig. 10. State diagram for the EPR4 partial-response channel, with labels “precoded input/nonprecoded input/output.” Precoder isf(D) = 1�D�D �D .
Transitions generating outputs�2 and+2 are shown with a dashed line, but not labeled.

TABLE I
FOR EPR4, SOME EXAMPLE AMBIGUOUS INPUT SEQUENCES FORWINDOW

SIZE W = 5. THE OUTPUT SYMBOLS ARE y 2 f�2; �1; 0; +1; +2g

could have been generated by either the initial state ,
and or by the initial state and

. The detector will arbitrarily choose
one of the two possible input sequences and if it chooses the
wrong one, all the input bits will be incorrect. This results in a
probability of bit error of , given that an ambiguous output
sequence was received. The probability thatoutput symbols
will all be zero is the probability that input symbols are
identical, that is, . If this sequence is
received, the probability of bit error is , and so

where is the event that the ambiguous output sequence
was received.

For the EPR4 channel, there are numerous ambiguous output
sequences. The state diagram for EPR4 is given in Fig. 10, and
some example ambiguous output sequences are given in Table I.

The EPR4 ambiguous output sequences of length can
be represented in general by

or

(3)

where means that the contents may be omitted, used as is,
or repeated an arbitrary number of times. Sequences that differ
by only a change of sign throughout are not listed. The sym-
bols must occur as pairs, except at the beginning
and end of the sequence, where a single symbol is permitted.
A derivation of this list of ambiguous sequences is given in the
Appendix.

For EPR4, there are two types of ambiguous output se-
quences. Let be the event that the all-zeros output,
which is an ambiguous output sequence, was received by the
detector. Let be the event that any other ambiguous
output sequence was received. For the EPR4 channel, there are
four input sequences that correspond to : ,

, , and . When
the event occurs (i.e., the all-zeros output is received), the
detector will randomly choose one of the four possible input
sequences, and the probability of bit error will be . There are
two input sequences for each output sequence corresponding
to . When the event occurs (i.e., any ambiguous
output sequence except the all-zeros output is received), the
detector will randomly choose one of the two possible input
sequences and the probability of bit error will be , as shown
in the Appendix.

When the length is odd, the number of EPR4 ambiguous

output sequences described by (3) is .
These are generated by distinct input sequences, four
of which generate the all-zeros ambiguous output sequence, as
shown in the Appendix. (When the length is even, the number

of ambiguous output sequences is . These are

generated by distinct input sequences.) There are
possible starting states at the beginning of the window, and

possible input bit patterns that could be received in the
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Fig. 11. BER for state-based message passing on the nonprecoded EPR4 partial-response channel, for various iterations.

window. Since each starting state and each input bit pattern is
equally likely

and

Letting be the event that a bit error occurs in the center
of the window, and because all errors are due to ambiguous se-
quences

EPR4

(4)

This proposed EPR4 detector was simulated on a computer with
AWGN noise for various values of; see Fig. 11. For increasing
SNR, the probability of bit error tends toward the predicted
value EPR4. The proposed algorithm achieves essen-
tially the same BER as the BCJR algorithm, below some SNR
threshold which is a function of . This threshold can be made
arbitrarily high as approaches , in which case the two algo-
rithms produce identical results.

For example, for and 11 dB, the proposed
algorithm achieves a probability of bit error of , essen-
tially indistinguishable from BCJR performance for the com-

puter simulation shown in Fig. 11. The proposed algorithm can
produce BCJR-like performance with only times the
delay of the BCJR algorithm. However, this algorithm has
times the computational complexity of the BCJR algorithm.

For both the dicode and EPR4 channel, when a pre-
coder matched to the partial-response channel is used (i.e.,

), the combined precoder/channel re-
sponse has the property that any output uniquely identifies
the corresponding input in the absence of noise. Although
ambiguous output sequences still exist, they are ambiguous
only in the starting state, not the input sequence. For example,
for the precoded dicode channel , the output

can be generated by either the initial
state and input sequence , or by the
initial state and input sequence .
Although the two state sequences are distinct, this ambiguity
will not cause any bit errors.

For EPR4, the precoder matched to the channel,
, as well as the precoder

eliminate input–output ambiguity. In the Appendix, we show
that these are the only two precoders of degree less than or equal
to three that have this property. Computer simulations for EPR4
precoded with are shown in Fig. 12. In
this figure, the truncated union bounds for both the precoded and
nonprecoded channel are shown for comparison. Regardless of
the number of iterations, the probability of bit error decreases
for increasing SNR, a desirable property, and is in marked con-
trast to the nonprecoded case.
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Fig. 12. BER for state-based message passing on the EPR4 partial-response channel precoded with1�D �D �D , for various iterations.

Fig. 13. Block diagram of the proposed LDPC-coded partial-response system.

IV. JOINT DECODING OFLDPC AND PARTIAL -RESPONSE

CHANNELS

Recently, there have been proposals to use an LDPC code on
the partial-response channel [20], [21], with an iterative decoder
consisting of a BCJR-type detector for the partial-response
channel and a GT-type decoder for the LDPC code. However,
the BCJR-type algorithms are slower, and the channel decoder
proposed in Section II is well-matched for use with the GT
algorithm as both are inherently parallel algorithms. The block
diagram for such a partial-response system is shown in Fig. 13.

In [22], Garcia-Frias considers decoding of LDPC codes over
finite-state Markov channels and specifically investigates the
Gilbert–Elliot channel model. Here, we consider a joint mes-
sage-passing decoder matched to both an LDPC code and the
channel, when the model is a partial-response channel. We as-
sume that the channel is not precoded. A graph for such a de-
coder is shown in Fig. 14, and we apply the following schedule
to that graph. First, the proposed decoder operates foritera-
tions on the channel samples, then it passes soft estimates of
the input symbols to the GT decoder, matched to the LDPC
code. Then, the GT decoder operates foriterations, and the

resulting soft estimates of the input symbols are passed back to
the channel decoder. This forms one “turbo” iteration, and is re-
peated times.

BER performance generally improves with increasing itera-
tions, and we are interested in the relationship between the pa-
rameters , , and that would achieve the best performance.
To do this, we set equal to a constant (the total number
of iterations used in detection and decoding), and found the
values of , , and that yielded the lowest BER, via com-
puter simulation. In doing this, we assume that the “costs,” in
the sense of delay, for the channel detector and GT algorithm
are the same, and that one channel iteration can be traded for
one decoder iteration, andvice versawith no penalty. It should
be noted, however, that these costs are dependent on the imple-
mentation, and the validity of this assumption will depend upon
system parameters such as the rate of the LDPC code and the
number of states in the partial-response channel. We assume that
no processing begins until all the channel samples have been re-
ceived and are available to the detector (reference [14] describes
a suboptimal version of BCJR that produces final outputs before
all the data has been received). Further, we assume that the GT
algorithm begins processing only after the channel algorithm is
complete (andvice versa).
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Fig. 14. Joint message-passing detector/decoder for the partial-response channel and LDPC code (termination states shown).

Fig. 15. Simulation results for joint LDPC/dicode message passing decoder (using bit-message passing for the dicode channel).

A joint LDPC/partial-response message-passing system was
simulated where the partial-response channel was the dicode
model using bit-based message passing, and the LDPC code
was a regular (column weight), rate LDPC code of block
length [23]. Simulation results are shown in Fig. 15. The
iteration parameters were chosen so that and

(except in the case of , in
which case ). Simulation results show that the
lowest probability of bit error is obtained when and

. In other simulations, we found that by setting
and changing , or by setting and changing , the lowest
probability of error was still achieved when , subject
to a fixed number of iterations.

We also considered how a joint LDPC/partial-response mes-
sage-passing system would perform when the channel is EPR4.
In this case, state-based message passing was used. As with the
dicode experiment, we restricted the schedule parameters such

that . In this case, we found that the optimal
schedule, subject to the constraint, was ;
see Fig. 16.

The computational complexity of the BCJR algorithm is
equivalent to the proposed algorithm with , and if we use
this assumption to fix the total computation of the BCJR-GT
detector/decoder system at the same value of , then
we can compare a BCJR-GT system with the proposed fully
parallel system.

The choice between the proposed algorithm and a BCJR-GT
decoded system represents a tradeoff between decoding delay
and performance. On one hand, the proposed message-passing
detector/decoder has low latency compared to a conventional
BCJR-GT decoder. In principle, the delay of the parallel mes-
sage-passing detector algorithm is, and that of the GT algo-
rithm is , so the overall decoding delay of the proposed system
is , which is in the case of the system simulated
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Fig. 16. Simulation results for joint LDPC/EPR4 message passing decoder, passing state information.

in Fig. 16. In contrast, the BCJR algorithm has a delay of, so
the overall decoding delay for a BCJR-GT system is ,
which is for the system that we simulated. These numbers
are very rough estimates, and we use them only to emphasize
the much lower decoding delay of the proposed system. On the
other hand, the simulation results show that the BCJR-GT EPR4
system has 0.6 dB better performance at probability of
bit error.

V. CONCLUSION

We have presented two types of detectors for the partial-re-
sponse channel that are parallel, message-passing algorithms.
One is a bit-based message-passing algorithm that was con-
structed in the spirit of the GT algorithm. It is effective at
detecting the dicode channel, but when applied to the EPR4
channel, the observed BER performance was poor.

The other detector we presented was a state-based, parallel
message-passing algorithm. This state-based algorithm is a
window-APP algorithm for general partial-response channels,
in contrast to the BCJR algorithm, which is serial in nature.
However, both algorithms can be described on a single mes-
sage-passing graph, differentiated only by the schedule that
is applied to that graph. The parallel algorithm will produce
results different from the BCJR algorithm when . We
showed by analysis, and confirmed by simulation, that the
BER for the state-based message-passing decoder can never be
lower than a fixed constant, and we calculated this constant for
the dicode and EPR4 channels. Fortunately, this lower bound
can be eliminated using the proper precoder.

For decoding LDPC codes over partial-response channels,
there is a joint decoder which combines the GT algorithm with
the proposed channel detector, both parallel algorithms. As
such, this algorithm has low decoding delay, as compared to
a conventional BCJR-GT decoder. For the dicode partial-re-
sponse channel with bit-based message passing, the parameters

achieve the lowest probability of bit
error when the joint decoder is used and the total number of
iterations is fixed at 24. When the same restrictions are applied
to the EPR4 partial-response channel using state-based message
passing, we find that the parameters
achieve the lowest probability of bit error. The trend is that
if the total number of iterations is constrained to be a fixed
number, then the lowest BER is achieved when the constituent
decoder iterations are small, and the number of turbo
iterations is large.

Directions for future work include the application of density
evolution techniques to this joint decoder to determine perfor-
mance thresholds and to analyze iteration schedules, as well as
the investigation of the effect of precoded channels in the con-
text of an LDPC code.

APPENDIX

In this appendix, we consider the system of Fig. 2, i.e., a par-
tial-response system without an outer LDPC code. We gener-
alize the channel slightly and assume that the input and output
are bi-infinite, that is,
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Let be an ambiguous output sequence of length. We con-
sider two distinct input sequences and of length
(for the EPR4 channel) that generate the same output sequence

. That is, if and ,
then , an ambiguous output sequence. We assume
is odd.

A. Ambiguous Output Sequences for EPR4

In this subsection, we list the ambiguous sequences for
the nonprecoded EPR4 partial-response channel. A null error
sequence is a bi-infinite sequence
with the property that . It was shown
in [24] for a broad class of channels, including the EPR4
channel, that if the input error sequence is one of the
following null error sequences: , , , ,

, , , , or , then the distance
between the corresponding outputs and

will be zero. Here, the notation
represents an infinite periodic sequence with a pattern given
by the contents of the brackets. The symbols “” and “ ”
represent the input errors and , respectively.

If the difference between two distinct sequences and
is a truncated version of one of the listed null error se-

quences, then the distance betweenand is zero. In other
words, the two output sequences will be identical, and, there-
fore, will be an ambiguous output sequence. Using the list
of possible null error sequences, we generate a list of possible
ambiguous output sequences for EPR4.

Case A: Consider

and

which correspond to a truncated version of the null error se-
quence . Then, , the
all-zeros sequence. Input sequences and that corre-
spond to truncated null error sequences of ,

, and also produce the all-zeros sequence.
In all, there are four input sequences that generate the all-zeros
ambiguous output sequence.

Case B: Consider:

(5)

and

(6)

which correspond to a truncated version of the null error se-
quence . Both input sequences will generate the
output

If , then the possible output sequences are described by

(7)

where means that the contents may be omitted, used as is, or
repeated an arbitrary number of times. If instead , then
the possible output sequences are described by (7) with a sign
change throughout.

There are distinct input sequences described by (5).
However, because both

and

generate the all-zeros sequence, the number of distinct am-

biguous output sequences generated by (5) is . There

are distinct input sequences described by (6), so the

number of distinct input sequences for Case B is .
Case C: Consider

(8)

and

(9)

which correspond to a truncated version of the null error se-
quence . Both input sequences will generate the
output

If and , then the possible output sequences are
described by

(10)

If and , then the possible output sequences are
described by

(11)

If , then the possible output sequences are described by
(10) or (11) with a sign change throughout. The sequences

(12)

and their counterparts with a sign change throughout, are a con-
venient way to represent (7) and (10). Together, (11) and (12)
are a convenient way to list the possible ambiguous output se-
quence of the EPR4 channel model, as in (3).

There are distinct input sequences described by (8).
However, because both

and

generate the all-zeros sequence, the number of distinct am-

biguous output sequences generated by (8) is . There

are distinct input sequences described by (9), so the

number of distinct input sequences for Case C is .
Case D: The input sequences that correspond to truncated

versions of the null error sequences and
will generate the same output sequences as in Cases B

and C. The null error sequence is a trivial case.
The distinct ambiguous output sequences are characterized

in Cases B and C. (Case A described only the all-zeros output
sequence and Case D described no new ambiguous output
sequences.) The number of ambiguous output sequences

described in Cases B and C is each, but since the
all-zeros sequence is described in both cases, the number of
ambiguous output sequences is one less than the sum, namely,

.
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The distinct input sequences that generate the ambiguous
output sequences are also completely described in Cases
B and C. However, these two cases both include the four
sequences , ,

and , so the
number of distinct input sequences that generate ambiguous

output sequences is . The number of input sequences
that generate the all-zeros output sequence is, and the

remaining input sequences generate
nonzero ambiguous output sequences, as applied in (4).

When a nonzero ambiguous sequence is received, the prob-
ably of bit error is . To see this, assume thatis the input that
generates a nonzero ambiguous output sequence, andis a dis-
tinct input sequence that generates the same nonzero ambiguous
output sequence. Then, the corresponding truncated null error
sequence must be one of

A zero in the truncated null error sequence corresponds to agree-
ment between the corresponding bits inand , and
corresponds to disagreement. Thus, half the bits in the input se-
quences agree. The probability that the detector will choose the
incorrect input sequence is , so the net probability of bit error
is .

B. Precoder Existence

In this section, we show that the only two precoders of de-
gree less than or equal to three that map input sequences to
output sequences in a one-to-one fashion for the EPR4 channel
are and .

Let , and assume that
. As before, is the input to a precoder ,

and the output of the precoder is . Let and
be two distinct channel input sequences which produce

the same output sequence. We want to choose an such
that for the terms that are inside the
window . The term of this equality is

(13)

Consider the case when the truncated null error sequence is
, with

and

These two input sequences will generate the same output se-
quence. Substituting these two sequences into (13), we get

That is, . If instead we have the case ,
then the term becomes

That is, or . Applying the other
possible truncated null error sequences does not result in any
additional restrictions on the precoder. Therefore, the two pre-
coders which map inputs to outputs in a one-to-one fashion are

and . We note that
these are also the only two precoders that are divisible by .
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