IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 10, OCTOBER 2005

2989

Soft-Output Detector for Partial Response Channels
Using Vector Quantization
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An implementation of the Bahl-Cocke-Jelinek—Raviv algorithm for partial response detection which performs the usual forward and
backward state metric recursions and the log-likelihood computation using only lookup tables is proposed. The state metrics are vector
quantized, which requires fewer quantization points than the conventional approach of quantizing each state metric individually. This
soft-output implementation is suitable for use in partial response systems using turbo equalization.

Index Terms—Bahl-Cocke-Jelinek—Raviv (BCJR) algorithm, forward-backward algorithm, partial response channel, turbo

equalization.

1. INTRODUCTION

HE Bahl-Cocke-Jelinek—Raviv (BCJR) algorithm [1] is

often used as the soft-output detector in turbo equaliza-
tion for partial response channels. When used with an appro-
priate outer error correcting code, turbo equalization has excel-
lent performance for magnetic recording channels and permits
operation at low signal-to-noise ratios (SNRs). However, the
soft-output BCJR and related algorithms are difficult to imple-
ment effectively at the bit rates and power consumption levels
required for hard drives. In conventional implementations, the
state metrics are individually or scalar quantized.

In this paper, we consider an implementation of the BCJR al-
gorithm where the state metrics are vector quantized and the
operations are performed using lookup tables. The proposed
implementation uses off-line computation to generate vector
quantizers and lookup tables, and the only run-time operations
are table lookups. Lookup tables are readily implemented in
both very large-scale integration (VLSI) logic and computer
memories.

II. SYSTEM DESCRIPTION AND BCJR ALGORITHM

The following partial response communication system is
assumed. Bits z; at time ¢ are passed into a partial response
channel with impulse response A(D) = ho+hyD+---+h, D".
The noiseless output of the channel is ¢; = Z;/:o h;xi—;. An
M-state trellis, with input transition labels z and output
transition labels ¢, describes the partial response channel.
We consider the combination of the even-mark modulation
constraint, which allows ones to occur only in pairs, and the
partial response class 1 channel, with (D) = 1 + D; the
EMM-PRI trellis section is shown in Fig. 1. The state metrics
of three-state trellises are easily visualized in two dimensions.
We also consider the partial response class 2 (PR2) channel,
with A(D) = (1 + D)>2. Unlike the partial response class 4
channel, the PR2 channel cannot be represented as two sim-
pler interleaved channels. Although these are optical channel
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Fig. 1. EMM-PRI1 trellis. Trellis labels are input x/output c.

models, the proposed implementation is applicable to magnetic
recording channels as well.

The receiver observes N symbols y; = c;+mn¢,t =1,..., N,
where n; is additive white Gaussian noise (AWGN) with known
variance 2. It is assumed that the trellis is in the zero state at
t = 1 and after t = N. The channel SNR is E /Ny, where Ej
is the average power in ¢; and Ny = 202. For the EMM-PR1
channel, the observed symbols ¥, are hard limited to —2 < y; <
2; further, it is assumed that the sequence z; satisfies the EMM
constraint. For the PR2 channel, ¢; € {0,1,2,3,4} and the
observed symbols y; are hard limited to —1 < 4, < 5.

The BCIJR algorithm computes the log-likelihood ratio

P (w: = 1]y
Ui =log ————=.
P (ze=0[y)

The algorithm has three steps: the forward recursion, the back-
ward recursion, and the computation of the log-likelihood ratio.
The forward recursion computes the state metrics A;(m) for
states m = 0,...,M — 1 at time ¢. Let m and m’ be two
distinct states at time ¢ which have transitions to state m'’ at
time ¢ + 1. The BCJR transition metric, for a trellis edge with
label ¢(m, m'"), is the Euclidean distance G¢(m,m”) = (y; —
c(m,m'))?, in which case the BCJR state metric recursion can
be written as

Appa(m” ) =min(Ag(m)+Gi(m, m"),As(m” )+ Gy (m/, m'"))
—202 log(1+ e~ 14t (mHG: (m,m'")— A, (m')-G, (m',m")| /207 ). (1)
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Fig. 2. Recurrent region for EMM-PR1 channel under Viterbi detection and
samples for BCJR detection. « axis is 4;(0), and y axis is A;(1).

In the limit as 0> — 0, the correction term 202 log(- - -) goes to
zero, and (1) becomes the Viterbi state metric recursion.

The state metrics at time ¢ can be written as a vector
A; = (440),...,A:(M — 1)). The state metric recursion
(1) can be represented as a function f4: Ay = fa(As, yt).
Similarly, the backward computed state metrics and corre-
sponding recursion are B; = fp(Biy1,4:). The computa-
tion of the log-likelihood ratio is represented as a function
fu: Uy = fU(Atayt:Bt+1)'

III. RECURRENT REGION AND VECTOR QUANTIZATION
A. Recurrent Region

The recurrent region is the space of reachable state metrics.

Definition: If at time ¢ = 1 the state metrics are initialized
to A; = (0,0,...,0), then the forward BCJR recurrent region
is the set of state metrics which can be reached by an arbitrary
number of forward steps of the BCJR algorithm.

For Viterbi detection of the EMM-PR1 channel, bounds on
the recurrent region are known [2] and are plotted in Fig. 2.
Also plotted are 10° samples of the BCJR algorithm’s forward
state recursion metric computed using (1). We have observed
that most, but not all, samples of the BCJR state metrics fall
within the Viterbi algorithm’s recurrent region. In Fig. 2, and in
what follows, the state metrics are normalized so that the state
metric A;(M — 1) is zero.

In a conventional implementation, the state metrics A;(m)
are individually quantized. If the maximum difference between
any two state metrics is bounded by A, then it is sufficient to
quantize the state metrics in the range (0,A). In Fig. 2, this
region of conventional quantization is shown (A = 13 for the
EMM-PRI1 channel). State metrics outside the recurrent region
are quantized in the conventional implementation, even though
they can never occur.

B. Vector Quantization

Consider vector quantization of the state metrics A; and B;
and the scalar quantization of the received symbol y; and the
output U;. A vector quantizer () 4 is a mapping from a k-di-
mensional space to a set C4 containing /4 codepoints, where
Ca={ay,...,ar,}anda; €R* fori € T4 = {1,2,...,14}.
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Let a; € 7 4 denote the index value at time ¢. The encoder func-
tionis oy = £4(A;). Correspondingly, At represents one of the
codepoints a; at time ¢; that is, c; = ¢ is the same as At = a;.
The distortion measure is Euclidean distance

k—1

D(Ar,Ap) =) (Ai(m) = Ay(m))*.

m=0

Although nominally the dimension of the quantizer is k =
M,ak = M — 1 dimension quantizer is sufficient because the
metric for state M — 1 is normalized to zero.

A similar but independent quantizer for the backward state
metrics is required. The vector quantizer () g has a codebook Cp
with size I and codepoints b;. We let 3; € Ip = {1,...,Ip}
denote the index at time ¢ and let B; € Cg denote the codepoint
at time ¢. The encoder function is 8; = £g(By).

Quantization of the received symbols v, is required. The
scalar quantizer (Qy has a codebook Cy with size Iy and
codepoints ;. We let n, € Iy = {1, ..., Iy } denote the index
at time ¢ and let §; € Cy denote the codepoint at time ¢. The
encoder function is 7 = Ey (yy).

Also, the output U; is quantized. The scalar quantizer Qg
has a codebook Cy; with size Iy and codepoints u;. We let w; €
Iy = {1,...,Iy} denote the index at time ¢ and let U, € Cu
denote the codepoint at time ¢. The encoder function is w; =
Evy(Uy), and the decoder function is 4; = Dy (wy).

C. Minimax Lloyd Algorithm

The quantizer codebooks C4 and Cp are designed using a
variation of the Lloyd algorithm [3], where the centroid con-
dition is replaced by a minimize-the-maximum (minimax) con-
dition. The objective of this variation is to produce codepoints
which are equally spaced where there is training data and no
codepoints elsewhere. This algorithm generates /4 codepoints
using a training set of Nis vectors Aq,..., An,..

Minimax Lloyd Algorithm:

1) Initialize. Choose an initial codebook by randomly se-
lecting I 4 points from the training set.

2)  Nearest Neighbor. Partition the training set into [4
nonoverlapping regions R; such that

R; = {Ar: D(Ay,a;) < D(Ayg,a;),forall j # i}.
3) Minimax. Choose a new codepoint a; for R;

a; = argmin Ar?gﬁi(D(Ak, x)).
4) Repeat Steps 2) and 3) for a fixed number of iterations.
The codebook generated by the minimax Lloyd algorithm
for the EMM-PRI1 channel is shown in Fig. 2, generated using
Nis = 10%, T4 = 64, E,/Ny = 1 dB. The codebook stabilized
after 50 iterations.

IV. LooKUP TABLE IMPLEMENTATION

The proposed implementation has two stages: a setup stage
and a detection stage. In the setup stage, performed off-line, a
vector quantizer is selected, and this is used to build three lookup
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tables: fa.q, fB,q, and fy g for the forward recursion, back-

ward recursion, and computation of the log-likelihood ratio, re-

spectively. In the detection stage, which is the run-time portion,

these lookup tables are used to perform the detection operation,

as normally would be performed by the BCJR algorithm.
Lookup Table Implementation—Setup:

1) Select vector quantizers (@ 4 and @) g using a technique
such as the minimax Lloyd algorithm.
2)  Build the forward lookup table. For each 2 € 74 and
for each j € Zy:
a) Compute A = fa(a;, ;).
b) Make the lookup table entry fa q(7,7) = Ea(A).
3)  Build the backward lookup table. For each k € 7 and
for each j € Zy:
a) Compute B = fg (b, 7;).
b) Make the lookup table entry f5 ¢ (k,7) = Eg(B).
4)  Build the log-likelihood ratio output lookup table. For
eachi € Z4,eachj € Iy, and each k € Ip:
a) Compute v = fy(ai,Fj, br).
b) Make the lookup table entry fo v/(i,7, k) =
Dy (Ev(u)).
Lookup Table Implementation—Detection: Assume

that the input g; has been quantized to the sequence
i Ey (yi). Initialize 4 E4((0,00,...,00)) and
5N+1 = 53((0/ OQy vy OO))

1)  Forward recursion. For each ¢t € {1,...,N — 1},
lookup a¢41 = fa,q(ae, me).

2)  Backward recursion. For each ¢ € {N, ..., 2}, lookup
ﬂt = fB,Q(/Bt+1;77t)-

3)  Log-likelihood output. For each ¢t € {1,...,N},

lookup [{t = fu.g(at,ne, Bry1)-
The sequence U, is the lookup-table implementation’s quan-
tized output.

A. Simulation Results

The performance of the look-up table implementation was
simulated on the PR2 channel at SNRs of 2 and 5 dB. Fig. 3
shows the mean-squared quantization error as a function of the
number of bits of resolution of the state metrics. The reduc-
tion in state metric storage from that of the conventional im-
plementation (also shown) is between 4 and 5 bits per state. For
the lookup-table implementation, the vector quantizers Q 4, Qg
were generated using the minimax Lloyd algorithm, with T4 =
Ip. The quantizer )y has Iyy = 32 points, uniformly spaced
between —1 and 5. The quantizer Qy has Iy = 64 points, uni-
formly spaced between —15 and 15.

B. Lookup Table Size

As the number of codepoints 74 and Ip increases, quantiza-
tion error decreases, and the accuracy of the lookup-table imple-
mentation increases. Accordingly, the size of the lookup tables
fa,0, fB,qg and fy ¢ increases. Table I shows the general size of
the lookup tables and lists some examples for the PR2 channel,
with Iy = 32 and Iy = 64.

The lookup table fi; ¢ has three arguments and is much larger
than f4 ¢ and fp g, which have two arguments each. A partial
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Fig. 3. Mean-squared error in U, for the PR2 channel detector.
TABLE 1
LoOKUP TABLE SIZES FOR PR2 CHANNEL. kB DENOTES 8192 BITS
Ia, 1B fa.Q, fB.Q Ju.Q

— IYIA10g2 IA [YIAIB 10g2 [U
128 35kB (212 x 7) 384 kB (219 x 6)
256 8 kB (213 x 8) 1536 kB (22! x 6)
512 18 kB (2! x 9) | 6144 kB (223 x 6)
1024 | 40 kB (21% x 10) | 24576 kB (22 x 6)

implementation of the lookup-table algorithm is possible which
uses lookup-tables for the forward and backward recursion only
and then computes the function fy; in the usual fashion using
the state metrics which have been decoded from their values

Qi /Gt+1-

V. CONCLUSION

We have proposed a lookup-table implementation of the
BCJR algorithm for partial response channels. For the PR2
channel considered, vector quantization results in a substantial
reduction in the storage used for the state metrics, and the
lookup tables are a practical size. Lookup table operations, both
in VLSI and computer simulations, can be much faster than
conventional state-by-state computations.
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