Shaping Low-Density Lattice Codes Using Voronoi Integers

Nuwan S. Ferdinand University of Oulu, Finland
 Brian M. Kurkoski Japan Advanced Institute of Science and Technology
 Behnaam Aazhang Rice University, USA
 Matti Latva-aho University of Oulu, Finland

Information Theory Workshop Hobart, Tasmania, Australia November 2014

Nested Lattice Codes Achieve Capacity

Nested lattice codes: $\Lambda/M\Lambda$ Want Λ which is simultaneously good for coding and shaping Other *information theoretic* results using lattices:

- Lattices for relay channel e.g. [Song-Devroye '13]
- Two-way (Bidirectional) relay channel e.g. [Wilson et al.]
- Compute-forward relaying [Nazer-Gastpar '11]

Brian Kurkoski, JAIST

- Lattice codes can achieve the capacity of AWGN channel [Erez and Zamir '04]

How to move from information theory to practical lattice codes?

Capacity-Approaching Lattice Constructions

Recent high-dimension lattice constructions approach capacity

- Construction A with LDPC codes
- Construction D with turbo codes, spatially coupled LDPC
- Lattices based on polar codes
- Low-Density Lattice Codes [Sommer et al. 2008]

Common claim: within few tenth of dB of **unconstrained capacity**:

 $\frac{V(\Lambda)^{2/n}}{-2} \ge 2\pi e$

No assumption about the channel power constraint.

Brian Kurkoski, JAIST

Satisfy Power Constraint with Nested / Lattices

Good for correcting errors Good for quantization (satisfy the power constraint) $\mathbf{x} \mod \Lambda_{\mathbf{s}} = \mathbf{x} - Q_{\Lambda_{\mathbf{s}}}(\mathbf{x})$ high complexity!

Brian Kurkoski, JAIST

1.53 dB Shaping Gain of Sphere over Cube

Separate lattice Λ and shaping region B contribution to signal power:

(normalized second moment)

Brian Kurkoski, JAIST

Shaping Gain

$$G(\text{cube}) = \frac{1}{12}$$

$G_n(\Lambda)$ for Well-Known Lattices

ized Second Moment $G_n(\Lambda)$ mal Nor

Satisfy Power Constraint with Nested Lattices

$\Lambda_{\rm c}$ and $\Lambda_{\rm s}$ both have dimension n

small n Well-known lattices

- Weak coding gain
- efficient shaping algorithms
- Good shaping gain $(0.65 \sim 1.0 \text{ dB})$

Brian Kurkoski, JAIST

Large n BP-based lattices

- Strong coding gain
- Inefficient shaping algorithms
- Uncertain coding gains: two cases: 0.4 dB shaping gain

It Would Be Great If...

Find a construction that:

- Has the capacity-approaching coding gain high-dimension lattices • Has the shaping gains and implementation complexity of a well-known
- lattice like E8.

Must overcome the problem of mismatch in dimensions

Key result:

• a lattice construction technique for shaping LDLC lattices Elements of the technique:

- 1. "Voronoi Integers" \mathbb{Z}^m / Λ_s Shape integers using small-dimension lattices 2. Systematic lattice encoding: lattice point is nearby corresponding integer
- Results
 - Full 0.65 dB shaping gain of the E8 lattice. $(2.1 \text{ dB from } 1/2 \log(\text{SNR}+1))$ Competing nested LDLCs obtained only 0.4 dB, using higher complexity

First, review 1.53 shaping gain result and LDLC lattices

Low-Density Lattice Codes

- LDLC have a sparse inverse generator matrix H
- Gaussian Belief-propagation decoding
- High dimension, n = 100, 1000, 10000, 100000
- Come within 0.6 dB of unconstrained capacity

LDLCs for the power-constrained channel [Sommer et al ITW 2009] • *H* matrix in triangular form, use M algorithm for quantization • Obtained 0.4 dB gain over hypercube (out of 1.53 dB)

Brian Kurkoski, JAIST

LDLC lattices introduced by Sommer, Shalvi and Feder [IT 2008]

LDLC "Latin Square" Construction

- Inverse generator $H = G^{-1}$ has constant row and column weight d.
- Choose $h_1 = 1$ (forces determinant to be 1)
- Random sign changes
- d = 7 gives good performance
- BP convergence condition:

$$\frac{\sum_{i=2}^{d} h_i^2}{h_1^2} \le 1$$

Brian Kurkoski, JAIST

Latin square: each row/column $\{h_1, h_2, \dots, h_d\}$ with random $\pm, h_1 \ge h_2 \ge \dots \ge h_d$

Example: $\{1, 1/2, 1/3\}$

Nested Lattice Codes With LDLCs

Sommer [ITW 2009]: Triangular construction

- Construct $\Lambda/M\Lambda$ using lattice quantization
- dimension n = 10,000
- Put 1's on main diagonal, make triangular
- "90% Latin square" weight $d: \{h_1, h_2, ..., h_d\}$
- Quantization/shaping using M-Algorithm Complexity is O(ndM), but M is large
- Shaping gain of 0.4 dB over hypercube Modest shaping gain for high complexity

1.0	0	0	0	0	0	0
0	1.0	0	0	0	0	0
0.7	0	1.0	0	0	0	0
0	0	-0.7	1.0	0	0	0
-0.5	0	0	0.7	1.0	0	0
0	-0.7	0	0.5	0	1.0	0
0	-0.5	0	0	0.7	0	1.0
0	0	-0.5	0	0	0.7	0

 $c_1 c_2 \cdots c_m c_{m+1}$ $\in \mathbb{Z}^m / \Lambda_{\mathrm{s}}$ $\in \mathbb{Z}$

Brian Kurkoski, JAIST

Proposed Construction

$$\underbrace{\sim c_{2m} \cdots c_{n-m+1} \cdots c_n}_{\in \mathbb{Z}^m / \Lambda_s}$$

"Voronoi Integers"

Under systematic shaping, if the integers are "shaped," then lattice code will be shaped.

L is a small-dimensional lattice quantization, i.e. shaping, is easy

Define "Voronoi Integers" $\mathbb{Z}^m / \Lambda_{\text{shape}}$ set of integers inside fundamental region

Voronoi Integers Example

Use $4D_2$ lattice for shaping.

$$D_2 = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$

$$4D_2 = \begin{bmatrix} 4 & 0 \\ 4 & 8 \end{bmatrix}$$

Note that det $4D_2 = 32$ so the rate is: $\det G$ = 2.5 bits/dim $R = -\log_2$ \mathcal{N}

Brian Kurkoski, JAIST

Voronoi Integers Example

Map integers:

$$u_1 \in \{0, 1, 2, 3\}$$

 $u_2 \in \{0, 1, 2, 3, 4, 5, 6, 7\}$

to points c:

$$G \cdot \left(\frac{u_1}{g_{11}}, \frac{u_2}{g_{22}}\right),$$

Where G is generator matrix and g_{ii} are diagonal coefficients.

Brian Kurkoski, JAIST

Voronoi Integers Example Encode to $\mathbf{c} \in \mathbb{Z}^m / \Lambda_{\text{shape}}$ as:

 $\mathbf{c} = \mathbf{d} - Q_{\Lambda}(\mathbf{d})$

Generalizations:

- 1. G is lower triangular, diagonal positive integers
- 2. Each column j, g_{ij}/g_{jj} is an integer
- 3. Use E_8 lattice. Has 0.65 dB shaping gain and efficient quantization.

Systematic Lattice Encoding

Encode integers \mathbf{c} to lattice point \mathbf{x} such that:

 $\mathbf{c} = \operatorname{round}(\mathbf{x})$

That is, $|x_i - c_i| \leq \frac{1}{2}$ Normal Encoding:

 $\mathbf{x} = G\mathbf{c}$

Systematic lattice encoding. Find k:

 $\mathbf{x} = G(\mathbf{c} - \mathbf{k})$

such that $\mathbf{c} = \operatorname{round}(\mathbf{x})$ holds.

Brian Kurkoski, JAIST

(2)

(1)

(3)

Requirement

$$H = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & e & \ddots \\ c & d \end{bmatrix}$$

Triangular Hwith 1's on diagonal

Systematic Lattice Encoding

Recall: $\mathbf{c} = \operatorname{round}(\mathbf{x})$

Note Voronoi volume det(H) = 1and the integer grid also has vol. 1 No "gaps"

Brian Kurkoski, JAIST

Systematic Lattice Encoding

Recall: $\mathbf{c} = \operatorname{round}(\mathbf{x})$

Note Voronoi volume det(H) = 1and the integer grid also has vol. 1 No "gaps"

Brian Kurkoski, JAIST

Find integers
$$\mathbf{k} = (k_1, k_2, \dots, k_n)^t$$
 such that:

$$\mathbf{H}\mathbf{x} = \mathbf{c} - \mathbf{k} \text{ and} \qquad (1)$$

$$|x_i - c_i| \le \frac{1}{2} \text{ for all } i = 1, \dots, n. \qquad (2)$$

Note that line i of (1) is given by:

$$x_i + \sum_{j=1}^{i-1} H_i$$

Continuing:

and

$$x_i = c_i - \left(\sum_{j=1}^{i-1} H_{i,j} x_j\right)$$

Brian Kurkoski, JAIST

$$\dot{x}_{i,j}x_j = c_i - k_i \tag{3}$$

Triangular structured **H**. Find k_i and x_i recursively. $x_1 = c_1$ and $k_1 = 0$.

$$\sum_{j=1}^{k-1} H_{i,j} x_j \bigg| ,$$

$$-\left|\sum_{j=1}^{i-1}H_{i,j}x_j\right|\right)$$

Average Transmit Power

Transmit power, Gain over hypercube

Power-Constrained AWGN Channel

AWGN channel with average power constraint

- 5 bits/dimension
- coding: LDLC lattice dimension n = 10,000
- shaping: E8 lattice with m = 8
- Compare with M-Algorithm LDLC shaping of Sommer et al

0.65 dB Gain Over Hypercube Shaping!

Brian Kurkoski, JAIST

0.15 dB better than M algorithm, and much lower complexity

Conclusion

Shaping techniques to obtain 1.53 dB are "accessible"

We proposed:

• Systematic lattice shaping for LDLCs

Brian Kurkoski, JAIST

Lattices are an alternative to finite-field codes for AWGN • Coset codes/nested lattice codes, high complexity

• "Voronoi integers" using low-dimension lattices High coding gain of LDLCs, good shaping gain of E8 lattice

