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Hardware-Aware Information Theory

LDPC codes are widely used.
In communications:

e 5G, WiFi 802.11n, video broadcasting

e Ethernet over twisted pair

mobile device

In data storage:
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e flash memories and SSD drives
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Numerous ECC decoding algorithms:

e implemented in VLSI

e “ad hoc” implementation by engineers

Can we give a theoretical foundation

to implementations?

ETH Zurich http://bit.ly /2nTEfCy



Conventional Algorithm Design Process

Decoding Algorithm

input: vy, H
1. Compute s = Hy

New
Communications
Problem

Human that designs
an algorithm




From Human-Desighed Decoding
Algorithms, to Machine-Assisted Ones

Algorithm that
Designs and
Algorithm

Decoding Algorithm

input: vy, H
1. Compute s = Hy
2 ..

New
Communications
Problem

Human Expert
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Problem Setting

Design fixed precision LDPC decoders: i;
e Everything is discrete: channel, messages, nodes T3
e Nodes implement discrete mappings T4
> find these decoding mappings by maximizing
mutual information :

ETH Zurich http://bit.ly /2nTEfCy



Outline

1 Factor graphs and Conventional VLSI Implementation
e Factor graphs

e (Quantization of factor graph messages

2 Max-LUT Method

e (Quantization of factor graph messages
e Max-LUT method
3 Application to LDPC code decoding

e Numerical results: 4 bits/message “performs like floating point”

4 Discussion




1 Factor Graph Representation of Decoders

output:
T3 —0.8 .
transmitted
' information
IHPUt: P(z2 = 0ly2) = 0.9~ 72 — e Ty }—0.7
im
from channel l%z estimate

‘messages” are just numbers, “nodes” compute functions B




Factor Graphs: Local Functions

Check node

local function

'\:131+ T2+ 13+ x4 = 0

Variable node

local function

“equality” restriction—" L4

L4 — X4 — T4

Or

f(xla L2 553) — 44

\

codeword x



Factor Graphs: Update Rules

Variable node update rule:

Ly=Y,+ » V,
€N (v)\v

Check node update rule:

Ro=—2tanh " (] tanh (25

1eEM(c)\c

Final output




Quantization in VLSI Receivers
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Desired: efficient quantization schemes
VLSI quantization schemes are chosen ad hoc way by engineers




Quantization in VLSI Receivers
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Desired: efficient quantization schemes
VLSI quantization schemes are chosen ad hoc way by engineers




2 Max-LUT Me}hcggd
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Max-LUT is a method for

implementing the node decoder J
functions for graph-based - E( o § 5
decoders, using lookup tables L)

that maximize mutual

information. |
J




Characteristics of the Max-LUT Method

e We need a factor graph

e We need an input distribution

e Factor graph messages are discrete

e Decoding functions are look up tables (LUT)

e Lookup tables are designed to maximize mutual information




Lookup Table (LUT) Implementation
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Max-LUT Method: Central Idea

Encoder Side. Code symbols X Decoder Side
X1 Ll
X3 7
Xz L2
o Check node x3 = x1 +x> L; is a noisy version of X;,
e Var node x1 = X2 = X3 Z is a noisy version of X3
o ctc.

Choose LUT to maximize mutual information

max I (X3;Z) = max I (Xs; LUT(Ly, Ly))



Max-LUT Method: Three Steps

e Step 1: Find joint distribution from marginal distributions

o Step 2: Quantize joint distribution maximize mutual

information

e Step 3: Find LUT from the quantizer

Example
¢ LDPC variable node, two inputs Ly, Ly with Pr(L;|X;)

e local constraint: “x1 = xo = x3”

¢ Goal: find max-MI lookup table Z = LUT(L4, L)




Max-LUT Step 1: Joint Distribution

e Step 1: Construct joint distribution Pr(Ly, L2|X3)
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Max-LUT Step 2

e Too many levels! Reduce to Z with K levels

(Ly

e (uantizer is a mapping from (Li,L2) to Z



Max-LUT Step 3: Lookup Table
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Max-LUT Method in One Slide
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3 Application to LDPC Code Decoding

e How to obtain the densities needed by Max-LUT method?
> Density evolution

e How to keep the lookup table reasonable size”
> Node decomposition or “opening the node”

e How does it perform numerically”

> Similar to BP with four bits/message




Density Evolution Unwraps the Graph
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Node Decomposition (Opening the node)
Reduces size of lookup table

. Memory locations FExample: d. = 6 and

. for the lookup table i A = 3 bits per message
p (A = number of :

. bits per message V)

v
| o(de—DA  9(de=1)A _ 39768

Without
decomposition

v Memory locations
: = for (0)

Vs Lo Lo
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With decomposition




Noise Thresholds W|th Quantlzatlon

AWGN n0|se threshold f

0.75

= *" *é 4 bits/msg

o
o))
a1

2 bits/msg

0.6

1 bit/msg

Noise Threshold (Channel Variance 02)

| 3IF-AWGN channel,
1 3, 6) regular LDPC code

Noise Thresholds

| | | | | | | | | |
2 3 4 5 6 8 12 16 20 24 28 32
BI-AWGN channel quantization levels | Z| (log scale)

Levels of Channel Quantization




4 bits/message close to BP
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FIGURE 8. BER and WER results for the LUT decoding algorithm. d, = 4, d. = 9,
R =0.56, N = 4113, Max. Iter.= 30, Array code [2|. The numbers on the graph represent
the average number of iteration per Ej/NO.




BI-AWGN: Lower Error Floors, Fewer lterations

N = 2048, (dv = 0,d. = 32), R = 0.84 and Max. iter = 30
This code is used in IEEE 802.3an 10GBase-T standard producing an operation of 10 Gb/s.

The proposed decoding
mapping functions

- using10 iterations can
achieve the same BER
performance than full SPA
using 30 iterations.

» using 30 Iterations can
surpass the BER
performance of full SPA
using 30 iterations.
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4 Discussion

e Where are the LLRs?
e Asymmetric or arbitrary noise models

o« BCJR algorithm/turbo decoding




Where are the LLRs?

4 )

You can’t just consider the LLRs quantization,

< you have to consider their distribution

/
B . 4 N
‘ - Actually, we don’t even consider the LLRs,
algorithm we only consider the distribution ?
engineer : N
< But then what are the LLRs?
/

4 )
Only distributions are needed to compute mutual

information.

Instead of LLRs, we just use integers {1,2,.. K} i

(&




Here are the LLRs: After

R = 1/2, p=0.08, 11 levels

quantization

Iterations ——

Can find the LLRs since we know the probability distributions.




Max-LUT Handles Arbitrary Noise

MLC flash with
\ | asymmetric noise
e Max-LUT method does not assume symmetric noise
e Density evolution using Pr(y | X = 0) and Pr(y | X = 1)

o (Generates lookup-tables optimized for asymmetric noise

e Suitable for flash memories and non-linear wireless channels.




BCJR algorithm/turbo decoding

Factor graph for Markov chains (including time-varying)

Convolutional codes, turbo codes, intersymbol interterence channels

F R Kschischang et al, “Factor Graphs and the Sum-Product Algorithm,” IT Trans, Feb. 2001




Conclusion: Did we make an “algorithm
that designs algorithms™?

Algorithm that
Designs and
Algorithm

Decoding Algorithm

input: vy, H
1. Compute s = Hy
2 ..

New
Communications
Problem

Yes!
LUT is the “algorithm”
Max-LUT designs the LUT

Human Expert
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