
The Max-LUT Method: Mutual-Information
Maximizing Lookup Tables

June 22, 2017
Asia-European Workshop on Information Theory

Boppard, Germany

Brian M. Kurkoski
Japan Advanced Institute of Science and Technology

Hardware-Aware Information Theory

�2ETH Zurich http://bit.ly/2nTEfCy

LDPC codes are widely used.
In communications:
• 5G, WiFi 802.11n, video broadcasting
• Ethernet over twisted pair
In data storage:
•flash memories and SSD drives

Numerous ECC decoding algorithms:
•implemented in VLSI
•“ad hoc” implementation by engineers
Can we give a theoretical foundation
to implementations?

VLSI
mobile device

Conventional Algorithm Design Process

�3

New
Communications

Problem

Decoding Algorithm
input: y, H
1. Compute s = Hy
2 …

Human that designs
an algorithm

From Human-Designed Decoding
Algorithms, to Machine-Assisted Ones

�4

Algorithm that
Designs and

Algorithm

New
Communications

Problem

Decoding Algorithm
input: y, H
1. Compute s = Hy
2 …

Human Expert

image: https://www.mindsonar.info http://bit.ly/2nbSXrp

�5

SUBMITTED TO IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

1

Deep Learning Methods for Improved Decoding of

Linear Codes

Eliya Nachmani, Elad Marciano, Loren Lugosch, Member, IEEE, Warren J. Gross, Senior Member, IEEE,

David Burshtein, Senior Member, IEEE, and Yair Be’ery, Senior Member, IEEE

A

b

s

t

r

a

c

t

—The problem of low complexity, close to optimal,

channel decoding of linear codes with short to moderate block

length is considered. It is shown that deep learning methods can

be used to improve a standard belief propagation decoder, despite

the large example space. Similar improvements are obtained

for the min-sum algorithm. It is also shown that tying the

parameters of the decoders across iterations, so as to form

a recurrent neural network architecture, can be implemented

with comparable results. The advantage is that significantly

less parameters are required. We also introduce a recurrent

neural decoder architecture based on the method of successive

relaxation. Improvements over standard belief propagation are

also observed on sparser Tanner graph representations of the

codes. Furthermore, we demonstrate that the neural belief

propagation decoder can be used to improve the performance,

or alternatively reduce the computational complexity, of a close

to optimal decoder of short BCH codes.

I

n

d

e

x

T

e

r

m

s

—Deep learning, error correcting codes, belief

propagation, min-sum decoding.

I. INTRODUCTION

In recent years deep learning methods have demonstrated

amazing performances in various tasks. These methods out-

perform human-level object detection in some tasks [1], they

achieve state-of-the-art results in machine translation [2] and

speech processing [3], and they attain record breaking perfor-

mances in challenging games such as Go [4].

In this paper we suggest an application of deep learning

methods to the problem of low complexity channel decoding.

A well-known family of linear error correcting codes are

the linear low-density parity-check (LDPC) codes [5]. LDPC

codes achieve near Shannon channel capacity with the belief

propagation (BP) decoding algorithm, but can typically do so

for relatively large block lengths. For short to moderate high

density parity check (HDPC) codes [6], [7], [8], [9], [10],

such as common powerful linear algebraic codes, the regular

BP algorithm obtains poor results compared to the optimal

maximum likelihood (ML) decoder. On the other hand, the

importance of close to optimal low complexity, low latency

and low power decoders of short to moderate codes has grown

E. Nachmani, E. Marchiano, D. Burshtein and Y. Be’ery are with the School

of Electrical Engineering, Tel-Aviv University, Tel-Aviv, 6997801 Israel,

e-mail: enk100@gmail.com, eladmarc@gmail.com, burstyn@eng.tau.ac.il,

ybeery@eng.tau.ac.il.

L. Lugosch and W. J. Gross are with the Department of Electrical and

Computer Engineering, McGill University, Montréal, QC H3A 0G4, Canada,

e-mail: loren.lugosch@mail.mcgill.ca, warren.gross@mcgill.ca.

This work was presented in part in the Allerton 2016 conference and in

ISIT 2017.

with the emergence of applications driven by the Internet of

Things.
Recently, in [11] it has been shown that deep learning

methods can improve the BP decoding of HDPC codes using

a weighted BP decoder. The BP algorithm is formulated as

a neural network and it is shown that it can improve the

decoding by 0.9dB in the high SNR regime. A key property

of the method is that it is sufficient to train the neural

network decoder using a single codeword (e.g., the all-zero

codeword), since the architecture guarantees the same error

rate for any chosen transmitted codeword. Later, Lugosch &

Gross [12] proposed an improved neural network architecture

that achieves similar results to [11] with less parameters

and reduced complexity. The main difference compared to

[11] is that the offset min-sum algorithm is used instead

of the sum-product algorithm, thus eliminating the need to

use multiplications. Gruber et al. [13] proposed a neural net

decoder with an unconstrained graph (i.e., fully connected

network) and showed that the network gets close to the

ML performance for very small block codes, N = 16. Also,

O’Shea & Hoydis [14] proposed to use an autoencoder as

a communication system for small block code with N = 7.

In [15] it was suggested to improve an iterative decoding

algorithm of polar codes by using neural network decoders of

sub-blocks. In [16] deep learning-based detection algorithms

were used when the channel model is unknown, and in [17]

deep learning was used for MIMO detection. Deep learning

was also applied to quantum error correcting codes [18].

In this work we elaborate on our work in [11] and [12]

and extend it as follows1. First, we apply tying to the decoder

parameters by using a recurrent neural network (RNN) archi-

tecture, and show that it can achieve up to 1.5dB improvement

over the standard belief propagation algorithm in the high

SNR regime. The advantage over the feed-forward architecture

in our initial work [11] is that it reduces the number of pa-

rameters. Similar improvements were obtained when applying

tying to the neural min-sum algorithms. We introduce a new

RNN decoder architecture based on the successive relaxation

technique and show that it can achieve excellent performance

with just a single learnable parameter. We also investigate the

performance of the RNN decoder on parity check matrices

with lower densities and fewer short cycles and show that

despite the fact that we start with reduced cycle matrix, the

network can improve the performance up to 1.0dB. The output

of the training algorithm can be interpreted as a soft Tanner

1See the preprint [19].

Deep MIMO Detection
Neev Samuel, Tzvi Diskin and Ami Wiesel

School of Computer Science and EngineeringThe Hebrew University of JerusalemThe Edmond J. Safra Campus9190416 Jerusalem, Israel
Abstract—In this paper, we consider the use of deep neu-

ral networks in the context of Multiple-Input-Multiple-Output
(MIMO) detection. We give a brief introduction to deep learning
and propose a modern neural network architecture suitable for
this detection task. First, we consider the case in which the MIMO
channel is constant, and we learn a detector for a specific system.
Next, we consider the harder case in which the parameters are
known yet changing and a single detector must be learned for all
multiple varying channels. We demonstrate the performance of
our deep MIMO detector using numerical simulations in compari-
son to competing methods including approximate message passing
and semidefinite relaxation. The results show that deep networks
can achieve state of the art accuracy with significantly lower
complexity while providing robustness against ill conditioned
channels and mis-specified noise variance.Keywords—MIMO Detection, Deep Learning, Neural Networks.

I. INTRODUCTIONMultiple input multiple output (MIMO) systems arise in
most modern communication channels. The dimensions can
account for time and frequency resources, multiple users, mul-
tiple antennas and other resources. These promise substantial
performance gains, but present a challenging detection problem
in terms of computational complexity. In recent years, the
world is witnessing a revolution in deep machine learning.
In many fields of engineering, e.g., computer vision, it was
shown that computers can be fed with sample pairs of inputs
and desired outputs, and “learn” the functions which relates
them. These rules can then be used to classify (detect) the
unknown outputs of future inputs. The goal of this paper is to
apply deep machine learning in the classical MIMO detection
problem and understand its advantages and disadvantages.A. Background on MIMO detectionThe binary MIMO detection setting is a classical problem

in simple hypothesis testing [1]. The maximum likelihood
(ML) detector is the optimal detector in the sense of minimum
joint probability of error for detecting all the symbols simulta-
neously. It can be implemented via efficient search algorithms,
e.g., the sphere decoder [2]. The difficulty is that its worst case
computational complexity is impractical for many applications.
Consequently, several modified search algorithms have been
purposed, offering improved complexity performance [3][4].
There has been much interest in implementing suboptimal
detection algorithms. The most common suboptimal detectors
are the linear receivers, i.e., the matched filter (MF), the decor-
relator or zero forcing (ZF) detector and the minimum mean

squared error (MMSE) detector. More advanced detectors are
based on decision feedback equalization (DFE), approximate
message passing (AMP) [5] and semidefinite relaxation (SDR)
[6], [7]. Currently, both AMP and SDR provide near optimal
accuracy under many practical scenarios. AMP is simple and
cheap to implement in practice, but is an iterative method that
may diverge in problematic settings. SDR is more robust and
has polynomial complexity, but is much slower in practice.B. Background on Machine LearningIn the last decade, there is an explosion of machine learning

success stories in all fields of engineering. Supervised classifi-
cation is similar to statistical detection theory. Both observe
noisy data and output a decision on the discrete unknown
it originated from. Typically, the two fields differ in that
detection theory is based on a prior probabilistic model of the
environment, whereas learning is data driven and is based on
examples. In the context of MIMO detection, a model is known
and allows us to generate as many synthetic examples as
needed. Therefore we adapt an alternative notion. We interpret
“learning” as the idea of choosing a best decoder from a
prescribed class of algorithms. Classical detection theory tries
to choose the best estimate of the unknowns, whereas machine
learning tries to choose the best algorithm to be applied.
Indeed, the hypotheses in detection are the unknown symbols,
whereas the hypotheses in learning are the detection rules [8].
Practically, this means that the computationally involved part
of detection is applied every time we get a new observation. In
learning, the expensive stage is learning the algorithm which is
typically performed off line. Once the optimal rule algorithm
is found, we can cheaply implement it in real time.Machine learning has a long history but was previously

limited to simple and small problems. Fast forwarding to
the last years, the field witnessed the deep revolution. The
“deep” adjective is associated with the use of complicated and
expressive classes of algorithms, also known as architectures.
These are typically neural networks with many non-linear oper-
ations and layers. Deep architectures are more expressive than
shallow ones [9], but were previously considered impossible
to optimize. With the advances in big data, optimization algo-
rithms and stronger computing resources, such networks are
currently state of the art in different problems including speech
processing and computer vision. In particular, one promising
approach to designing deep architectures is by unfolding an
existing iterative algorithm [10]. Each iteration is considered a
layer and the algorithm is called a network. The learning begins
with the existing algorithm as an initial starting point and uses

ar
X

iv
:1

70
6.

01
15

1v
1

 [s
ta

t.M
L]

 4
 Ju

n
20

17

1

An Introduction to Machine Learning

Communications Systems

Tim O’Shea, Senior Member, IEEE, and Jakob Hoydis, Member, IEEE

Abstract—W

e

i

n

t

r

o

d

u

c

e

a

n

d

m

o

t

i

v

a

t

e

m

a

c

h

i

n

e

l

e

a

r

n

i

n

g

(

M

L

)

c

o

m

m

u

n

i

c

a

t

i

o

n

s

s

y

s

t

e

m

s

t

h

a

t

a

i

m

t

o

i

m

p

r

o

v

e

o

n

a

n

d

t

o

e

v

e

n

r

e

p

l

a

c

e

t

h

e

v

a

s

t

e

x

p

e

r

t

k

n

o

w

l

e

d

g

e

i

n

t

h

e

fi

e

l

d

o

f

c

o

m

m

u

n

i

c

a

t

i

o

n

s

u

s

i

n

g

m

o

d

e

r

n

m

a

c

h

i

n

e

l

e

a

r

n

i

n

g

t

e

c

h

n

i

q

u

e

s

.

T

h

e

s

e

h

a

v

e

r

e

c

e

n

t

l

y

a

c

h

i

e

v

e

d

b

r

e

a

k

t

h

r

o

u

g

h

s

i

n

m

a

n

y

d

i

f

f

e

r

e

n

t

d

o

m

a

i

n

s

,

b

u

t

n

o

t

y

e

t

i

n

c

o

m

m

u

n

i

c

a

t

i

o

n

s

.

B

y

i

n

t

e

r

p

r

e

t

i

n

g

a

c

o

m

m

u

n

i

c

a

t

i

o

n

s

s

y

s

t

e

m

a

s

a

n

a

u

t

o

e

n

c

o

d

e

r

,

w

e

d

e

v

e

l

o

p

a

f

u

n

d

a

m

e

n

t

a

l

n

e

w

w

a

y

t

o

t

h

i

n

k

a

b

o

u

t

r

a

d

i

o

c

o

m

m

u

n

i

c

a

t

i

o

n

s

s

y

s

t

e

m

d

e

s

i

g

n

a

s

a

n

e

n

d

-

t

o

-

e

n

d

r

e

c

o

n

s

t

r

u

c

t

i

o

n

o

p

t

i

m

i

z

a

t

i

o

n

t

a

s

k

t

h

a

t

s

e

e

k

s

t

o

j

o

i

n

t

l

y

o

p

t

i

m

i

z

e

t

r

a

n

s

m

i

t

t

e

r

a

n

d

r

e

c

e

i

v

e

r

c

o

m

p

o

n

e

n

t

s

i

n

a

s

i

n

g

l

e

p

r

o

c

e

s

s

.

W

e

f

u

r

t

h

e

r

p

r

e

s

e

n

t

t

h

e

c

o

n

c

e

p

t

o

f

R

a

d

i

o

T

r

a

n

s

f

o

r

m

e

r

N

e

t

w

o

r

k

s

(

R

T

N

s

)

a

s

a

m

e

a

n

s

t

o

i

n

c

o

r

p

o

r

a

t

e

e

x

p

e

r

t

d

o

m

a

i

n

k

n

o

w

l

e

d

g

e

i

n

t

h

e

M

L

m

o

d

e

l

a

n

d

s

t

u

d

y

t

h

e

a

p

p

l

i

c

a

t

i

o

n

o

f

c

o

n

v

o

l

u

t

i

o

n

a

l

n

e

u

r

a

l

n

e

t

w

o

r

k

s

(

C

N

N

s

)

o

n

r

a

w

I

Q

t

i

m

e

-

s

e

r

i

e

s

d

a

t

a

f

o

r

m

o

d

u

l

a

t

i

o

n

c

l

a

s

s

i

fi

c

a

t

i

o

n

.

W

e

c

o

n

c

l

u

d

e

t

h

e

p

a

p

e

r

w

i

t

h

a

d

e

e

p

d

i

s

c

u

s

s

i

o

n

o

f

o

p

e

n

c

h

a

l

l

e

n

g

e

s

a

n

d

a

r

e

a

s

f

o

r

f

u

t

u

r

e

i

n

v

e

s

t

i

g

a

t

i

o

n

.

I. INTRODUCTION

A. Motivation

Since the groundbreaking work of Shannon [1], we know

the ultimate limit of communications in terms of reliably

achievable data rates over noisy channels. The challenge of

achieving this limit has been driving radio engineers for the

last 70 years: find specific algorithms that attain an effi-

cient transfer of information (e.g., low error probability, high

spectral efficiency, low latency) over a variety of channels.

Although many of the algorithms communications engineers

have come up with achieve remarkable performance—often

close to the Shannon limit—we believe that machine learning

(ML) communications systems hold the potential to improve

on some of these algorithms in terms of reliability, generality,

latency, and energy efficiency. The main reasons for this are:

I

n

a

d

e

q

u

a

t

e

s

y

s

t

e

m

m

o

d

e

l

s

:

Most signal processing algo-

rithms in communications have solid foundations in statistics

and information theory. However, these algorithms are often

optimized for mathematically convenient models (which are

linear, stationary, and have Gaussian statistics), but not for

real systems with many imperfections and non-linearities. An

ML based communications system does not require such a

rigidly defined model for representation and transformation of

information and could be optimized in an end-to-end manner

for a real system with harsh realistic effects.

L

i

m

i

t

i

n

g

f

u

n

c

t

i

o

n

a

l

b

l

o

c

k

-

s

t

r

u

c

t

u

r

e

:

Engineers have

learned to represent communications systems through a chain

of multiple independent processing blocks; each executing a

T. O’Shea is with the Bradley Department of Electrical and Computer

Engineering, Virginia Tech, Arlington, VA, US (oshea@vt.edu).

J. Hoydis is with Nokia Bell Labs, Route de Villejust, 91620 Nozay, France

(jakob.hoydis@nokia-bell-labs.com).

well defined and isolated function (e.g., coding, modulation,

channel estimation, equalization). However, it is not clear that

individually optimized processing blocks achieve the best pos-

sible end-to-end performance. In fact, it seems likely that we

are introducing artificial barriers and constraints to efficiency.

For example, we do not necessarily care how well we can

estimate the channel with a given scheme, or how well any one

independent function works, rather we seek to optimize end-to-

end system metrics jointly over all components. A learned end-

to-end communications system will likely not possess such a

well defined block structure as it is trained to achieve only the

best end-to-end performance.

P

a

r

a

l

l

e

l

i

z

a

t

i

o

n

g

a

i

n

s

o

f

n

e

u

r

a

l

n

e

t

w

o

r

k

s

:

It is well known

that neural networks are universal function approximators

[2] and recent work has shown a remarkable capacity for

algorithmic learning with recurrent neural networks [3], a con-

struct which has been shown to be Turing-complete [4]. Since

the execution of neural networks can be highly parallelized

using data and computationally distributed concurrent archi-

tectures, and has shown to work well with small data types

[5] conducive to efficient wide single-instruction multiple-

data (SIMD) operations, there is some hope that “learned”

algorithms can be executed significantly faster and at lower

energy cost than manually “programmed” counterparts.

S

p

e

c

i

a

l

i

z

e

d

h

a

r

d

w

a

r

e

f

o

r

M

L

a

p

p

l

i

c

a

t

i

o

n

s

:

Computa-

tional micro-architectures have shown a relentless trend to-

wards higher transistor counts and lower powers and clock

rates for achieving optimal energy efficiencies. Massively con-

current architectures with distributed memory architectures,

such as graphical processing units (GPUs), have shown to be

very energy efficient and capable of impressive computational

throughput when fully utilized by concurrent algorithms. The

performance of such systems, however, has been largely lim-

ited by the ability of algorithms and higher level programming

languages to make efficient use of them. The inherently con-

current nature of computation and memory access distribution

across wide and deep neural networks holds the promise of

achieving highly efficient distributed algorithms which can

fully utilize parallel hardware architectures.

Our vision is that, in the future, numerous algorithms in

computing and communications will likely not be represented

by special purpose expert code, but by learned weights of neu-

ral networks optimized for end-to-end loss functions. Neural

network primitives and tensor expressions offer well defined

algorithmic constructs in which parameters can be readily

modified to optimize different tasks on highly concurrent pro-

cessing architectures. Although this vision is quite appealing,

ar
X

iv
:1

70
2.

00
83

2v
1

 [c
s.I

T]
 2

 F
eb

 2
01

7

Machine Learning for Coding

Problem Setting

�6ETH Zurich http://bit.ly/2nTEfCy

Design fixed precision LDPC decoders:

• Everything is discrete: channel, messages, nodes

• Nodes implement discrete mappings

> find these decoding mappings by maximizing
mutual information

522 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

Fig. 1. Tanner graph.

constraint involves some subset of the symbol variables, in-
dexed by a certain subset of the symbol index set , and
defines a subset

of the corresponding local Cartesian product set . The local
constraint thus defines a set of valid local configurations (“local
codewords”) where the nota-
tion denotes the projection of a configuration onto the
symbol variables indexed by . The code is then the
set of all configurations that satisfy all local constraints

for all

In a linear behavioral realization, each symbol alphabet is
a vector space over a field , and each local code is a subspace
of the direct-product vector space . The code is then a linear
code—i.e., a subspace of .
In a group behavioral realization, each symbol alphabet

is a group, and each local code is a subgroup of the di-
rect-product group ; the code is then a group code—i.e.,
a subgroup of .
For example, a linear code may be characterized as the

set of that satisfy the parity-check equations
for a certain set of check configurations . The
symbol variables that are involved in the th check are those
for which . Each local code is then a linear

single-parity-check (SPC) code, whose length , called
the degree of , is equal to the number of symbols involved in
.
A behavioral realization has a natural graphical model, which

in coding is called a Tanner graph. A Tanner graph is a bipar-
tite graph in which a first set of vertices represents the symbol
variables , a second set of vertices represents the
local constraints , and a symbol vertex is connected
to a constraint vertex by an edge if the corresponding symbol
variable is involved in the corresponding local constraint. Fig. 1
illustrates a generic Tanner graph.
For example, the binary linear code is self-dual, and

therefore may be characterized as the set of binary -stuples that
satisfy the four parity-check equations

The Tanner graph of this behavioral realization is shown
in Fig. 2. The four parity-check constraints are represented

Fig. 2. Tanner graph for (8, 4, 4) code.

by square vertices labeled by “ ” signs. Clearly, there is no
simpler Tanner graph for this code.

C. Generalized State Realizations and Factor Graphs
Wiberg et al. [46], [47] rediscovered Tanner’s work and ex-

tended it to include state variables, a step whose importance
can hardly be overstated. Connections were thereby made to
the theory of trellis realizations, which correspond to conven-
tional system-theoretic state realizations of codes. Moreover,
new kinds of generalized state realizationswere thereby defined,
differing from those traditionally considered in system theory.
Formally, a generalized state realization of a code is defined

by three sets of elements:

• a set of symbol variables with alphabets
;

• a set of state variables with alphabets (state
spaces) ;

• a set of local constraints .

The three index sets and are discrete, unordered, and
in general unrelated to each other. The symbol configuration
space is the Cartesian product , and the state
configuration space is the Cartesian product .
Each local constraint involves a subset of the symbol and
state variables indexed by a certain subset of the symbol
index set and a certain subset of the state index set ,
respectively, and defines a subset

of the corresponding local Cartesian product configuration
space . The local constraint thus defines a set of valid
local configurations (“local codewords”)

The full behavior is the set of all global sym-
bol/state configurations that satisfy all local constraints

Finally, the code generated by the generalized state realiza-
tion is the projection of the full behavior
onto the symbol configuration space . In other words, the code

x 2

x 8

x 1

x 3
…

x 4

Outline

�7

1 Factor graphs and Conventional VLSI Implementation

• Factor graphs

• Quantization of factor graph messages
2 Max-LUT Method

• Quantization of factor graph messages

• Max-LUT method
3 Application to LDPC code decoding

• Numerical results: 4 bits/message “performs like floating point”
4 Discussion

1 Factor Graph Representation of Decoders

�8

x2

x1

x3

x4

x5

x6

x7

x8

x9

x10

P (x2 = 0|y2) = 0.9

0.8

0.7

0.62

0.99

0.99

0.5

0.1

0.3

0.9

0.628 0.5

0.7

input: 
 from channel

output:
transmitted
information

estimate

“messages” are just numbers, “nodes” compute functions

Factor Graphs: Local Functions

�9

522 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

Fig. 1. Tanner graph.

constraint involves some subset of the symbol variables, in-
dexed by a certain subset of the symbol index set , and
defines a subset

of the corresponding local Cartesian product set . The local
constraint thus defines a set of valid local configurations (“local
codewords”) where the nota-
tion denotes the projection of a configuration onto the
symbol variables indexed by . The code is then the
set of all configurations that satisfy all local constraints

for all

In a linear behavioral realization, each symbol alphabet is
a vector space over a field , and each local code is a subspace
of the direct-product vector space . The code is then a linear
code—i.e., a subspace of .
In a group behavioral realization, each symbol alphabet

is a group, and each local code is a subgroup of the di-
rect-product group ; the code is then a group code—i.e.,
a subgroup of .
For example, a linear code may be characterized as the

set of that satisfy the parity-check equations
for a certain set of check configurations . The
symbol variables that are involved in the th check are those
for which . Each local code is then a linear

single-parity-check (SPC) code, whose length , called
the degree of , is equal to the number of symbols involved in
.
A behavioral realization has a natural graphical model, which

in coding is called a Tanner graph. A Tanner graph is a bipar-
tite graph in which a first set of vertices represents the symbol
variables , a second set of vertices represents the
local constraints , and a symbol vertex is connected
to a constraint vertex by an edge if the corresponding symbol
variable is involved in the corresponding local constraint. Fig. 1
illustrates a generic Tanner graph.
For example, the binary linear code is self-dual, and

therefore may be characterized as the set of binary -stuples that
satisfy the four parity-check equations

The Tanner graph of this behavioral realization is shown
in Fig. 2. The four parity-check constraints are represented

Fig. 2. Tanner graph for (8, 4, 4) code.

by square vertices labeled by “ ” signs. Clearly, there is no
simpler Tanner graph for this code.

C. Generalized State Realizations and Factor Graphs
Wiberg et al. [46], [47] rediscovered Tanner’s work and ex-

tended it to include state variables, a step whose importance
can hardly be overstated. Connections were thereby made to
the theory of trellis realizations, which correspond to conven-
tional system-theoretic state realizations of codes. Moreover,
new kinds of generalized state realizationswere thereby defined,
differing from those traditionally considered in system theory.
Formally, a generalized state realization of a code is defined

by three sets of elements:

• a set of symbol variables with alphabets
;

• a set of state variables with alphabets (state
spaces) ;

• a set of local constraints .

The three index sets and are discrete, unordered, and
in general unrelated to each other. The symbol configuration
space is the Cartesian product , and the state
configuration space is the Cartesian product .
Each local constraint involves a subset of the symbol and
state variables indexed by a certain subset of the symbol
index set and a certain subset of the state index set ,
respectively, and defines a subset

of the corresponding local Cartesian product configuration
space . The local constraint thus defines a set of valid
local configurations (“local codewords”)

The full behavior is the set of all global sym-
bol/state configurations that satisfy all local constraints

Finally, the code generated by the generalized state realiza-
tion is the projection of the full behavior
onto the symbol configuration space . In other words, the code

x 2
Check node
local function
x 1 + x 2 + x 3 + x 4 = 0
or
f (x 1, x 2 , x 3) = x 4

codeword x

x 8

x 1

x 3

…

x 4

Variable node
local function
 
“equality” restriction
x 4 = x 4 = x 4

Factor Graphs: Update Rules

�10

Variable node update rule:

Lv = Yv +

X

i2N (v)\v

Vi

Check node update rule:

Rc = �2 tanh

�1
⇣ Y

i2M(c)\c

tanh

�
� Li

2

�⌘

Final output

bLv = Yv +

X

i2N (v)

Vi

Quantization in VLSI Receivers

�11

�12

Quantization in VLSI Receivers

2 Max-LUT Method

Max-LUT is a method for
implementing the node decoder
functions for graph-based
decoders, using lookup tables
that maximize mutual
information.

�13

Characteristics of the Max-LUT Method

• We need a factor graph

• We need an input distribution

• Factor graph messages are discrete

• Decoding functions are look up tables (LUT)

• Lookup tables are designed to maximize mutual information

�14

Lookup Table (LUT) Implementation

Max-LUT Method: Central Idea
Decoder Side

• Check node x 3 = x 1 +x 2
• Var node x 1 = x 2 = x 3
• etc.

Li is a noisy version of Xi ,  
Z is a noisy version of X3

Choose LUT to maximize mutual information

X1

X2
X3f

Encoder Side. Code symbols X

L1

L2
ZLUT

Max-LUT Method: Three Steps

• Step 1: Find joint distribution from marginal distributions

• Step 2: Quantize joint distribution maximize mutual
information

• Step 3: Find LUT from the quantizer
Example

�17

0

1

1
2
3
4
5
6

• Step 1: Construct joint distribution

Max-LUT Step 1: Joint Distribution

0

1

1
2
3
4

0

1

(2,1)
(2,2)
(3,1)
(3,2)
(2,3)
(3,3)
(2,4)
(1,1)
(3,4)
(1,2)
(4,1)
(1,3)
(4,2)
(1,4)
(4,3)
(5,1)
(4,4)
(5,2)
(5,3)
(6,1)
(5,4)
(6,2)
(6,3)
(6,4)

local constraint:

1

2

3

4

5

0

1

Max-LUT Step 2: Quantize

0

1

(2,1)
(2,2)
(3,1)
(3,2)
(2,3)
(3,3)
(2,4)
(1,1)
(3,4)
(1,2)
(4,1)
(1,3)
(4,2)
(1,4)
(4,3)
(5,1)
(4,4)
(5,2)
(5,3)
(6,1)
(5,4)
(6,2)
(6,3)
(6,4)

K = 5

• Too many levels! Reduce to Z with K levels

• Quantizer is a mapping from (L1,L2) to Z

5

4

3

2

1

0

1

(2,1)
(2,2)
(3,1)
(3,2)
(2,3)
(3,3)
(2,4)
(1,1)
(3,4)
(1,2)
(4,1)
(1,3)
(4,2)
(1,4)
(4,3)
(5,1)
(4,4)
(5,2)
(5,3)
(6,1)
(5,4)
(6,2)
(6,3)
(6,4)

Max-LUT Step 3: Lookup Table

�20

Lookup table:
Z = LUT(L1 , L2)

V

Z

L 0"

0.2"

0.4"

0.6"

1" 2" 3" 4" 5" 6"

0"
0.1"
0.2"
0.3"
0.4"
0.5"

1" 2" 3" 4"
z

l

(6,4)

(6,3)

(6,2)

(6,1)

(5,4)

(5,3)

(5,2)

(5,1)

(4,4)

(4,3)

(1,4)

(4,2)

(1,3)

(4,1)

(1,2)

(3,4)

(1,1)

(2,4)

(3,3)

(2,3)

(3,2)

(3,1)

(2,2)

(2,1)

(L,Z)

X V

Q⇤

L 1 2 3 4
1 4 4 3 3
2 5 5 5 4
3 5 5 4 4
4 3 3 2 2
5 2 2 1 1
6 1 1 1 1

Z

(a) (b) (c) (d)

PZ|X

PL|X

PL,Z|X

Max-LUT Method in One Slide

�21

Variable node

V

Z

L 0"

0.2"

0.4"

0.6"

1" 2" 3" 4" 5" 6"

0"
0.1"
0.2"
0.3"
0.4"
0.5"

1" 2" 3" 4"
z

l

(6,4)

(6,3)

(6,2)

(6,1)

(5,4)

(5,3)

(5,2)

(5,1)

(4,4)

(4,3)

(1,4)

(4,2)

(1,3)

(4,1)

(1,2)

(3,4)

(1,1)

(2,4)

(3,3)

(2,3)

(3,2)

(3,1)

(2,2)

(2,1)

(L,Z)

X V

Q⇤

L 1 2 3 4
1 4 4 3 3
2 5 5 5 4
3 5 5 4 4
4 3 3 2 2
5 2 2 1 1
6 1 1 1 1

Z

(a) (b) (c) (d)

PZ|X

PL|X

PL,Z|X
Conditional distribution

V

Z

L 0"

0.2"

0.4"

0.6"

1" 2" 3" 4" 5" 6"

0"
0.1"
0.2"
0.3"
0.4"
0.5"

1" 2" 3" 4"
z

l

(6,4)

(6,3)

(6,2)

(6,1)

(5,4)

(5,3)

(5,2)

(5,1)

(4,4)

(4,3)

(1,4)

(4,2)

(1,3)

(4,1)

(1,2)

(3,4)

(1,1)

(2,4)

(3,3)

(2,3)

(3,2)

(3,1)

(2,2)

(2,1)

(L,Z)

X V

Q⇤

L 1 2 3 4
1 4 4 3 3
2 5 5 5 4
3 5 5 4 4
4 3 3 2 2
5 2 2 1 1
6 1 1 1 1

Z

(a) (b) (c) (d)

PZ|X

PL|X

PL,Z|X
Joint distribution Quantizer

V

Z

L 0"

0.2"

0.4"

0.6"

1" 2" 3" 4" 5" 6"

0"
0.1"
0.2"
0.3"
0.4"
0.5"

1" 2" 3" 4"
z

l

(6,4)

(6,3)

(6,2)

(6,1)

(5,4)

(5,3)

(5,2)

(5,1)

(4,4)

(4,3)

(1,4)

(4,2)

(1,3)

(4,1)

(1,2)

(3,4)

(1,1)

(2,4)

(3,3)

(2,3)

(3,2)

(3,1)

(2,2)

(2,1)

(L,Z)

X V

Q⇤

L 1 2 3 4
1 4 4 3 3
2 5 5 5 4
3 5 5 4 4
4 3 3 2 2
5 2 2 1 1
6 1 1 1 1

Z

(a) (b) (c) (d)

PZ|X

PL|X

PL,Z|X
Lookup table

(mapping)

3 Application to LDPC Code Decoding
• How to obtain the densities needed by Max-LUT method?

> Density evolution

• How to keep the lookup table reasonable size?

> Node decomposition or “opening the node”

• How does it perform numerically?

> Similar to BP with four bits/message

�22

Density Evolution Unwraps the Graph

�23

iter 1 iter 2 iter …

fro
m

 c
ha

nn
el
 

(d
isc

re
te

 o
ut

pu
t)

Apply Max-LUT:  
•construct lookup table
•get next density Pr(L|X)

Pr(R|X) Pr(L|X) Pr(R|X) Pr(L|X) Pr(R|X) Pr(L|X)

Node Decomposition (Opening the node) 
Reduces size of lookup table

�24

Without
decomposition

With decomposition

i (`)
c

V1 V2 V3 V4 V5 V6

L6

j

Memory locations

for the lookup table

(`)
c (� = number of

bits per message V)

Memory locations

for (`)
1 , . . . , (`)

4

2(dc�1)�

(dc � 2)22�

Example: dc = 6 and

� = 3 bits per message

2(dc�1)� = 32768

(dc � 2)22� = 4⇥ 64

= 256

Scope and Motivation
LDPC codes: good error correction properties under message passing decoding

2

LLRs passed, evaluation of node operations

+7.231
-1.2

⊞ / min-sum
or similar

downsides:
hardware complexity,
performance trade-off

Practical gain of discrete decoders on an SDR platform?

𝑦0
𝑦1
𝑦2

𝑡 ∈ 𝒯

𝑡0

𝑦𝑑c−2

…

𝑡1

Novel discrete decoders using Information Bottleneck

LUTs, int arithmetic

Trend: SDR
V1

V2

V3

V5 L6

Noise Thresholds with Quantization

�25

BI-AWGN channel, 
(3, 6) regular LDPC code

2 3 4 5 6 8 12 16 20 24 28 32

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

K=2

K=3

K=4

K=5
K=6

K=8

K=16
Unquantized messages

N
o
is

e
 T

h
re

s
h
o
ld

 (
C

h
a
n
n
e
l
V

a
ri
a
n
c
e
 σ

2
)

AWGN Channel Quantization Levels, K
ch

 (log scale)

AWGN noise threshold

BI–AWGN channel quantization levels |Z| (log scale)

4 bits/msg

3 bits/msg

2 bits/msg

1 bit/msg

25
Levels of Channel Quantization

N
oi

se
 T

hr
es

ho
ld

s

4 bits/message close to BP

�26

5

B
i
t
-
e
r
r
o
r
r
a
t
e

W
o
r
d
/
F
r
a
m
e
-
e
r
r
o
r
r
a
t
e

Eb/N0Eb/N0

3� bit/msg
LUT decoding

4� bit/msg
LUT decoding

3� bit/msg
LUT decoding

4� bit/msg
LUT decoding

BP

floating-point

BP

floating-point

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

30 →
28 →

18 →

13 →

12 →

←30

←25

←17

←16

←13

←30 ←30
←28

←19

←14

←13

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
10−6

10−5

10−4

10−3

10−2

10−1

100 30 →
28 →

18 →

13 →

12 →

←30

←25

←17

←16

←13

←30←30
←28

←19

←14

←13

Figure 7. BER and WER results for the LUT decoding algorithm. dv = 4, dc = 8,
R = 0.5, N = 10456, Max. Iter.= 25, Array code [2]. The numbers on the graph represent
the average number of iteration per Eb/N0.

B
i
t
-
e
r
r
o
r
r
a
t
e

W
o
r
d
/
F
r
a
m
e
-
e
r
r
o
r
r
a
t
e

Eb/N0Eb/N0

3� bit/msg
LUT decoding

4� bit/msg
LUT decoding

3� bit/msg
LUT decoding

4� bit/msg
LUT decoding

BP

floating-point

BP

floating-point

1.5 2 2.5 3 3.5 4 4.5
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

29 →
22 →

13 →

11 →

10 →

9 →

8 →

←26

←17

←14

←12

←11

←10

←9

←30
←27
←24
←20
←17

←15

←13

←12

←11

←10←9
←9

1.5 2 2.5 3 3.5 4 4.5
10−6

10−5

10−4

10−3

10−2

10−1

100
29 →

22 →

13 →

11 →

10 →

9 →

8 →

←26

←17

←14

←12

←11

←10

←9

←30
←27
←24
←20

←17

←15

←13

←12

←11

←10
←9
←9

Figure 8. BER and WER results for the LUT decoding algorithm. dv = 4, dc = 9,
R = 0.56, N = 4113, Max. Iter.= 30, Array code [2]. The numbers on the graph represent
the average number of iteration per Eb/N0.

27

BI-AWGN: Lower Error Floors, Fewer Iterations
N = 2048, (dv = 6, dc = 32), R = 0.84 and Max. iter = 30

This code is used in IEEE 802.3an 10GBase-T standard producing an operation of 10 Gb/s.

3.5 4 4.5
10−10

10−8

10−6

10−4

10−2

100
4-bit/msg max-LUT

Iter. 30 !

 Iter. 10

B
i
t
/
W
o
r
d
-
e
r
r
o
r
r
a
t
e

Eb/N0 (dB)

8

4

3

3

3

3

10

5

4

4

4

4

floating point SPA

The proposed decoding
mapping functions

• using10 iterations can
achieve the same BER
performance than full SPA
using 30 iterations.

• using 30 iterations can
surpass the BER
performance of full SPA
using 30 iterations.

4 Discussion

�28

• Where are the LLRs?

• Asymmetric or arbitrary noise models

• BCJR algorithm/turbo decoding

Where are the LLRs?

�29

Only distributions are needed to compute mutual
information.  

Instead of LLRs, we just use integers {1,2,… K}

You can’t just consider the LLRs quantization,
you have to consider their distribution

algorithm  
engineer

Actually, we don’t even consider the LLRs,
we only consider the distribution

But then what are the LLRs?

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50
R = 1/2, p=0.08, 11 levels

Here are the LLRs: After quantization

Can find the LLRs since we know the probability distributions.
�30

LLR

It
er
at
io
ns

1 2 K…

Max-LUT Handles Arbitrary Noise

�31

0100 11 10
MLC flash with  
asymmetric noise

• Max-LUT method does not assume symmetric noise

• Density evolution using Pr(y | X = 0) and Pr(y | X = 1)

• Generates lookup-tables optimized for asymmetric noise

• Suitable for flash memories and non-linear wireless channels.

Factor graph for Markov chains (including time-varying)

Convolutional codes, turbo codes, intersymbol interference channels

BCJR algorithm/turbo decoding

�32

KSCHISCHANG et al.: FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM 505

Fig. 9. (a) A trellis and (b) the corresponding Wiberg-type graph for the code of Fig. 8.

Fig. 9(a) is a trellis for the code of Example 2. Vertices at the
same depth are grouped vertically. The root vertex is leftmost,
the goal vertex is rightmost, and edges are implicitly directed
from left to right.
A trellis divides naturally into sections, where the th trellis

section is the subgraph of the trellis induced by the vertices
at depth and depth . The set of edge labels in may be
viewed as the domain of a (visible) variable . In effect, each
trellis section defines a “local behavior” that constrains the
possible combinations of , , and .
Globally, a trellis defines a behavior in the configuration

space of the variables . A configu-
ration of these variables is valid if and only if it satisfies the
local constraints imposed by each of the trellis sections. The
characteristic function for this behavior thus factors naturally
into factors, where the th factor corresponds to the th trellis
section and has , , and as its arguments.
The following example illustrates these concepts in detail for

the code of Example 2.

Example 3 (A Trellis Description): Fig. 9(a) shows a
trellis for the code of Example 2, and Fig. 9(b) shows the
corresponding Wiberg-type graph. In addition to the visible
variable nodes , there are also hidden (state)
variable nodes . Each local check, shown as a
generic factor node (black square), corresponds to one section
of the trellis.
In this example, the local behavior corresponding to the

second trellis section from the left in Fig. 9 consists of the fol-
lowing triples :

(10)
where the domains of the state variables and are taken to
be and , respectively, numbered from bottom
to top in Fig. 9(a). Each element of the local behavior corre-
sponds to one trellis edge. The corresponding factor node in
theWiberg-type graph is the indicator function

.

It is important to note that a factor graph corresponding to
a trellis is cycle-free. Since every code has a trellis representa-

Fig. 10. Generic factor graph for a state-space model of a time-invariant or
time-varying system.

tion, it follows that every code can be represented by a cycle-free
factor graph. Unfortunately, it often turns out that the state-space
sizes (the sizes of domains of the state variables) can easily be-
come too large to be practical. For example, trellis representa-
tions of turbo codes have enormous state spaces [12]. However,
such codes may well have factor graph representations with rea-
sonable complexities, but necessarily with cycles. Indeed, the
“cut-set bound” of [31] (see also [8]) strongly motivates the
study of graph representations with cycles.
Trellises are basically conventional state-space system

models, and the generic factor graph of Fig. 10 can represent
any state-space model of a time-invariant or time-varying
system. As in Fig. 9, each local check represents a trellis
section; i.e., each check is an indicator function for the set of
allowed combinations of left (previous) state, input symbol,
output symbol, and right (next) state. (Here, we allow a trellis
edge to have both an input label and an output label.)

Example 4 (State-Space Models): For example, the
classical linear time-invariant state-space model is given by the
equations

(11)
where is the discrete time index,

are the time- input variables,
are the time- output variables, are
the time- state variables, , , , and are matrices of ap-
propriate dimension, and the equations are over some field .

F R Kschischang et al, “Factor Graphs and the Sum-Product Algorithm,” IT Trans, Feb. 2001

Conclusion: Did we make an “algorithm
that designs algorithms”?

�33

Algorithm that
Designs and

Algorithm

New
Communications

Problem

Decoding Algorithm
input: y, H
1. Compute s = Hy
2 …

Human Expert

image: https://www.mindsonar.info http://bit.ly/2nbSXrp

Yes! 
LUT is the “algorithm”
Max-LUT designs the LUT

