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Rewriting Codes for Flash
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Model of Conventional Rewriting Code Lattices, also called sphere packings
n=2 flash cells, ¢g=8 discrete levels higher packing density
values can only increase (without erasing) error-correcting properties
Rectangular lattice: “uncoded” lattice can achieve channel capacity n — oo
Easy to decode. Poor performance. . ) .
Y image thanks: Eitan Yaakobi Will show lattices can be used for rewriting
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Outline

Lattices for re-writing codes. Using two-dimensional examples:
> Code construction — intersection of a lattice and a shaping region
» Encoding — one-to-many mapping
» Maximizing the future number of writes
»Minimum number of writes 1s equal to D, a code parameter

»“Hash” or permutation to increase the average number of writes
Numerical results on average number of writes using ES8 lattice:

»1ncreasing performance is strongly dependent on q

»Open question: how does performance depend upon n?

Brian Kurkoski, University of Electro-Communications 3/13



Lattices for Flash —
Code Construction, Without Rewriting
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code over reals
“minimum distance”

Writing 1in 2 cells: 2-dimensional examples
Cell value 1s from 0 to g-1

Lattice scaling: Volume of Voronoi region is 1.
Same as rectangular lattice, used by
conventional rewriting codes.

One-to-one mapping from information to codebook

» If lattice generator matrix 1s triangular, then
mapping is straightforward

o 1 =2 3 4 5

X
Brian Kurkoski, Univ1ersity of Electro-Communications 4/13



D .

M

> X,

Lattices for Flash —

Code Construction, WITH Rewriting

a block
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Two code parameters:
D copies of shaping region
1n each dimension

M: side length of each

DM=qg-1

D" blocks, each one has a
one-to-one mapping.

Overall code has one-to-D"
mapping

Example has D=2, M = 5.
Compare with ¢ =11
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Lattices for Flash —

WITH Rewr

Code Construction,

a block

Two code parameters:

D copies of shaping region

In each dimension
M: side length of each
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Lattices with Rewriting — Encoding

Memory has state s = (4,1)

Memory value can only increase

Given new information sequence
(1,3), there are D" candidates

Choose candidate which
maximizes the remaining
“volume”
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» If overall code has a linear
encoding, this is
straightforward.
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» But, to improve the average
number of writes, we'll
destroy the global linearity

«
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current As a result, search over 2"-1

neighboring blocks to
maximize remaining volume.
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Maximizing the Remaining Volume
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(Goal: maximize the future
number of writes

Difficult to count
“accessible” lattice points

No a priori knowledge of
future data points

Assume that lattice points
are uniformly distributed

» maximizes number of
points for future writes

> 1gnore the encoding/
mapping
» Assumption resembles

the “continuous
approximation”
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Minimum Number of Writes is D

D=4

e

D .

M

In the worst case:

» a codeword near the
upper-right hand corner of
each block 1s written

It 1s relatively easy to see:

> Minimum number of
writes 1s D

Note D 1s not related to n:
R = logo, M
DM = q-—1

Minimum number of writes 1s
independent of the lattice
dimension (block length)
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Increasing the Average Number of Writes
with a Random “hash” or permutation
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Two code properties:
» triangular generator matrix
» code linearity

If (A) 1s not accessible, then
(B) 1s not accessible

To 1ncrease the number of
accessible points:

» each block gets a pseudo-
random “hash” or
permutation

» No linearity between blocks
> (In-block linearity remains)
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Average number of writes

Average Number of Writes Using E8 Lattice

ES8 lattice:

> best-known lattice in 8
dimensions

» triangular generator

Numerical evaluation:
» Rate-rewriting tradeoff
» rewriting capability
Increases in q
» High rate codes

Code rate R
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Average number of writes

Average Number of Writes Using E8 Lattice

ES8 lattice:

> best-known lattice in 8
dimensions

» triangular generator

Numerical evaluation:
» Rate-rewriting tradeoff
> rewriting capability
Increases in q
» Construct high rate codes

The pseudo-random hash
» Helps at low rates
» Little effect at high rates

Code rate R
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Notes and Caveats

Distinctions with existing rewriting codes
> Proposed construction rewrites information words.
> Existing codes rewrite information bits.

Lattices components are non-integer
» Read and write analog values in cells; voltage between 0 and V.
> E8 lattice has only integer and half-integer components

Looks like coded modulation (TCM...)
> Wireless AWGN channels have
¥ an average power constraint: Spherical shaping region
® synchronization required
» Flash memory has voltage range O to V (or g — 1):
¥ peak power constraint: Cubical shaping region
¥ nherently synchronized
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Discussion

Showed that lattices can be used for rewriting in flash memories:
» Average number of writes increases in number of levels q
> Minimum number of writes does not increase in block length n

Fiat and Shamir (1984) used directed acyclic graph model:

“The significant improvement in memory capability is linear with the DAG depth.
For a fixed number of states a ‘deep and narrow’ DAG cell is always preferable to a

‘shallow and wide’ DAG cell”

» deep and narrow: large q, small n
» shallow and wide; small q, large n

This observation 1s consistent with
numerical results

“Reptiles”
M.C. Escher §




