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Rewriting Codes for Flash
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0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

Model of Conventional Rewriting Code
n=2 flash cells, q=8 discrete levels

values can only increase (without erasing)
Rectangular lattice: “uncoded” lattice

Easy to decode.  Poor performance.
image thanks: Eitan Yaakobi

Lattices, also called sphere packings
higher packing density

error-correcting properties 
can achieve channel capacity 

Will show lattices can be used for rewriting
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Outline

Lattices for re-writing codes.  Using two-dimensional examples:

Code construction — intersection of a lattice and a shaping region
Encoding — one-to-many mapping
Maximizing the future number of writes

Minimum number of writes is equal to D, a code parameter
“Hash” or permutation to increase the average number of writes 

Numerical results on average number of writes using E8 lattice:
increasing performance is strongly dependent on q

Open question: how does performance depend upon n?
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Lattices for Flash — 
Code Construction, Without Rewriting

Writing in 2 cells: 2-dimensional examples
Cell value is from 0 to q-1
Lattice scaling: Volume of Voronoi region is 1. 

Same as rectangular lattice, used by 
conventional rewriting codes.

One-to-one mapping from information to codebook
 If lattice generator matrix is triangular, then 

mapping is straightforward
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Two code parameters:
D copies of shaping region 

in each dimension
M: side length of each

DM = q – 1

Dn blocks, each one has a 
one-to-one mapping. 

Overall code has one-to-Dn 
mapping

Example has D = 2, M = 5.  
Compare with q = 11
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Two code parameters:
D copies of shaping region 

in each dimension
M: side length of each

DM = q – 1

Dn blocks, each one has a 
one-to-one mapping. 

Overall code has one-to-Dn 
mapping

Example has D = 2, M = 5.  
Compare with q = 11
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Lattices with Rewriting — Encoding

Memory has state s = (4,1)

Memory value can only increase
Given new information sequence 

(1,3), there are Dn candidates 

Choose candidate which 
maximizes the remaining 
“volume”

 If overall code has a linear 
encoding, this is 
straightforward.

 But, to improve the average 
number of writes, we'll 
destroy the global linearity

As a result, search over 2n-1 
neighboring blocks to 
maximize remaining volume.
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Maximizing the Remaining Volume

Goal: maximize the future 
number of writes

Difficult to count 
“accessible” lattice points

No a priori knowledge of 
future data points

Assume that lattice points 
are uniformly distributed
maximizes number of 

points for future writes
 ignore the encoding/

mapping
Assumption resembles 

the “continuous 
approximation” 
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Minimum Number of Writes is D

In the worst case:
 a codeword near the 

upper-right hand corner of 
each block is written

It is relatively easy to see:
 Minimum number of 

writes is D

Note D is not related to n:

Minimum number of writes is 
independent of the lattice 
dimension (block length)
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Increasing the Average Number of Writes
with a Random “hash” or permutation
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Increasing the Average Number of Writes
with a Random “hash” or permutation
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Average Number of Writes Using E8 Lattice

E8 lattice:
 best-known lattice in 8 

dimensions
 triangular generator

Numerical evaluation:
 Rate-rewriting tradeoff 
 rewriting capability 

increases in q
 High rate codes
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Average Number of Writes Using E8 Lattice

E8 lattice:
 best-known lattice in 8 

dimensions
 triangular generator

Numerical evaluation:
 Rate-rewriting tradeoff 
 rewriting capability 

increases in q
 Construct high rate codes

The pseudo-random hash
 Helps at low rates
 Little effect at high rates
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Notes and Caveats

Distinctions with existing rewriting codes
Proposed construction rewrites information words.  
Existing codes rewrite information bits.

Lattices components are non-integer
Read and write analog values in cells; voltage between 0 and V.  
E8 lattice has only integer and half-integer components

Looks like coded modulation (TCM...)
Wireless AWGN channels have

 an average power constraint: Spherical shaping region
 synchronization required

Flash memory has voltage range 0 to V (or q – 1): 
 peak power constraint: Cubical shaping region
 inherently synchronized 
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Discussion
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Showed that lattices can be used for rewriting in flash memories:
Average number of writes increases in number of levels q
Minimum number of writes does not increase in block length n

Fiat and Shamir (1984) used directed acyclic graph model:

“The significant improvement in memory capability is linear with the DAG depth.  
For a fixed number of states a ‘deep and narrow’ DAG cell is always preferable to a 
‘shallow and wide’ DAG cell”

deep and narrow: large q, small n
 shallow and wide; small q, large n

This observation is consistent with
numerical results

“Reptiles”

M.C. Escher


