
Workshop on

Application of Communication Theory to Emerging Memory Technologies

at

Globecom 2010

Miami, Florida, USA 6 December 2010

Rewriting Codes for Flash Memories

Based Upon Lattices,

and an Example Using the E8 Lattice

Brian M. Kurkoski
kurkoski@ice.uec.ac.jp

University of Electro-Communications
Tokyo, Japan

Brian Kurkoski, University of Electro-Communications /13

Rewriting Codes for Flash

2

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

Model of Conventional Rewriting Code
n=2 flash cells, q=8 discrete levels

values can only increase (without erasing)
Rectangular lattice: “uncoded” lattice

Easy to decode. Poor performance.
image thanks: Eitan Yaakobi

Lattices, also called sphere packings
higher packing density

error-correcting properties
can achieve channel capacity

Will show lattices can be used for rewriting

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

n → ∞

Brian Kurkoski, University of Electro-Communications /13

Outline

Lattices for re-writing codes. Using two-dimensional examples:

Code construction — intersection of a lattice and a shaping region
Encoding — one-to-many mapping
Maximizing the future number of writes

Minimum number of writes is equal to D, a code parameter
“Hash” or permutation to increase the average number of writes

Numerical results on average number of writes using E8 lattice:
increasing performance is strongly dependent on q

Open question: how does performance depend upon n?

3

Brian Kurkoski, University of Electro-Communications /13

Lattices for Flash —
Code Construction, Without Rewriting

Writing in 2 cells: 2-dimensional examples
Cell value is from 0 to q-1
Lattice scaling: Volume of Voronoi region is 1.

Same as rectangular lattice, used by
conventional rewriting codes.

One-to-one mapping from information to codebook
 If lattice generator matrix is triangular, then

mapping is straightforward

4

0 1 2 3 4 5
0

1

2

3

4

5

 (0,0)

 (0,1)

 (0,2)

 (0,3)

 (0,4)

 (1,0)

 (1,1)

 (1,2)

 (1,3)

 (1,4)

 (2,0)

 (2,1)

 (2,2)

 (2,3)

 (2,4)

 (3,0)

 (3,1)

 (3,2)

 (3,3)

 (3,4)

 (4,0)

 (4,1)

 (4,2)

 (4,3)

 (4,4)

x1

x 2

!3 !2 !1 0 1 2 3

!3

!2

!1

0

1

2

3

⋂

!3 !2 !1 0 1 2 3

!3

!2

!1

0

1

2

3

!3 !2 !1 0 1 2 3

!3

!2

!1

0

1

2

3

=

codebook Λ ∩B
is finiteLattice Λ is infinite

code over reals
“minimum distance”

Shaping region B
finite

/13 M

Two code parameters:
D copies of shaping region

in each dimension
M: side length of each

DM = q – 1

Dn blocks, each one has a
one-to-one mapping.

Overall code has one-to-Dn
mapping

Example has D = 2, M = 5.
Compare with q = 11

5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 [0,0]

 [0,1]

 [0,2]

 [0,3]

 [0,4]

 [1,0]

 [1,1]

 [1,2]

 [1,3]

 [1,4]

 [2,0]

 [2,1]

 [2,2]

 [2,3]

 [2,4]

 [3,0]

 [3,1]

 [3,2]

 [3,3]

 [3,4]

 [4,0]

 [4,1]

 [4,2]

 [4,3]

 [4,4]

 [3,2]

 [3,3]

 [3,4]

 [3,0]

 [3,1]

 [4,2]

 [4,3]

 [4,4]

 [4,0]

 [4,1]

 [0,2]

 [0,3]

 [0,4]

 [0,0]

 [0,1]

 [1,2]

 [1,3]

 [1,4]

 [1,0]

 [1,1]

 [2,2]

 [2,3]

 [2,4]

 [2,0]

 [2,1]

 [4,3]

 [4,4]

 [4,0]

 [4,1]

 [4,2]

 [0,3]

 [0,4]

 [0,0]

 [0,1]

 [0,2]

 [1,3]

 [1,4]

 [1,0]

 [1,1]

 [1,2]

 [2,3]

 [2,4]

 [2,0]

 [2,1]

 [2,2]

 [3,3]

 [3,4]

 [3,0]

 [3,1]

 [3,2]

 [2,0]

 [2,1]

 [2,2]

 [2,3]

 [2,4]

 [3,0]

 [3,1]

 [3,2]

 [3,3]

 [3,4]

 [4,0]

 [4,1]

 [4,2]

 [4,3]

 [4,4]

 [0,0]

 [0,1]

 [0,2]

 [0,3]

 [0,4]

 [1,0]

 [1,1]

 [1,2]

 [1,3]

 [1,4]

x1

x 2

 M

 D ·M

Lattices for Flash —
Code Construction, WITH Rewriting

original
shaping
region

 D ·M

a block

/13 M

Two code parameters:
D copies of shaping region

in each dimension
M: side length of each

DM = q – 1

Dn blocks, each one has a
one-to-one mapping.

Overall code has one-to-Dn
mapping

Example has D = 2, M = 5.
Compare with q = 11

5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 [0,0]

 [0,1]

 [0,2]

 [0,3]

 [0,4]

 [1,0]

 [1,1]

 [1,2]

 [1,3]

 [1,4]

 [2,0]

 [2,1]

 [2,2]

 [2,3]

 [2,4]

 [3,0]

 [3,1]

 [3,2]

 [3,3]

 [3,4]

 [4,0]

 [4,1]

 [4,2]

 [4,3]

 [4,4]

 [3,2]

 [3,3]

 [3,4]

 [3,0]

 [3,1]

 [4,2]

 [4,3]

 [4,4]

 [4,0]

 [4,1]

 [0,2]

 [0,3]

 [0,4]

 [0,0]

 [0,1]

 [1,2]

 [1,3]

 [1,4]

 [1,0]

 [1,1]

 [2,2]

 [2,3]

 [2,4]

 [2,0]

 [2,1]

 [4,3]

 [4,4]

 [4,0]

 [4,1]

 [4,2]

 [0,3]

 [0,4]

 [0,0]

 [0,1]

 [0,2]

 [1,3]

 [1,4]

 [1,0]

 [1,1]

 [1,2]

 [2,3]

 [2,4]

 [2,0]

 [2,1]

 [2,2]

 [3,3]

 [3,4]

 [3,0]

 [3,1]

 [3,2]

 [2,0]

 [2,1]

 [2,2]

 [2,3]

 [2,4]

 [3,0]

 [3,1]

 [3,2]

 [3,3]

 [3,4]

 [4,0]

 [4,1]

 [4,2]

 [4,3]

 [4,4]

 [0,0]

 [0,1]

 [0,2]

 [0,3]

 [0,4]

 [1,0]

 [1,1]

 [1,2]

 [1,3]

 [1,4]

x1

x 2

 M

 D ·M

Lattices for Flash —
Code Construction, WITH Rewriting

 D ·M

a block

Brian Kurkoski, University of Electro-Communications /13

Lattices with Rewriting — Encoding

Memory has state s = (4,1)

Memory value can only increase
Given new information sequence

(1,3), there are Dn candidates

Choose candidate which
maximizes the remaining
“volume”

 If overall code has a linear
encoding, this is
straightforward.

 But, to improve the average
number of writes, we'll
destroy the global linearity

As a result, search over 2n-1
neighboring blocks to
maximize remaining volume.

6

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 (1,3)
 (4,1)

 (1,3)

 (1,3)

 (1,3)

x1

x 2

current
state

Brian Kurkoski, University of Electro-Communications /13

Maximizing the Remaining Volume

Goal: maximize the future
number of writes

Difficult to count
“accessible” lattice points

No a priori knowledge of
future data points

Assume that lattice points
are uniformly distributed
maximizes number of

points for future writes
 ignore the encoding/

mapping
Assumption resembles

the “continuous
approximation”

7

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 (1,3)
 (4,1)

 (1,3)

 (1,3)

 (1,3)

x1

x 2

/13

 M

Minimum Number of Writes is D

In the worst case:
 a codeword near the

upper-right hand corner of
each block is written

It is relatively easy to see:
 Minimum number of

writes is D

Note D is not related to n:

Minimum number of writes is
independent of the lattice
dimension (block length)

8

D = 4

R = log2 M

DM = q − 1

 M
 D ·M

 D ·M

Brian Kurkoski, University of Electro-Communications /13

Increasing the Average Number of Writes
with a Random “hash” or permutation

9

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 (1,1)

 (2,3)

 (1,1)

 (1,1)

 (1,1)

x1

x 2

Two code properties:
 triangular generator matrix
 code linearity

If (A) is not accessible, then
(B) is not accessible

To increase the number of
accessible points:
each block gets a pseudo-

random “hash” or
permutation

No linearity between blocks
 (in-block linearity remains)

Brian Kurkoski, University of Electro-Communications /13

Increasing the Average Number of Writes
with a Random “hash” or permutation

9

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

 (1,1)

 (2,3)

 (1,1)

 (1,1)

 (1,1)

x1

x 2

Two code properties:
 triangular generator matrix
 code linearity

If (A) is not accessible, then
(B) is not accessible

To increase the number of
accessible points:
each block gets a pseudo-

random “hash” or
permutation

No linearity between blocks
 (in-block linearity remains)

π

π

π

Brian Kurkoski, University of Electro-Communications /13

Average Number of Writes Using E8 Lattice

E8 lattice:
 best-known lattice in 8

dimensions
 triangular generator

Numerical evaluation:
 Rate-rewriting tradeoff
 rewriting capability

increases in q
 High rate codes

10

1 1.5 2 2.5 3 3.5 4 4.5 5

2

4

6

8

10

12

14

16

18

20

22

24

q=4

q=8

q=16

q=32

Av
er

ag
e

nu
m

be
r o

f w
rit

es

Code rate R

Brian Kurkoski, University of Electro-Communications /13

Average Number of Writes Using E8 Lattice

E8 lattice:
 best-known lattice in 8

dimensions
 triangular generator

Numerical evaluation:
 Rate-rewriting tradeoff
 rewriting capability

increases in q
 Construct high rate codes

The pseudo-random hash
 Helps at low rates
 Little effect at high rates

11

1 1.5 2 2.5 3 3.5 4 4.5 5

2

4

6

8

10

12

14

16

18

20

22

24

q=4

q=8

q=16

q=32

Av
er

ag
e

nu
m

be
r o

f w
rit

es

Code rate R

no hash

no hash

no hash

no hash

Brian Kurkoski, University of Electro-Communications /13

Notes and Caveats

Distinctions with existing rewriting codes
Proposed construction rewrites information words.
Existing codes rewrite information bits.

Lattices components are non-integer
Read and write analog values in cells; voltage between 0 and V.
E8 lattice has only integer and half-integer components

Looks like coded modulation (TCM...)
Wireless AWGN channels have

 an average power constraint: Spherical shaping region
 synchronization required

Flash memory has voltage range 0 to V (or q – 1):
 peak power constraint: Cubical shaping region
 inherently synchronized

12

/13

Discussion

13

Showed that lattices can be used for rewriting in flash memories:
Average number of writes increases in number of levels q
Minimum number of writes does not increase in block length n

Fiat and Shamir (1984) used directed acyclic graph model:

“The significant improvement in memory capability is linear with the DAG depth.
For a fixed number of states a ‘deep and narrow’ DAG cell is always preferable to a
‘shallow and wide’ DAG cell”

deep and narrow: large q, small n
 shallow and wide; small q, large n

This observation is consistent with
numerical results

“Reptiles”

M.C. Escher

