Rewriting Codes for Flash Memories
Based Upon Lattices,
and an Example Using the E8 Lattice

Brian M. Kurkoski

kurkoski@ice.uec.ac.jp

University of Electro-Communications
Tokyo, Japan

Workshop on
Application of Communication Theory to Emerging Memory Technologies
at
Globecom 2010
Miami, Florida, USA 6 December 2010

Rewriting Codes for Flash

7,0—17,1 2 7,2—17,3——7,4—1{7,5——7,6—>{7.7
1 1 1 1 1 1 T 1 \ / \ /
-4 @ r-+ @ r-+ @ r-<
6,0—l6,1F—{6,2—16.36.4—{6,5—6.6F—l6,7 SN SN SN SN
. ; . . : . T ‘ { @ L @ L @ - @
. % » % » % y <
5,0F—1{5, 115,21 5.3—{5,4—15,51—{5.6F—1{5,7 / ¢ ¢ ¢ .
7 ; ; ; ; f ; 1 < ® y % @) % % @ % % o
4,04, 14 2} —fa3—JaalJa s} Jad—fa7 f *\ ¢ f *\ o f ﬂ o /* ﬂ

2,02, 1 —{2,2—>{2,3—{2,4—{2,51—{2,6—2,7 Rain i e R Saint
f f T f f f f f (@ @ @@
10— 1,1 1,20 1,3t—{1,4F—{ 1,5H—1,61—{1,7 % % @ % 4 O » % O % %
i i 1 | | | | | 4 ® % 4 O % 4 O % 4 O %
0,0—>{0, 1}—+{0,2—+0,3—0,4—1{0,5—0,6/—0,7

Model of Conventional Rewriting Code Lattices, also called sphere packings
n=2 flash cells, ¢g=8 discrete levels higher packing density
values can only increase (without erasing) error-correcting properties
Rectangular lattice: “uncoded” lattice can achieve channel capacity n — oo
Easy to decode. Poor performance. .) .
Y image thanks: Eitan Yaakobi Will show lattices can be used for rewriting

Brian Kurkoski, University of Electro-Communications 2/13

Outline

Lattices for re-writing codes. Using two-dimensional examples:
> Code construction — intersection of a lattice and a shaping region
» Encoding — one-to-many mapping
» Maximizing the future number of writes
»Minimum number of writes 1s equal to D, a code parameter

»“Hash” or permutation to increase the average number of writes
Numerical results on average number of writes using ES8 lattice:

»1ncreasing performance is strongly dependent on q

»Open question: how does performance depend upon n?

Brian Kurkoski, University of Electro-Communications 3/13

Lattices for Flash —
Code Construction, Without Rewriting

(
(
(
(
(
(

Y T T T Y
e 1 ® e I o 1 o ° o |
- IS PN A N PN PN A A N
\\\\\\\\\\\\\\
Y Y Y Y Y Y Y
e I e I e I o 1 ® o I o e —_—_—_—_— N N s <
///////
A PN PN A A PN PN Y Y Y Y
st Tt TNt TNt TN T T e Ty o I o I o | o
1 e I e I e I e I e I e I e '\\ //'\\ /)\\ /)\\
N BN A A BN BN A J ¥ ¥ ¥ v
N N T N N N
Y Y Y Y Y Y Y ° e 1 o o
e 1 6 I 6 I o I © I © I o | © — | PN PN '\
///////
A PN N A A PN N ~ Y Y Y
\\\\\\\\\\\\\\\\ —
Y Y Y Y Y Y Y Y e 1+ & 1 e 1 o
1 e 1 e I e I e 1 e I e I e \ PN N N
\\\\\\\
N I A A I I A y ¥ ¥ ¥ v
N N T N N N
Y Y Y Y Y Y Y ° o o
e |+ ¢ I © I © I © I o I o 1 o N A A PN
///////
A PN N A A PN N ~ ~ ~ ~
\\\\\\\\\\\\\\\\
Y Y Y Y Y Y Y Y . .
B R A Shaping region B debook A B
YRR . ISR SREPR coaenoo [
\\\\\\\\\\\\\\ .
- - - - - - -
' ' ' ' ' ' finite
Lattice A is infinit is finit

code over reals
“minimum distance”

Writing 1in 2 cells: 2-dimensional examples
Cell value 1s from 0 to g-1

Lattice scaling: Volume of Voronoi region is 1.
Same as rectangular lattice, used by
conventional rewriting codes.

One-to-one mapping from information to codebook

» If lattice generator matrix 1s triangular, then
mapping is straightforward

o 1 =2 3 4 5

X
Brian Kurkoski, Univ1ersity of Electro-Communications 4/13

D .

M

> X,

Lattices for Flash —

Code Construction, WITH Rewriting

a block
original .
shaping
region '
0 > 3 5 9 10
< M >
< >

Two code parameters:
D copies of shaping region
1n each dimension

M: side length of each

DM=qg-1

D" blocks, each one has a
one-to-one mapping.

Overall code has one-to-D"
mapping

Example has D=2, M = 5.
Compare with ¢ =11

5/13

Lattices for Flash —

WITH Rewr

Code Construction,

a block

Two code parameters:

D copies of shaping region

In each dimension
M: side length of each

n o
o Q 10
m o __1
S v =
ne
e.ln 29__
o 2 O o~
S 2 4 1
o g8 < =
S o @ o B
— ~ S B w <9
| w Q 8 g -
s R L ©
v 23%% 2%
g o av
M s O b £ bt O
Q Q O €a

N~
S |

5/13

Lattices with Rewriting — Encoding

Memory has state s = (4,1)

Memory value can only increase

Given new information sequence
(1,3), there are D" candidates

Choose candidate which
maximizes the remaining
“volume”

4—*‘—.— !

~
o | o
PN
L.

>~
|
PN

A= A

» If overall code has a linear
encoding, this is
straightforward.

>
I
BN
~

» But, to improve the average
number of writes, we'll
destroy the global linearity

«

~ @& ml

-
\

° (4,1)

current As a result, search over 2"-1

neighboring blocks to
maximize remaining volume.

~

0 1 2 3 4 5 6 7 8 9 10

X
Brian Kurkoski, University of Electro-Communications 6/13

Maximizing the Remaining Volume

0 1 2 3 4 5 6 7

X
Brian Kurkoski, University of Electro-Communications

(Goal: maximize the future
number of writes

Difficult to count
“accessible” lattice points

No a priori knowledge of
future data points

Assume that lattice points
are uniformly distributed

» maximizes number of
points for future writes

> 1gnore the encoding/
mapping
» Assumption resembles

the “continuous
approximation”

7/13

D .

M

Minimum Number of Writes is D

D=4

e

D .

M

In the worst case:

» a codeword near the
upper-right hand corner of
each block 1s written

It 1s relatively easy to see:

> Minimum number of
writes 1s D

Note D 1s not related to n:
R = logo, M
DM = q-—1

Minimum number of writes 1s
independent of the lattice
dimension (block length)

8/13

Increasing the Average Number of Writes
with a Random “hash” or permutation

0 1 2 3 4 5 6 7

X
Brian Kurkoski, University of EIectroJCommunications

Two code properties:
» triangular generator matrix
» code linearity

If (A) 1s not accessible, then
(B) 1s not accessible

To 1ncrease the number of
accessible points:

» each block gets a pseudo-
random “hash” or
permutation

» No linearity between blocks
> (In-block linearity remains)

9/13

Increasing the Average Number of Writes
with a Random “hash” or permutation

0 1 2 3 4 5 6 7

X
Brian Kurkoski, University of EIectroJCommunications

Two code properties:
» triangular generator matrix
» code linearity

If (A) 1s not accessible, then
(B) 1s not accessible

To 1ncrease the number of
accessible points:

» each block gets a pseudo-
random “hash” or
permutation

» No linearity between blocks
> (In-block linearity remains)

9/13

Average number of writes

Average Number of Writes Using E8 Lattice

ES8 lattice:

> best-known lattice in 8
dimensions

» triangular generator

Numerical evaluation:
» Rate-rewriting tradeoff
» rewriting capability
Increases in q
» High rate codes

Code rate R

Brian Kurkoski, University of Electro-Communications 10/13

Average number of writes

Average Number of Writes Using E8 Lattice

ES8 lattice:

> best-known lattice in 8
dimensions

» triangular generator

Numerical evaluation:
» Rate-rewriting tradeoff
> rewriting capability
Increases in q
» Construct high rate codes

The pseudo-random hash
» Helps at low rates
» Little effect at high rates

Code rate R

Brian Kurkoski, University of Electro-Communications 11/13

Notes and Caveats

Distinctions with existing rewriting codes
> Proposed construction rewrites information words.
> Existing codes rewrite information bits.

Lattices components are non-integer
» Read and write analog values in cells; voltage between 0 and V.
> E8 lattice has only integer and half-integer components

Looks like coded modulation (TCM...)
> Wireless AWGN channels have
¥ an average power constraint: Spherical shaping region
® synchronization required
» Flash memory has voltage range O to V (or g — 1):
¥ peak power constraint: Cubical shaping region
¥ nherently synchronized

Brian Kurkoski, University of Electro-Communications 12/13

Discussion

Showed that lattices can be used for rewriting in flash memories:
» Average number of writes increases in number of levels q
> Minimum number of writes does not increase in block length n

Fiat and Shamir (1984) used directed acyclic graph model:

“The significant improvement in memory capability is linear with the DAG depth.
For a fixed number of states a ‘deep and narrow’ DAG cell is always preferable to a

‘shallow and wide’ DAG cell”

» deep and narrow: large q, small n
» shallow and wide; small q, large n

This observation 1s consistent with
numerical results

“Reptiles”
M.C. Escher §

