The E8 Lattice and Error Correction in Multi-Level Flash Memory

Brian M. Kurkoski

kurkoski@ice.uec.ac.jp

University of Electro-Communications Tokyo, Japan

ICC 2011 IEEE International Conference on Communications Kyoto, Japan Monday, June 6, 2011

Overview

This presentation describes a novel coded-modulation method using

- > E8 lattice as a constellation
- Reed-Solomon codes for error correction

Developed for flash memories

- Background on flash memories
- Conventional ECC uses BCH codes with Gray-coded PAM

Outline the proposed method

- > Writing lattice points to flash memory
- ≻ To increase code rate, Reed-Solomon codes protect only mod-2 sum of data
- Decoder must resolve lattice error patterns

Benefits of proposed scheme:

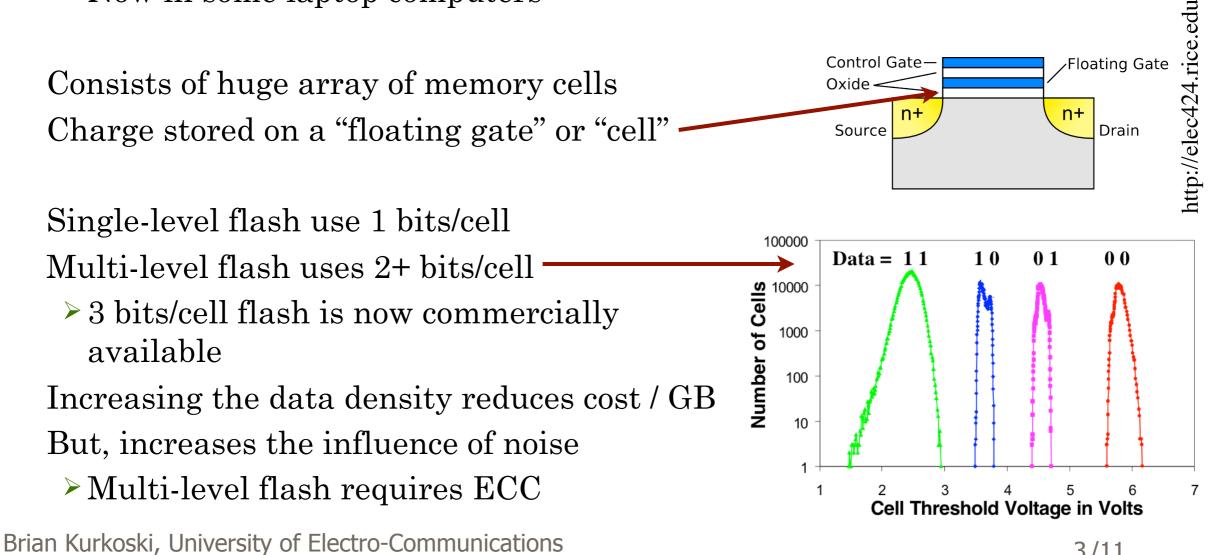
- ≻ Gain of 1.8 dB
- ▶ Reed-Solomon decoder has lower complexity than BCH decoder for fixed block length
- ➤ A low-complexity soft-input decoding scheme

3/11

Atwood, et al. 1997

Flash Memories

- Invented by Fujio Masuoka at Toshiba; also coined the word "flash"
- > Mechanically durable, non-volatile memory
- > By late 1990s, made digital cameras and MP3 players viable
- > Fast random reads, replacing hard disk drives for some server applications
- > Now in some laptop computers



Conventional Flash ECC: BCH codes on Gray-coded PAM

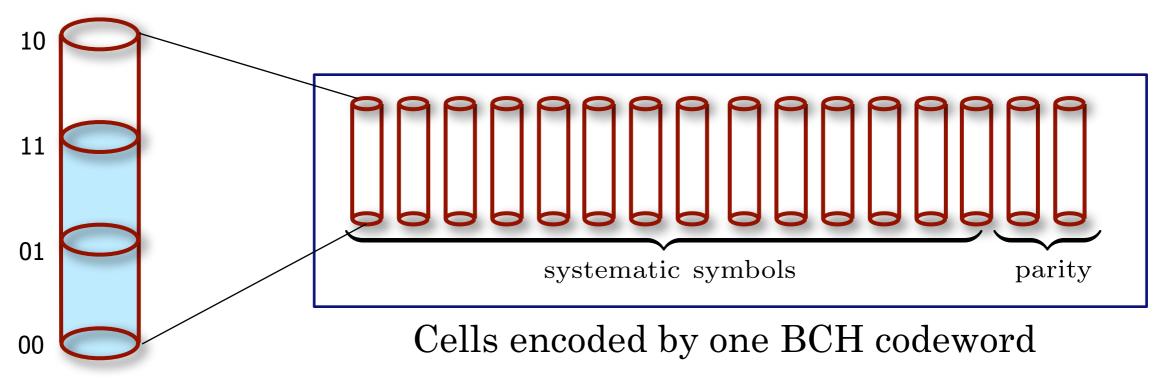
For PAM with AWGN model likely error is a shift to adjacent symbol

≻ Gray coding is used

Errors are random and uncorrelated

- ≻ BCH codes are used
- Error-correction better than Reed-Solomon

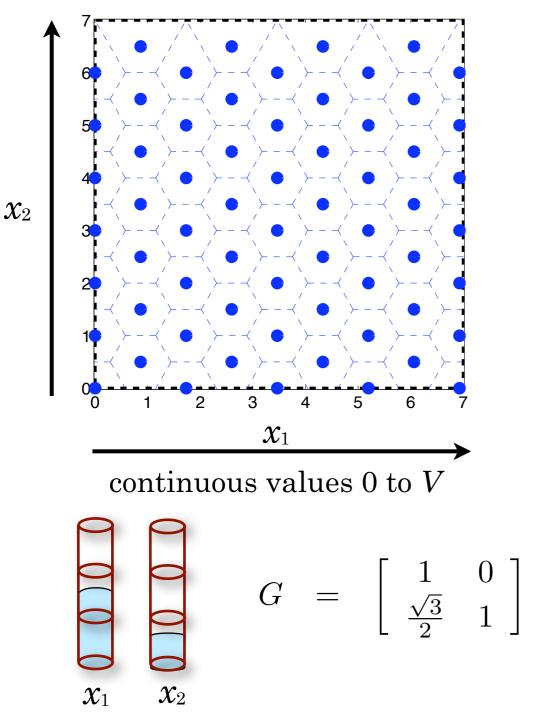
Codes rates tend to be very high, 0.95 to 0.99

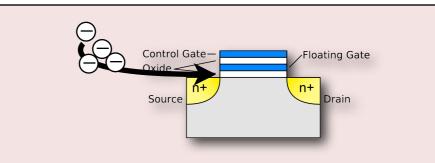


One 4-level cell

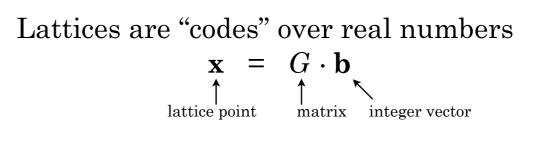
Brian Kurkoski, University of Electro-Communications

Lattices for Flash





- flash cells store charge, which is continuous
- What if we ignore discrete levels, and allow real values?



Lattices, and related sphere packings

- > Higher packing density
- ≻ more efficient
- \succ correct errors
- \blacktriangleright achieve channel capacity $n \to \infty$
- ► QAM: 2 dimensional rectangular lattice
- > Higher dimension lattices have better distance properties.

Brian Kurkoski, University of Electro-Communications

E8 Lattice (Gosset Lattice)

- > Best-known lattice in eight dimensions
- ▶ lattice d_{\min} is $\sqrt{2} = 1.414$

• versus $d_{\min} = 1$ for PAM

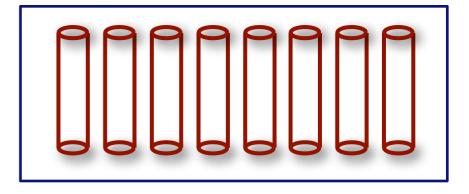
- Efficient soft-input decoding algorithm
- Coordinates are integers or half integers
- > kissing number: 240 nearest neighbors at d_{\min}
 - versus 6 for this hex lattice

	0	0	0	0	0	0	0]
1/2	1	0	0	0	0	0	0
1/2	-1	1	0	0	0	0	0
1/2	0	-1	1	0	0	0	0
1/2	0	0	-1	1	0	0	0
1/2	0	0	0	-1	1	0	0
1/2	0	0	0	0	-1	1	0
1/2	0	0	0	0	0	-1	2

E8 generator matrix

Storing Lattice Point in Flash

- ➢ one coordinate stored in one flash cell.
- > So, 8 flash cells store 1 lattice point
- > 8 cells encode $\log_2(V^8)$ information bits

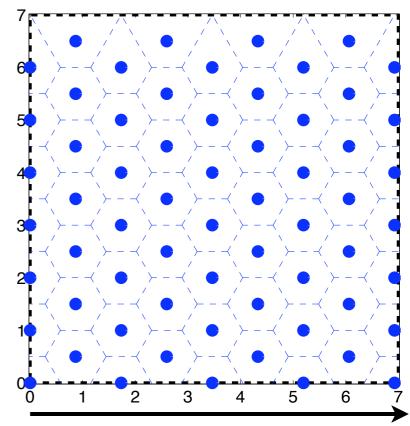


E8 Lattice (Gosset Lattice)

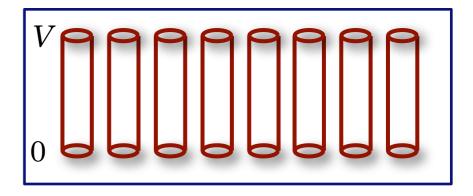
- > Best-known lattice in eight dimensions
- ▶ lattice d_{\min} is $\sqrt{2} = 1.414$
 - versus $d_{\min} = 1$ for PAM
- Efficient soft-input decoding algorithm
- Coordinates are integers or half integers
- > kissing number: 240 nearest neighbors at d_{\min}
 - versus 6 for this hex lattice

Storing Lattice Point in Flash

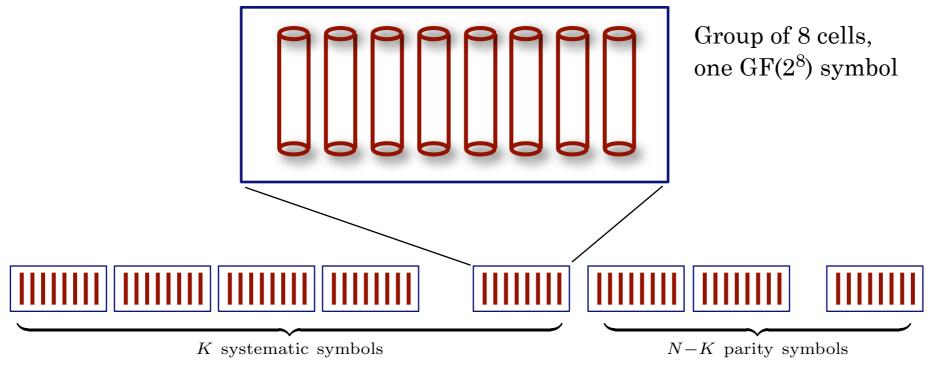
- ≻ one coordinate stored in one flash cell.
- > So, 8 flash cells store 1 lattice point
- > 8 cells encode $\log_2(V^8)$ information bits



continuous values 0 to \boldsymbol{V}



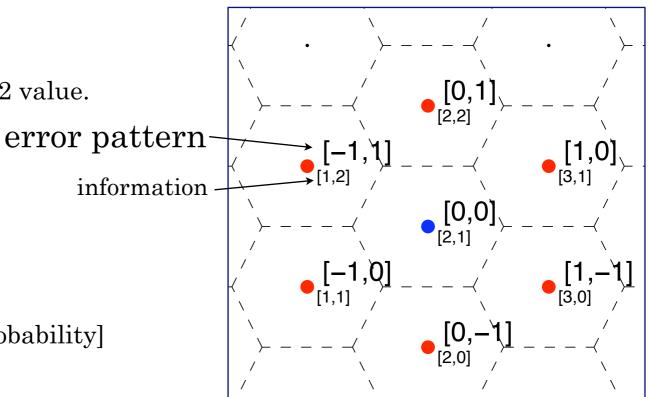
Proposed Encoding



Reed-Solomon codeword

- Block of 8 cells corresponds to 1 Reed-Solomon symbol
- \succ Use an (*N*,*K*) RS code
- > Use a RS code over GF(2⁸) 8 bits symbols
 - Each block has $\log_2(V^8)$ information bits,
 - BUT, is only protected by 8 bits from the Reed-Solomon codeword
 - SO, the modulo-2 information value is the Reed-Solomon symbol

Resolving Errors: Decoding With Only Mod-2 Error Pattern



A hex lattice point has 6 neighbors.

uence	mod 2 error pattern	true error pattern
	[0, 1]	$\begin{matrix} [0,1] \\ [0,-1] \end{matrix}$
except for sign)	[1,0]	$[1,0] \ [-1,0]$
	[1,1]	$[-1,1] \ [1,-1]$

Decoding sequence:

- 1. Perform lattice-by-lattice decoding.
- 2. Perform Reed-Solomon decoding on mod 2 value.
- 3. Some RS symbols will be corrected.
- 4. Resolve any errors

Resolve errors to recover original data:

- Lattice error causes RS symbol error: transmitted point (blue) will be decoded as a neighboring point (red) [with high probability]
- Correct RS symbol is known
- > Therefore, information mod 2 known.
- Find true error pattern in lookup table.

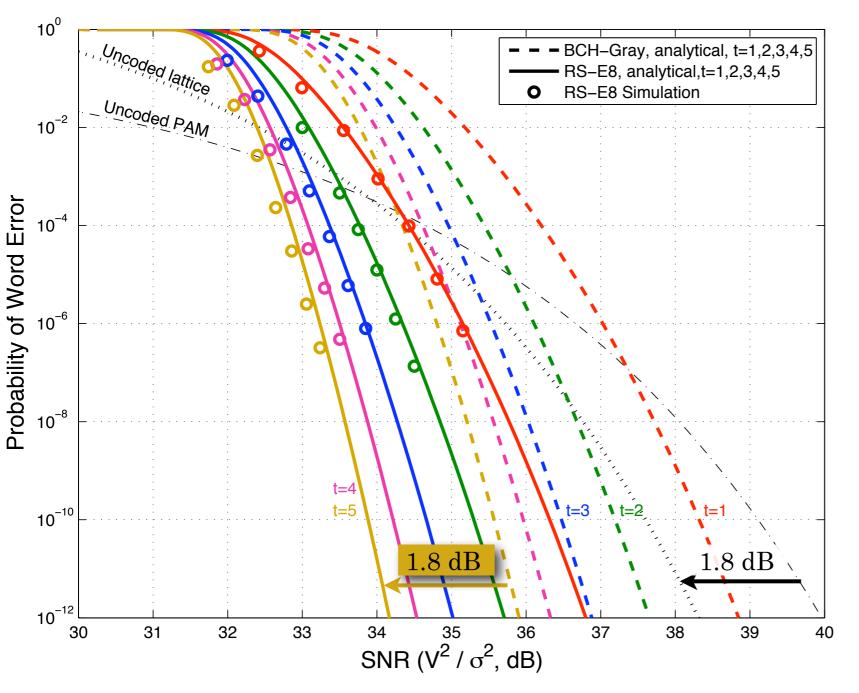
There are two candidate error patterns

Winner: shortest Euclidean distance to received sequence

For E8, $GF(2^8)$ symbol distinguishes 240 neighbors, (except for sign)

- Lattice decoding errors are "bursty"
- \succ RS with one symbol per lattice point is well suited
- \succ GF(2⁸) is well-suited for E8 lattice

Numerical Results



Brian Kurkoski, University of Electro-Communications

Compared:

- > AWGN noise model
- ≻ BCH & Gray-coded PAM
- ≻ Proposed E8 & RS

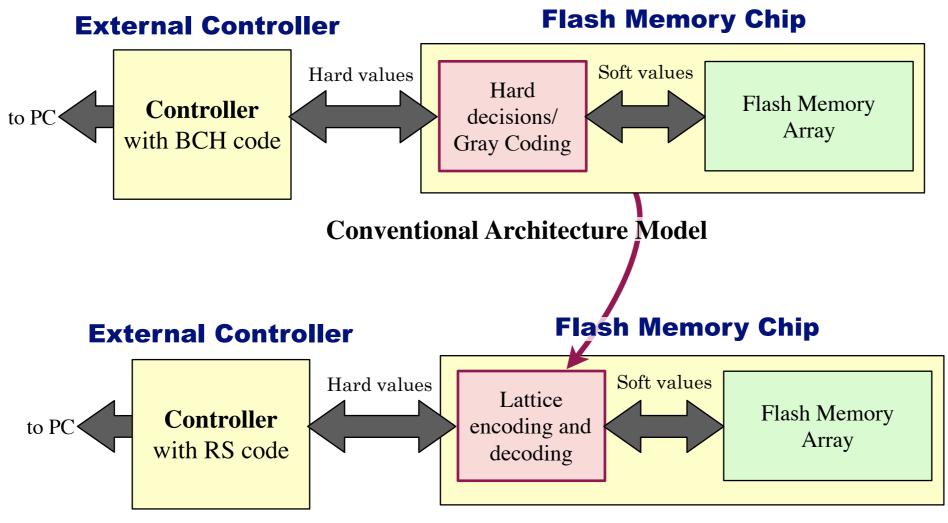
Code rates:
2.95~2.99 bits/cell
(for raw 3 bit/cell)

Uncoded E8 lattice has 1.8 dB gain over uncoded PAM This gain is preserved when the codes are added

Truth in advertising:

- E8 is a soft-input algorithm
- ▹ PAM is hard decisions
- ≻ Not unfair

Flash Memory: Architectural Considerations



Soft-Input Architecture Model

- Current architectures separate flash memory chip and ECC
 - very difficult to implement soft-input LPDC decoding, etc.
- > Hybrid solution: low-complexity soft-input lattice decoding on chip
 - hard decision Reed-Solomon ECC in external controller.

Brian Kurkoski, University of Electro-Communications

Discussion

Proposed E8 lattices for coded modulation flash memories using lattices

> QAM/convolutional codes for memories [Lou Sundberg 2000] [Sun et al 2007] Reed-Solomon codes for error correction

- > QAM/Reed-Solomon codes [Laneman Sundberg 2001]
- > E8 lattice with convolutional codes [Calderbank Sloane 1986]

Benefits:

- ≻ Gained about 1.8 dB
- RS decoding is lower complexity than flash memory BCH decoding
- > Used soft-input lattice decoding
- "architecture friendlier" than full soft-input decoding algorithms:
 - LDPC codes
 - Koetter-Vardy RS decoding

"Reptiles" M.C. Escher

Decoding Complexity for E8 Lattice

Two algorithms exist to find the E8 lattice point closest to $\mathbf{x} \in \mathbb{R}^8$.

Coset Decoding (about 104 steps) $f(\mathbf{x})$ is \mathbf{x} rounded to nearest integer. $g(\mathbf{x})$ has least reliable position rounded "wrong way."

$$\mathbf{y}_1 = \begin{cases} f(\mathbf{x}) & \text{if } \sum f(\mathbf{x}) \text{ is even} \\ g(\mathbf{x}) & \text{otherwise} \end{cases} \qquad \mathbf{y}_2 = \begin{cases} f(\mathbf{x} + \frac{1}{2}) & \text{if } \sum f(\mathbf{x} + \frac{1}{2}) \text{ is even} \\ g(\mathbf{x} + \frac{1}{2}) & \text{otherwise} \end{cases}$$

If $||\mathbf{x} - \mathbf{y}_1||_2 < ||\mathbf{x} - \mathbf{y}_2||_2$ then output \mathbf{y}_1 . Otherwise, output \mathbf{y}_2 .

"Construction A" Decoding (about 72 steps)

- 1. Find y and $z \in \mathbb{Z}^8$ such that x = y 4z and $-1 \le y_i < 3$.
- 2. S denotes the set of i for which $1 < y_i < 3$. For $i \in S$, replace y_i by $2 y_i$.
- 3. Decode \mathbf{y} as a first-order Reed-Muller code of length 8. Output \mathbf{c} .
- 4. For $i \in S$, change c_i to $2 c_i$. Output $\mathbf{c} + 4\mathbf{z}$.