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Flash Memories 

2

To re-write a memory, must first erase
With each cycle, the error rate increases
•Rewriting: Write-Once Memory (WOM) codes

Flash Memories Wear Out
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Store charge on transistors called “cells.”  Increasing data storage density:
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Binary, write once-memory:  0 → 1 allowed; 1 → 0 is illegal
How to write two times?  Time sharing Rate = 1/2
Toy example for 2 writes:
3 storage “cells”, 2 bits of information
Example: store 10, then store 00

Rate 2/3 > 1/2

Codes for Write Once Memories
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Lattice Strategies for WOM Codes

Lattices are codes over real numbers
Lattices have inherent error-correcting capability
Numerous WOM code designs
Many do not have error-correction capability

Lattice-based WOM code also corrects errors
Hyperbolic lattice WOM Codes — Best rate, 
                                                     hard to encode

Cubic Lattice WOM — Easy to encode
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In This Talk...

1. Connection between dirty-paper coding and WOM codes
“known interference” = “current state of WOM”
connect with lattice strategies of Erez et al 

2. Propose WOM code inspired by dirty paper coding
Specific code construction 
using coset select bits to increase the average rate
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Known interference/
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Data for 2nd write
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Dirty Paper Coding for AWGN Channel
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“Known interference s does not reduce capacity”
Cannot pre-subtract s. Violates power constraint
[Gelfand Pinsker, 1980] 
[Costa, 1983]
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Dirty Paper Coding Using Lattices [Erez et al]

Lattice code Λ with power constraint Λ0

Information u ∈ Λ, interference s
Transmit u – s mod Λ0 
y = u – s mod Λ0 + s is received, 
Decoder computes  y mod Λ0

Simple explanation captures main idea:
Ignored lattice inflation and random dither.
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Dirty Paper Code for Rewriting Flash

Flash memories:
Power restriction is [0,V]
Rewrite memory
Values can only increase

1st write: “base codebook”
Shaping region B
2nd, 3rd,... : apply dirty-paper coding
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Dirty Paper WOM
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u
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u – s mod B 

User data is u
Current state of memory s “known interference”
Pre-subtract interference. Transmitted codeword:

u – s mod B
which is always positive.
Add this to s (encoder explicitly adds)

“transmit” x = s + (u – s mod B)
Decoding in absence of noise:

u = x mod B
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Dirty Paper WOM: Comment

Warning
“Interference does not reduce capacity”
does not apply to WOM,
because the power constraint is different.
Absolute constraints on:

s    and     (u – s mod B)
due to the [0,V] restriction of flash cells.
Benefit
Transmitted codeword is positive.  Apply to:
optical communications, power-detection wireless, etc.   
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Code with coset select bits

Evaluate the number of writes
Bad result!
The code is not “shaped”
Solution: Break the base code into cosets
Replace information bits with 
      “coset select” bits.
Reduces information rate/increases # of writes
Choose the coset which maximizes future writes

Volume is approximation of number of remaining points
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Mapping should be invertible
Rate-1 convolutional codes improved average number of writes
Recursive codes further improved

Mapping from information to lattice points
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Base Code Only — Average Number of Writes

E8 lattice best-known lattice in 8 dim.
Evaluate:
2, 3, 4 and 5 bits/cell
0,2,4,8,16,... cosets
Increasing # cosets, increases average 
number of writes

Compared to Globecom 2010 code:
Is linear 
Has roughly equal performance
Adaptable code rates
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Dirty Paper WOM Code

“Dirty Paper” inspired system
Base code-only has V = M
DPC has V = 2M
Two systems have similar average 
number of writes

14

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

Av
er

ag
e 

N
um

be
r o

f W
rit

es

Code Rate R

V = 8 V = 16 V = 32

base code only

DPC



/16Brian M. Kurkoski, JAIST

Complexity Comparison
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DPC Complexity

base code only
complexity 1248
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Choose coset to maximize:

Searching over all cosets is source of 
complexity.

Complexity ~ 2C ,  
   C = number of coset bits

Cannot achieve highest rates, 
but similar average number of 
writes, but the DPC system has 
much lower complexity
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Discussion

1. Showed a connection between dirty paper coding and WOM codes
“known interference does not reduce capacity” does not apply
But, lattice strategies do apply.
Interference and positive valued codewords: WOM, optical, power detection

2. Lattice scheme based on dirty paper WOM:
Added “coset select bits” to improve the average number of writes
Main problem was mapping information to lattice points
Dirty paper WOM has lower complexity than base code.
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Data for 2nd write


