An Introduction to Physical Layer Network Coding: Lattice Codes as Groups

Brian M. Kurkoski Japan Advanced Institute of Science and Technology

北弦瑞科学技術大学院大学

September 11, 2015 2015 ソサイエティ大会 Sendai, Miyagi, Japan

Cooperative Wireless Networks

Wireless networks must deal with interference & noise

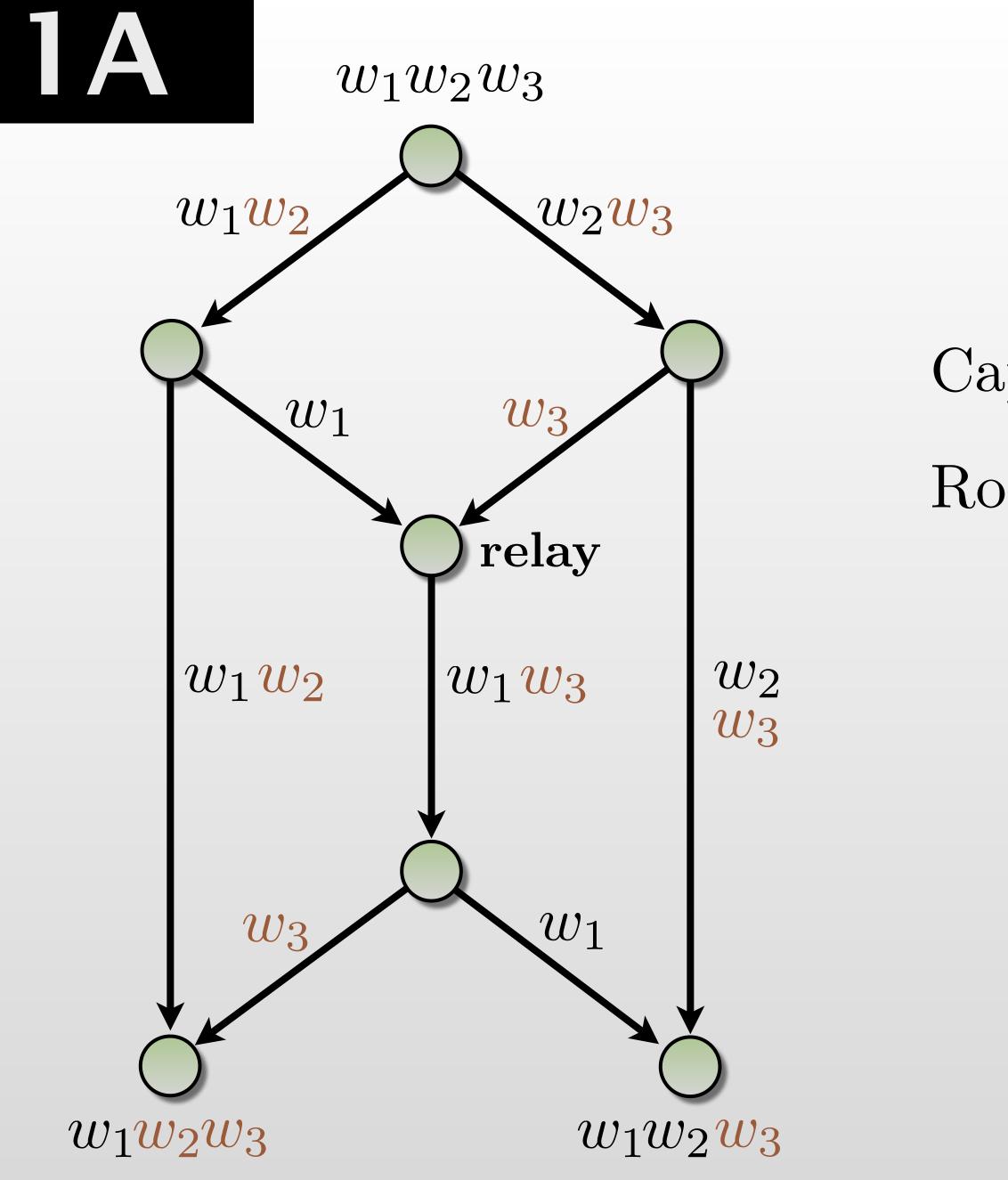
Cooperative Wireless Networks

Wireless networks must deal with interference & noise

- 1 Motivation for physical-layer network coding **1A Network Coding**
 - **1B Physical Layer Network Coding**
- **2 Nested Lattice Codes** 2A Quotient Groups
 - **2B Lattice Quotient Groups**
 - **2C Nested Lattice Codes**
- **3 Encoding and Isomorphisms in Nested Lattice Codes** 3A Self-similar Voronoi codes

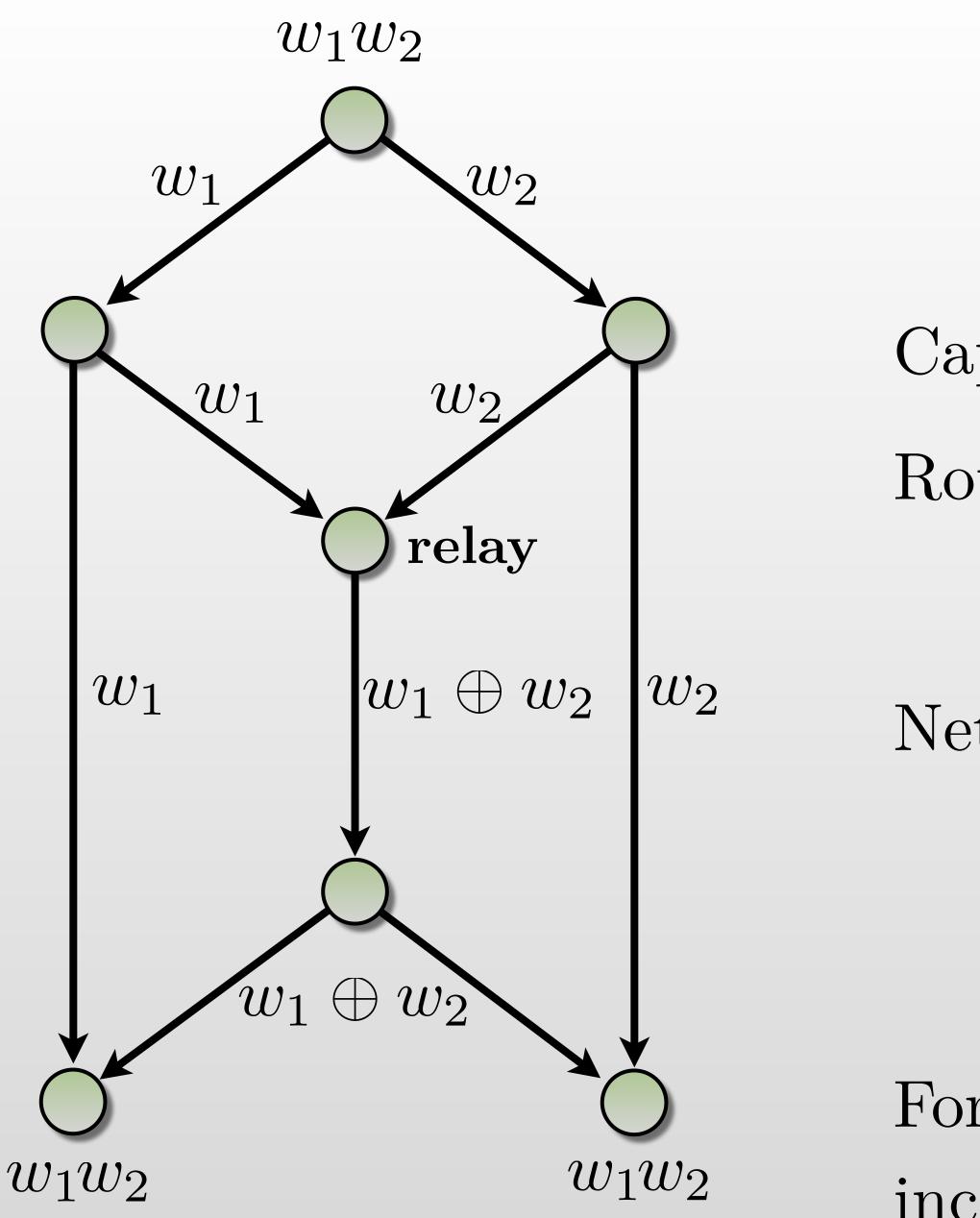
<u>3B Non-Self-similar Vornoi Codes</u>

Overview



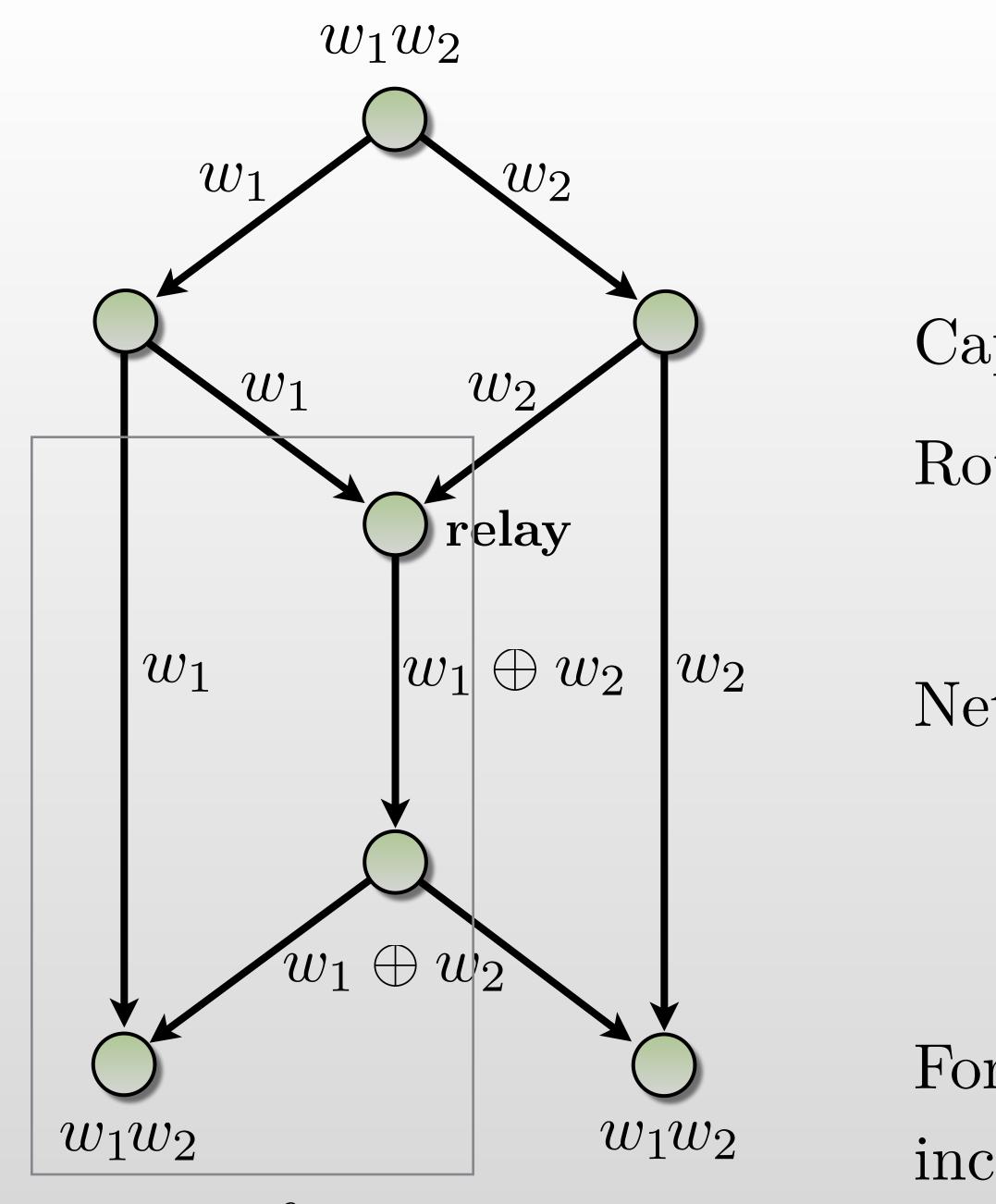
Routing vs. Network Coding

- Capacity: max rate from source to destination
- Routing
 - Capacity = 3/2



Routing vs. Network Coding

- Capacity: max rate from source to destination
- Routing
 - Capacity = 3/2
- Network Coding
 - Internal nodes perform linear operations
 - Capacity = 2
- Forwarding combinations of messages can increase capacity

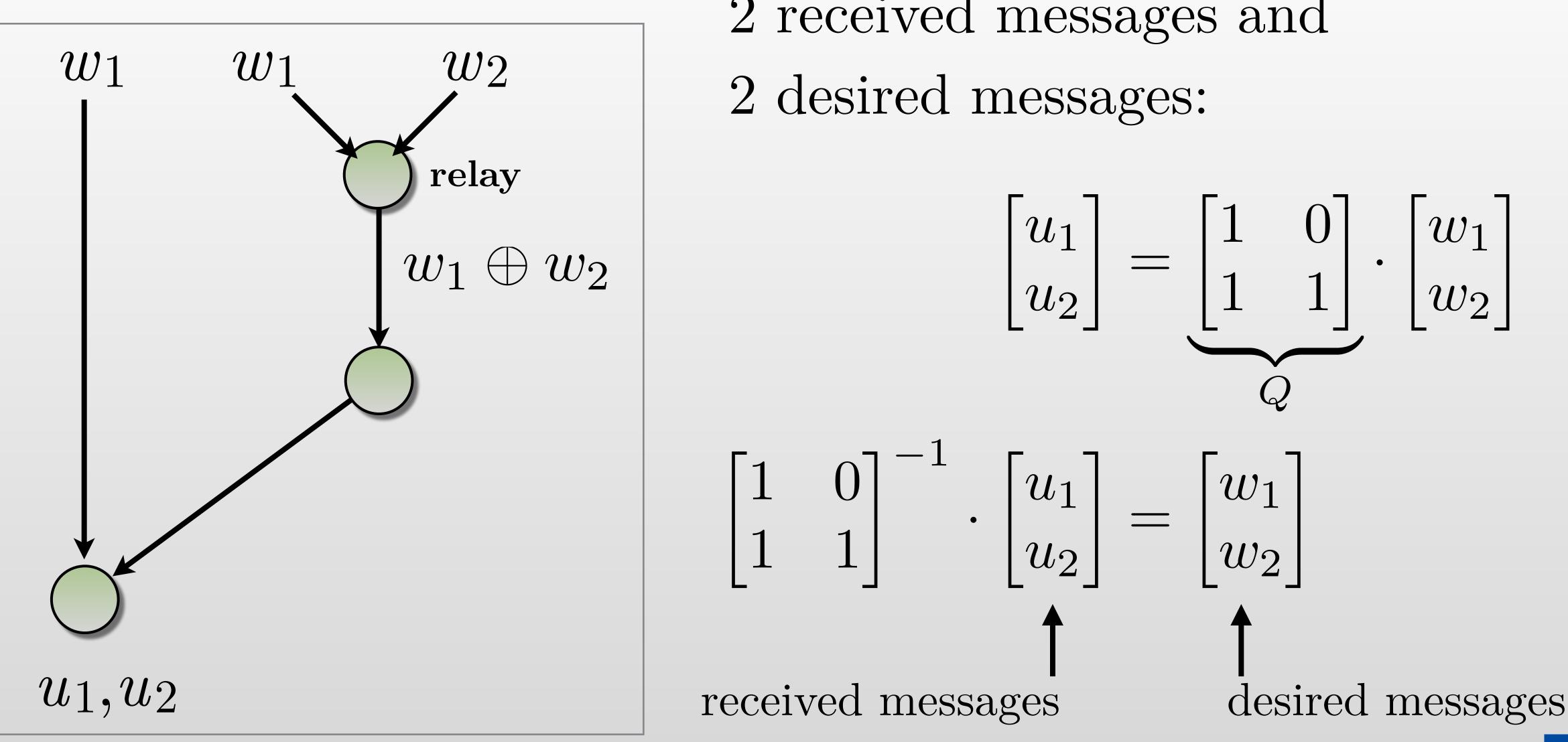


matrix form...

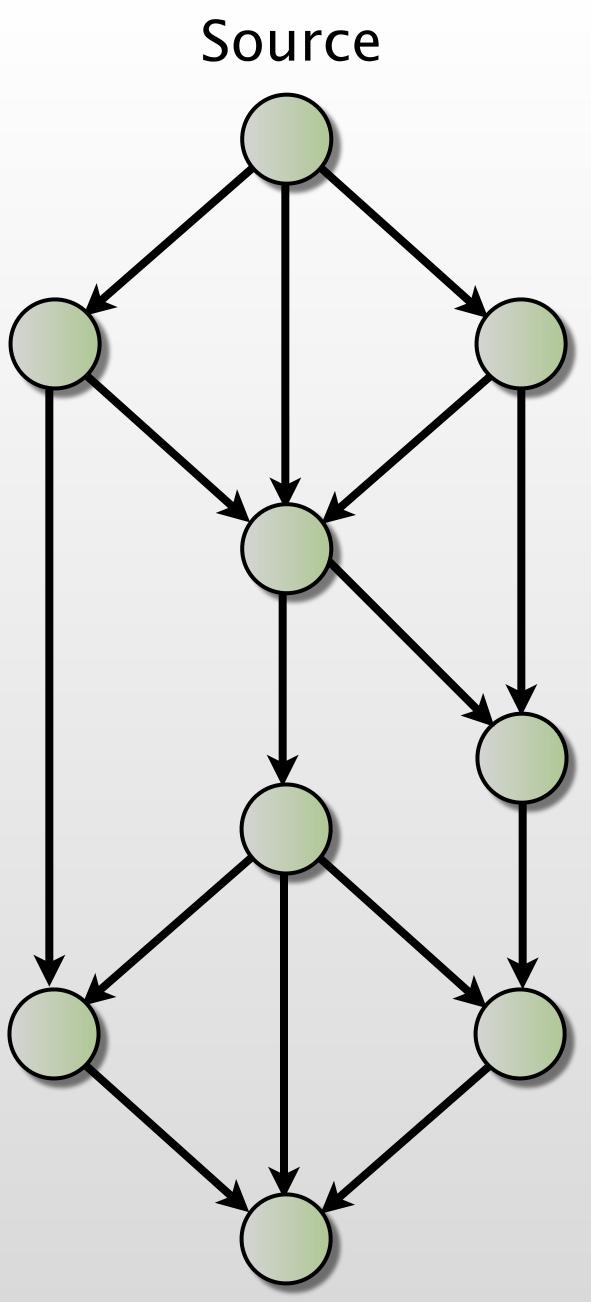
Routing vs. Network Coding

- Capacity: max rate from source to destination
- Routing
 - Capacity = 3/2
- Network Coding
 - Internal nodes perform linear operations
 - Capacity = 2
- Forwarding combinations of messages can increase capacity

Matrix Form Recovery of Messages



2 received messages and



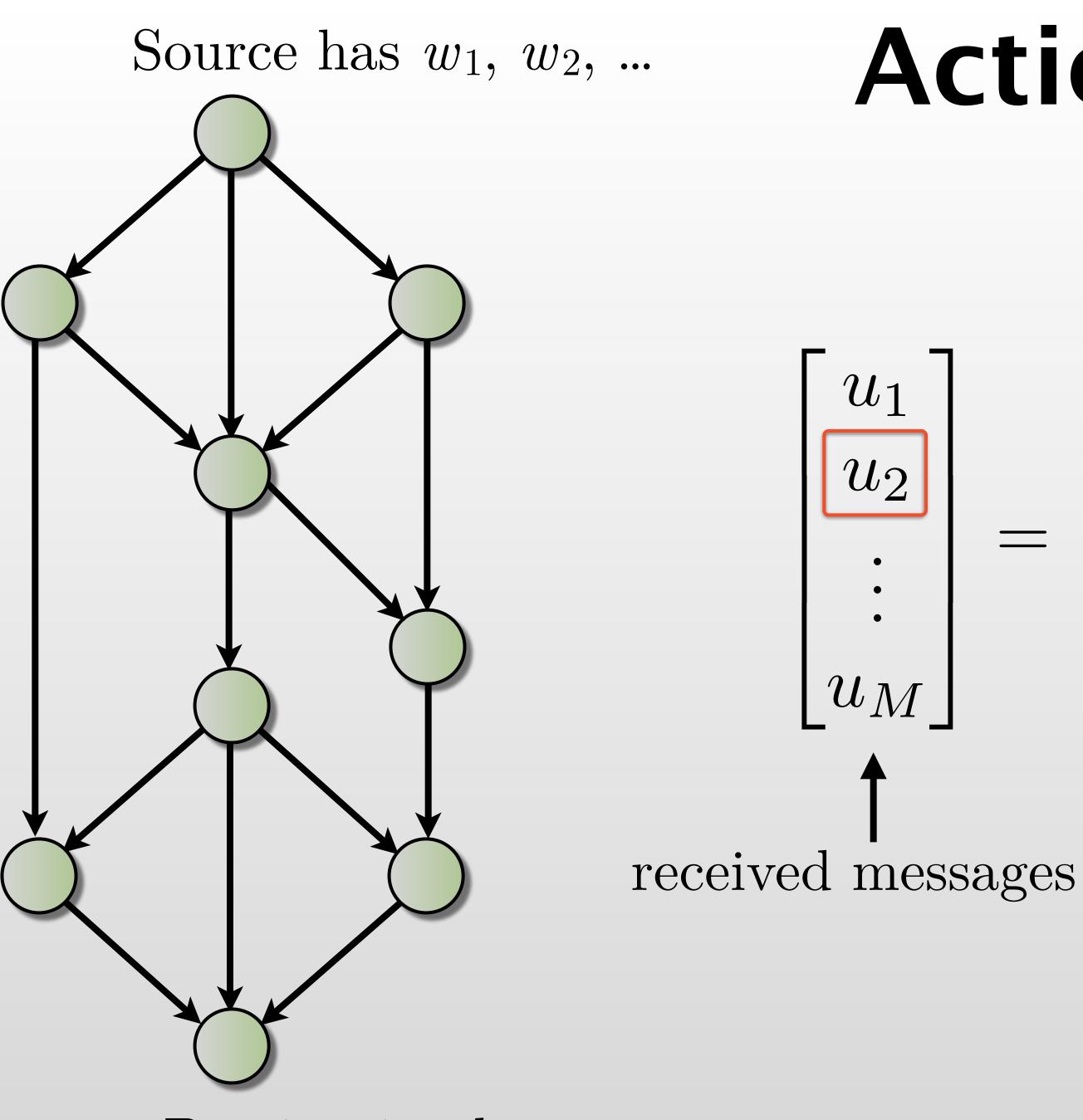
Destination

Generalized Network Coding

- If Q has rank L, then all messages w recoverable How to design Q?
- Algorithmic approach (Jaggi et al.)
 - Success if field size p > number of destinations
- Random approach (Kotter and Medard. Ho et al.) Probability of valid solutions increases with p

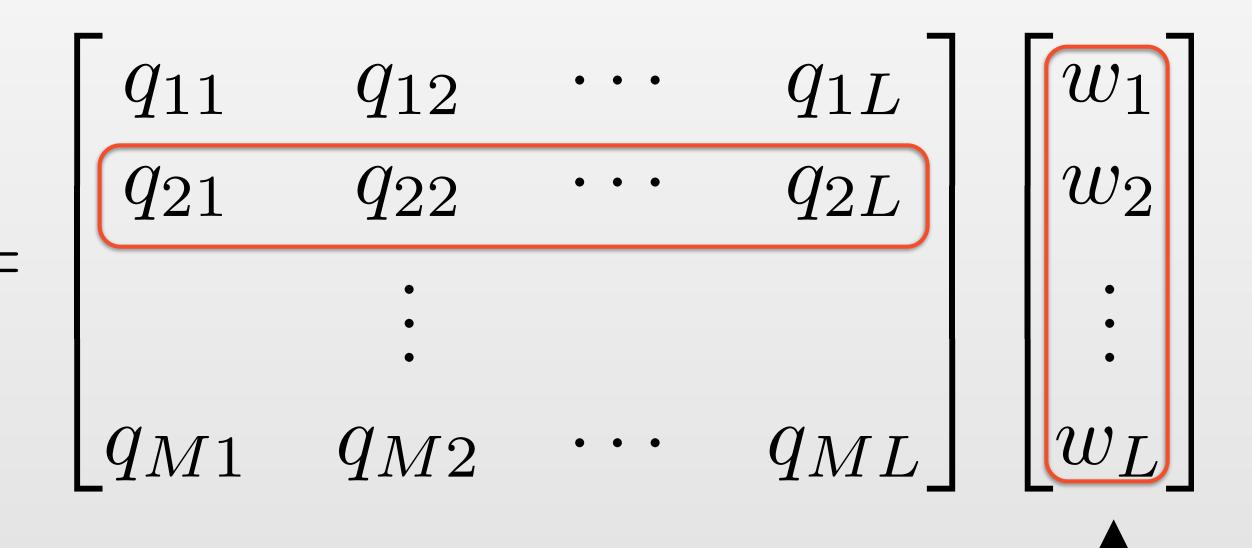
w, u, q in a field. Allow relay to multiply by q

q_{11}	q_{12}	• • •	q_{1L}
q_{21}	q_{22}	• • •	q_{2L}
	•		
Q_{M1}	q_{M2}	• • •	q_{ML}

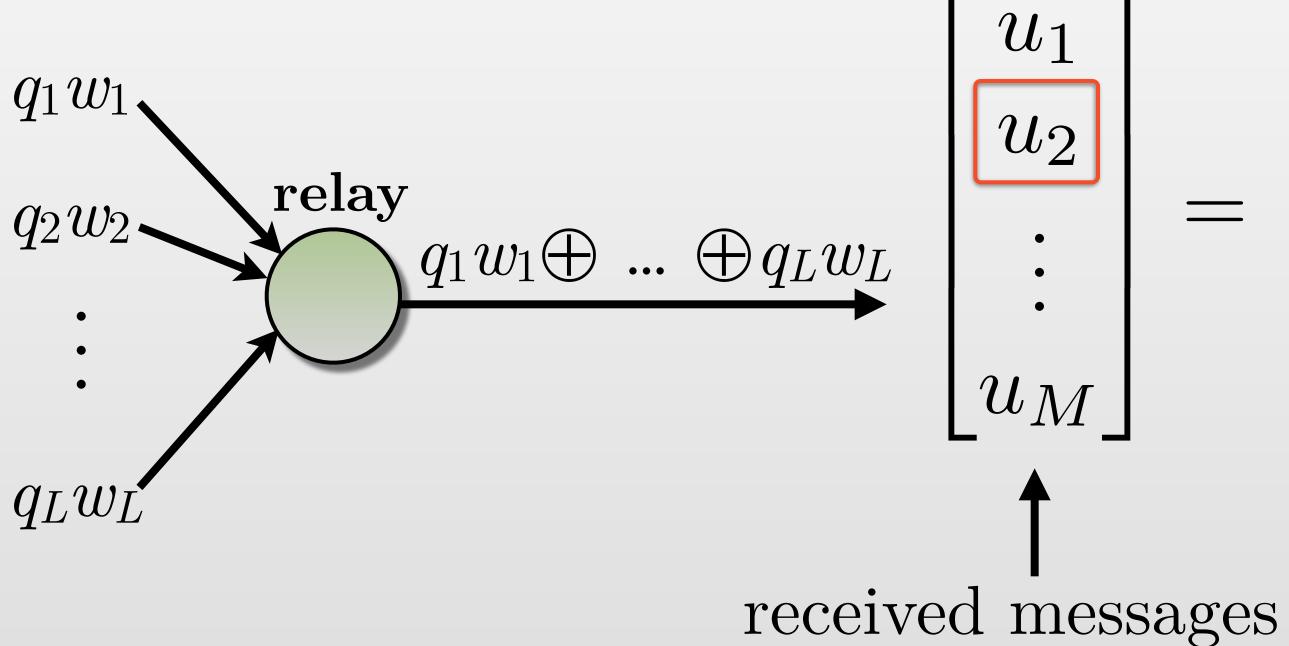


Destination has $u_1, u_2, ...$

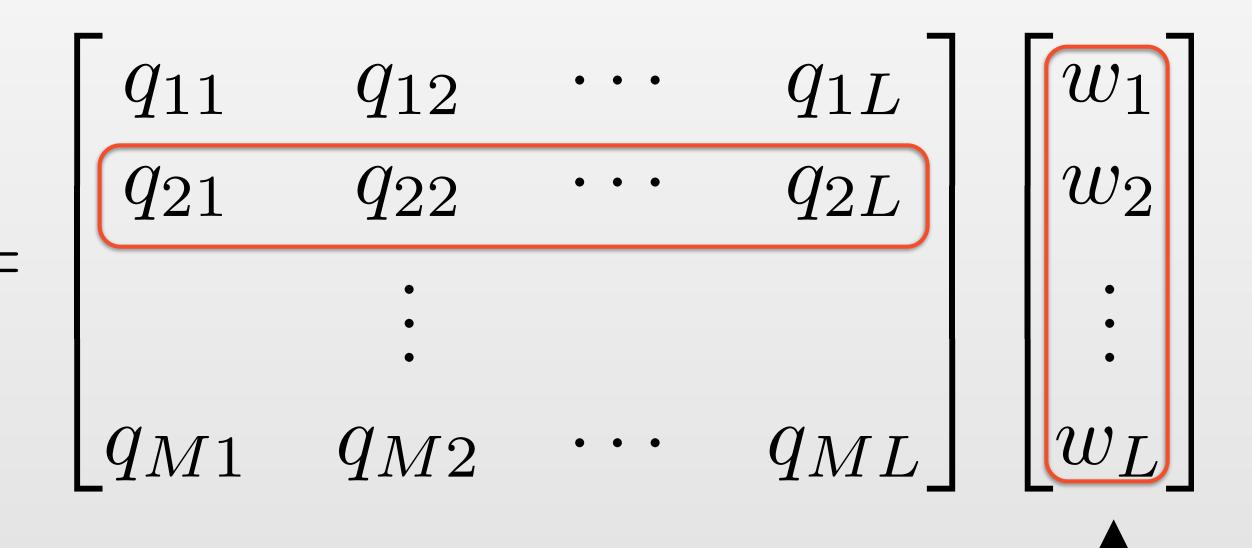
Action of One Row A "Relay"



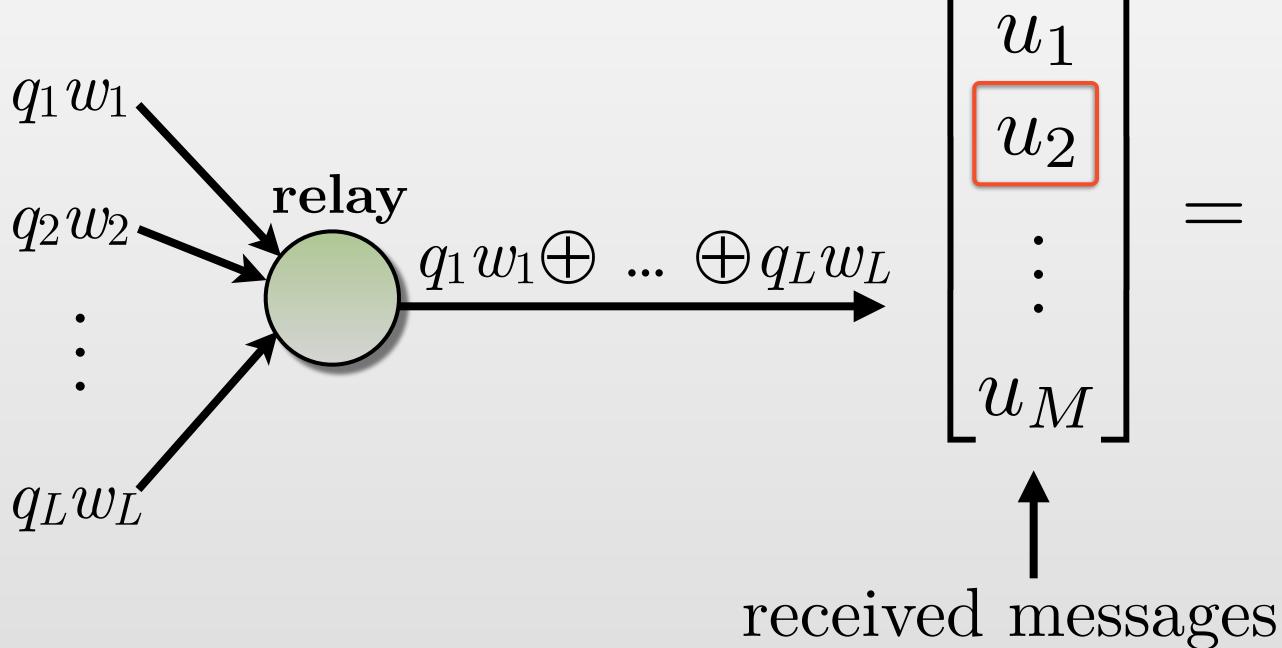
desired messages



Action of One Row A "Relay"

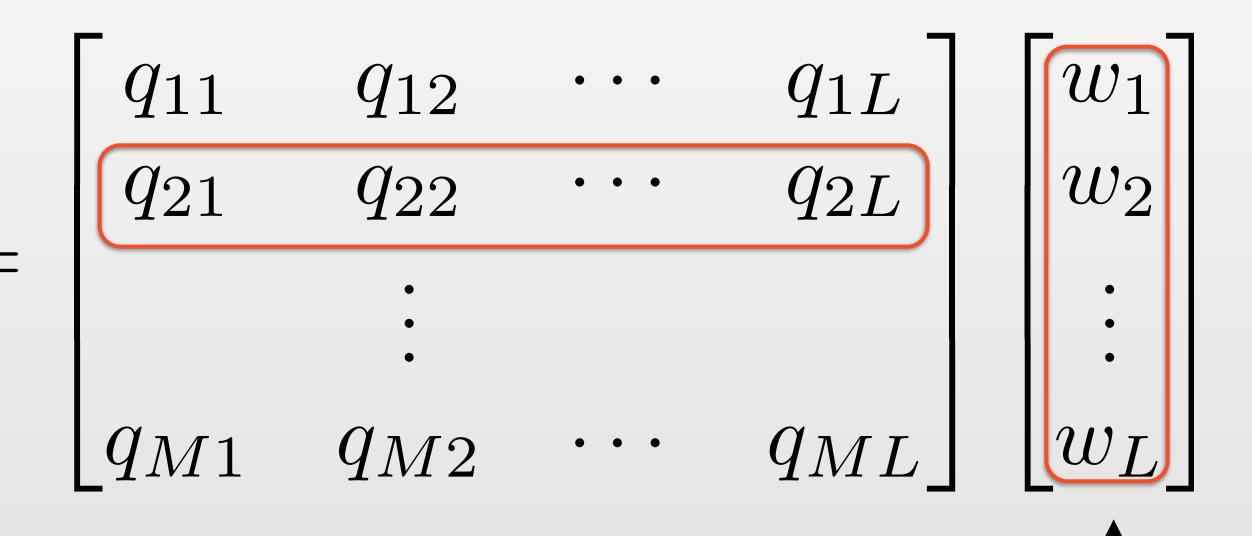


desired messages



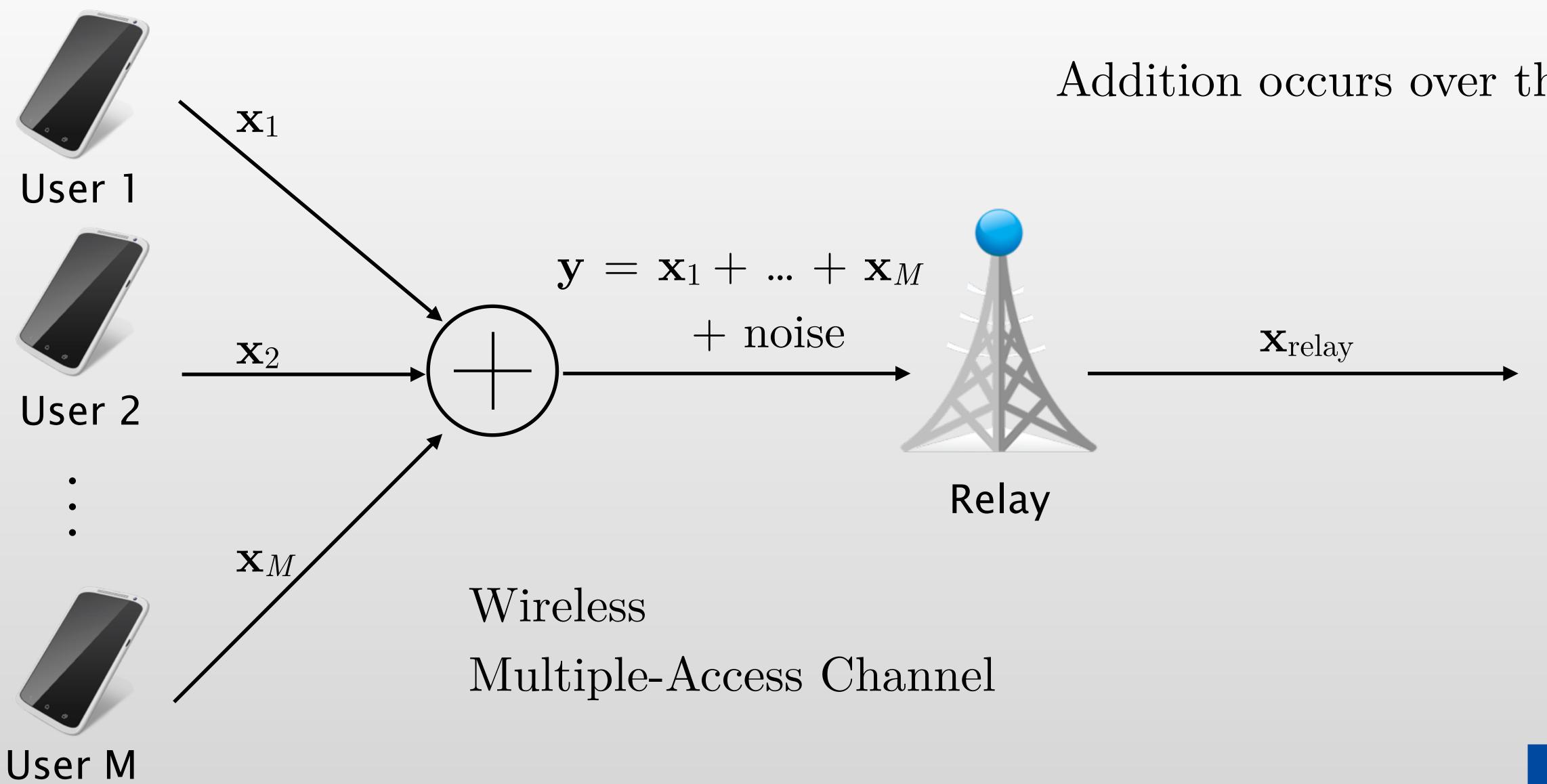
What if the relay is wireless...?

Action of One Row A "Relay"



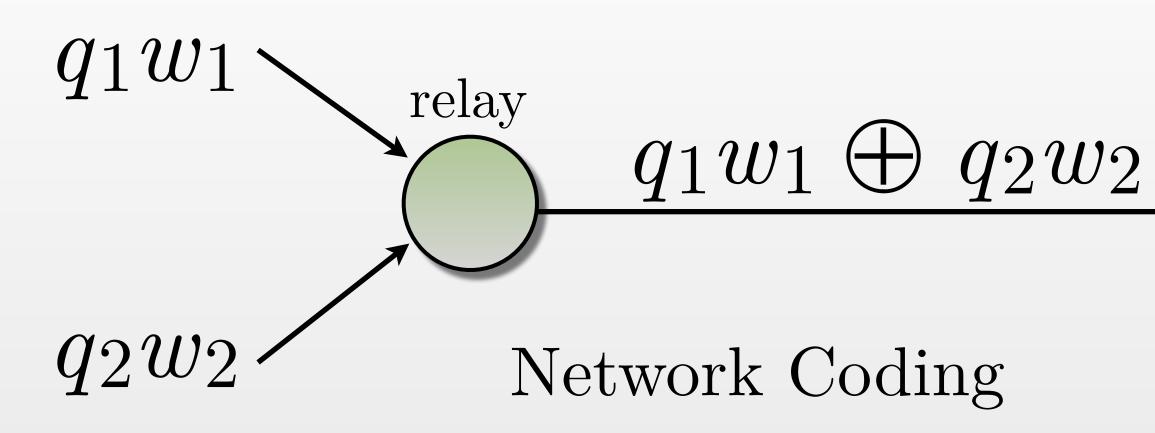
desired messages

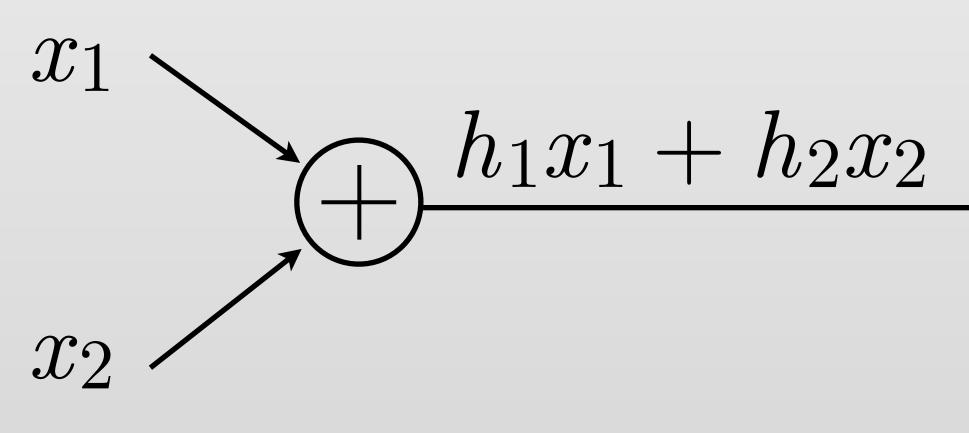
PLNC = Physical Layer Network Coding 1B



Addition occurs over the air

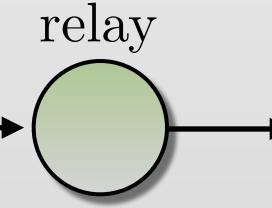
Network Coding vs. PLNC



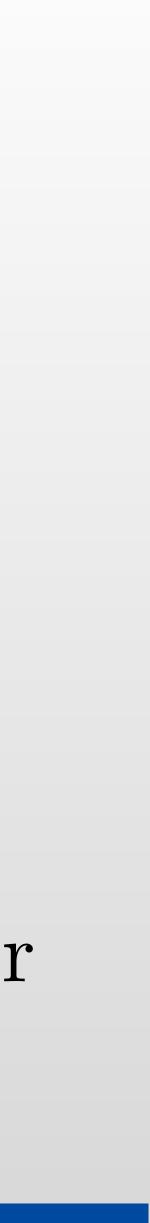


Physical Layer Network Coding

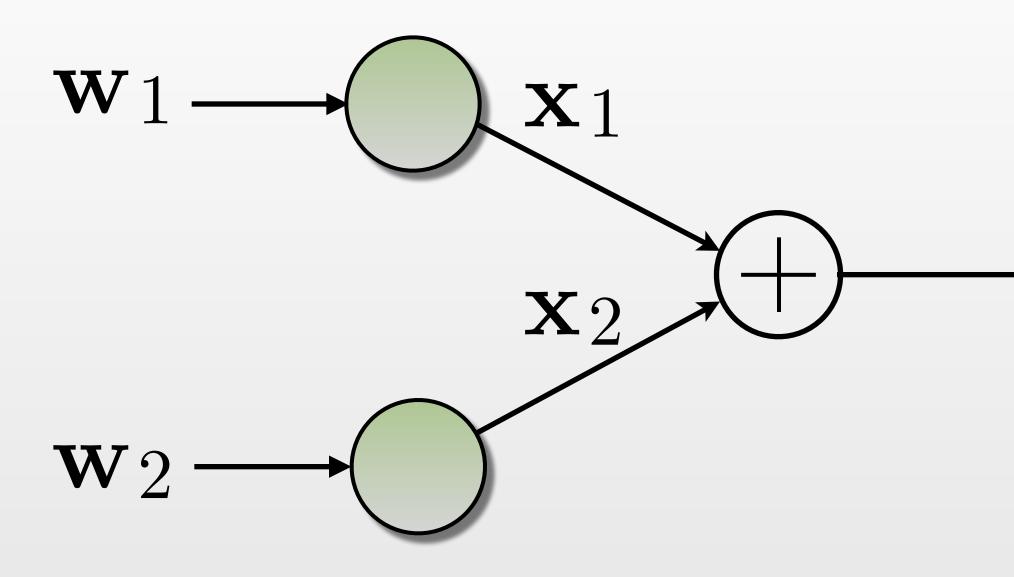
Network Coding: relay adds incoming messages



PLNC: addition over the air fading plays a role combat noise



PLNC with Error-Correction



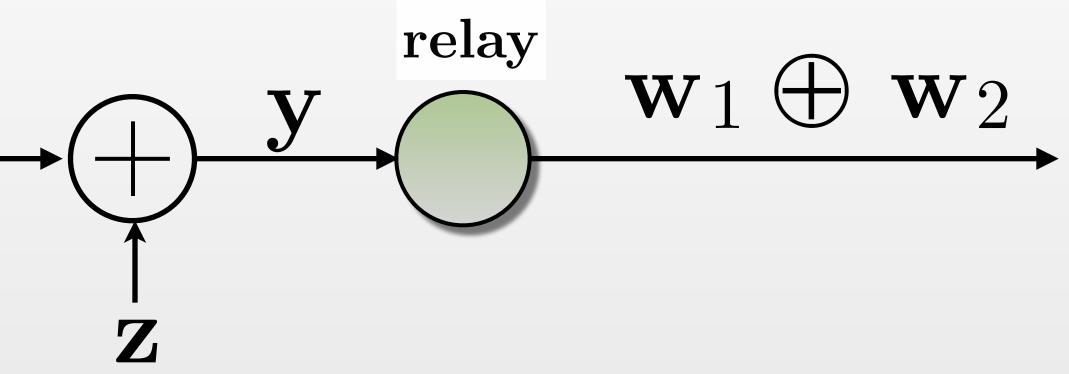
Perform error-correction coding on vectors:

$$\mathbf{x}_i = \operatorname{Enc}(\mathbf{w}_i)$$

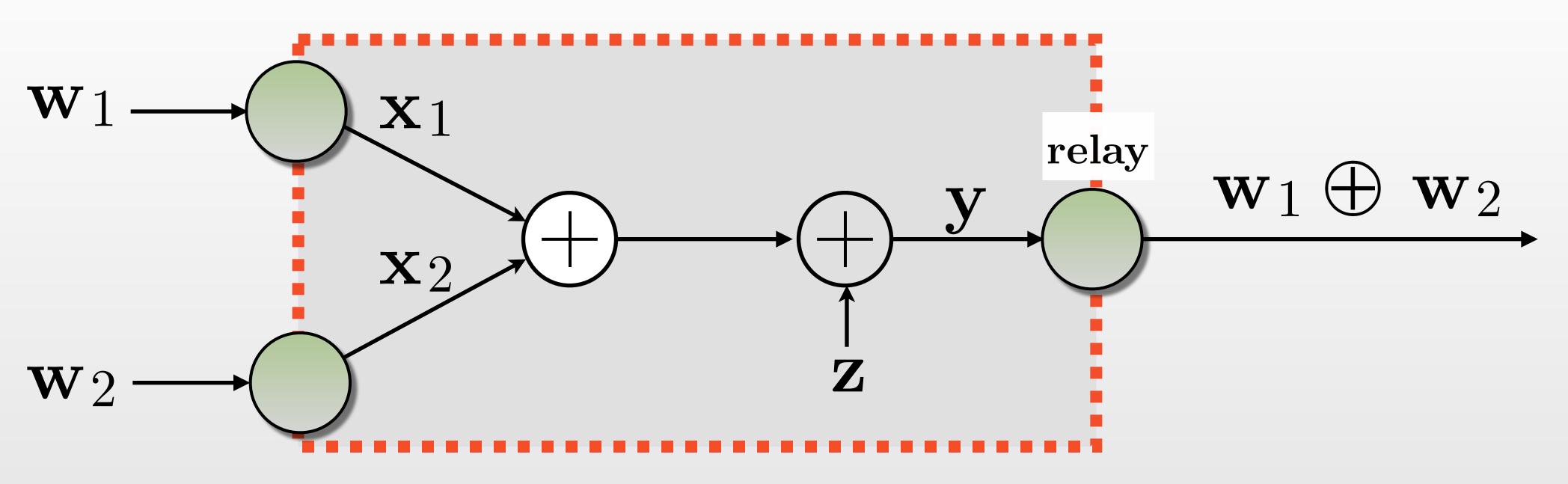
Relay performs two functions:

 $\mathbf{x}_1 + \mathbf{x}_2 = \text{Decoder}(\mathbf{y})$

 $\mathbf{w}_1 \oplus \mathbf{w}_2 = \operatorname{Enc}^{-1}(\mathbf{x}_1 + \mathbf{x}_2)$



PLNC with Error-Correction



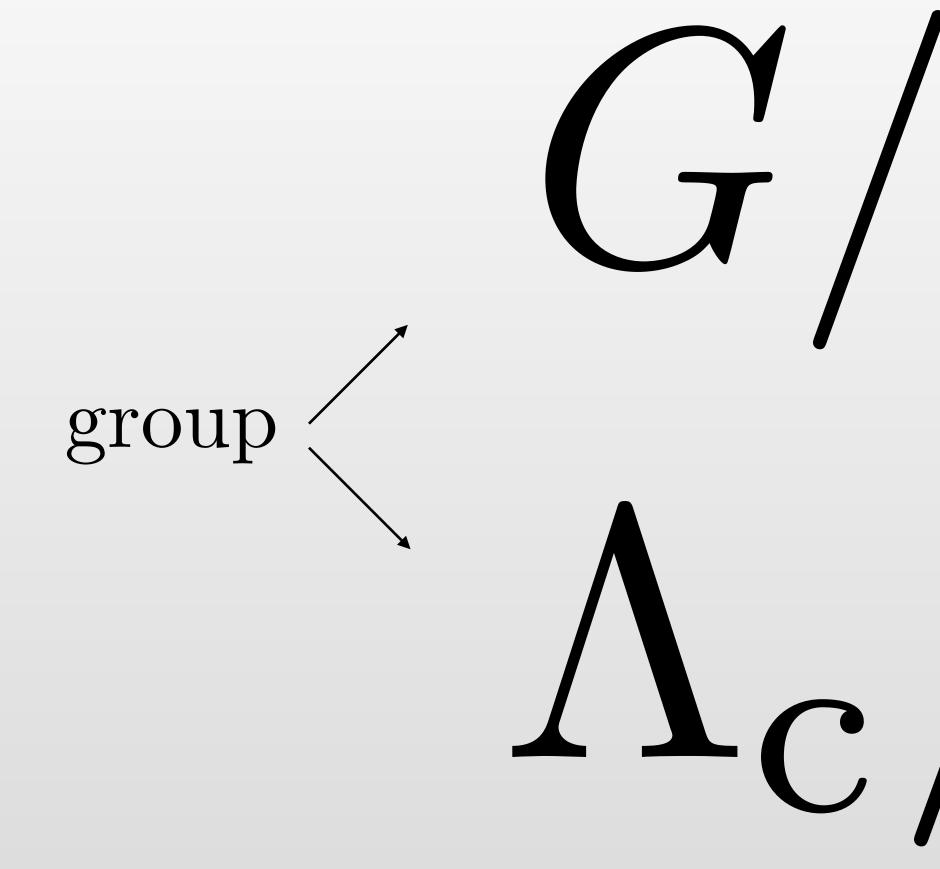
Powerful idea:

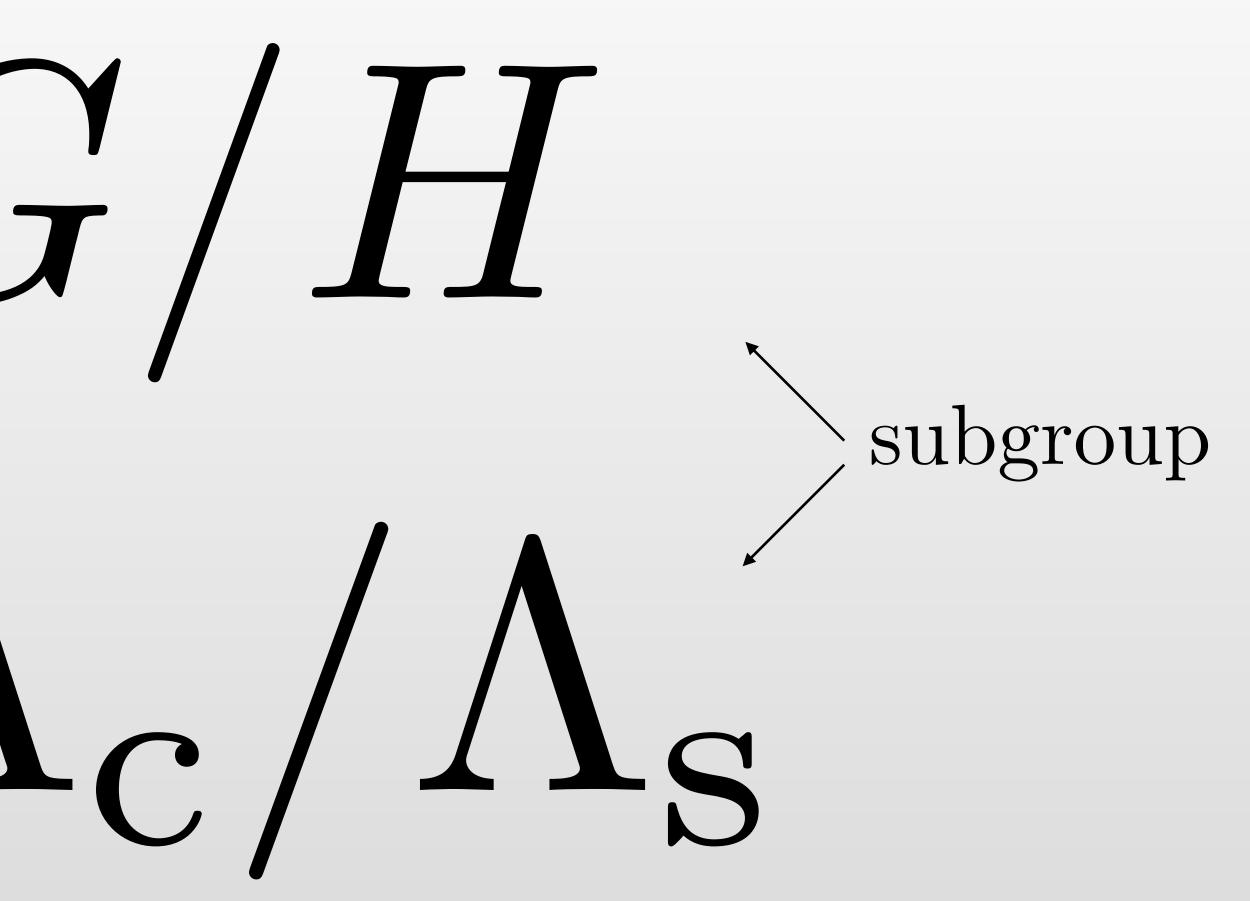
- Relay only eliminates noise
- Relay does not need to separate inference
- Converted a noisy network into a noiseless network

We Need A <u>Code</u> to Perform PLNC

Code must correct errors, for noisy wireless channels • Code must satisfy a power constraint. Code must form a group over addition so addition over the channel makes sense. <u>Code</u> must have a group isomorphism: $Enc(\mathbf{w}_1 \oplus \mathbf{w}_2) = \mathbf{x}_1 + \mathbf{x}_2$, so network coding can be performed These properties are satisfied by <u>nested lattice codes</u>.

Quotient Groups





Definition of a Coset

the coset of H in G containing a.

Quotient Groups

Let G/H be the set of all cosets of H in G, that is:

quotient group.

Definition Let G be a group and let H be a subgroup of G. For any $a \in G$, the set $a + H = \{a + H \mid h \in H\}$ is called

- $G/H = \{a + H | a \in G\}$
- Note that G/H is a set of sets. The set G/H is called a

Example

- Integers \mathbb{Z} are a group under addition
- $4\mathbb{Z}$ is a subgroup: $4\mathbb{Z} \subset \mathbb{Z}$.
- The quotient group $\mathbb{Z}/4\mathbb{Z}$, has four sets:

 $0 + 4\mathbb{Z} = \{\dots, -8, -4, 0, 4, 8, \dots\}$ $1 + 4\mathbb{Z} = \{\dots, -7, -3, 1, 5, 9, \dots\}$ $2 + 4\mathbb{Z} = \{\dots, -6, -2, 2, 6, 10, \dots\}$ $3 + 4\mathbb{Z} = \{\dots, -5, -1, 3, 7, 11, \dots\}$ The quotient group is closed under addition:

	$0+4\mathbb{Z}$	$1+4\mathbb{Z}$	$2+4\mathbb{Z}$	3 +
$0+4\mathbb{Z}$				
$1+4\mathbb{Z}$	$0 + 4\mathbb{Z}$ $1 + 4\mathbb{Z}$ $2 + 4\mathbb{Z}$	$2+4\mathbb{Z}$	$3+4\mathbb{Z}$	0 +
$2+4\mathbb{Z}$	$2+4\mathbb{Z}$	$3+4\mathbb{Z}$	$0+4\mathbb{Z}$	1 +
$3+4\mathbb{Z}$	$3+4\mathbb{Z}$	$0+4\mathbb{Z}$	$1+4\mathbb{Z}$	2 +

Coset Leader (Coset Representative)

A coset leader is a single representative element from each coset.

Continue $\mathbb{Z}/4\mathbb{Z}$ example:

Coset leaders: $\{0, 1, 2, 3\}$

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Coset leaders: $\{-2, -1, 0, 1\}$

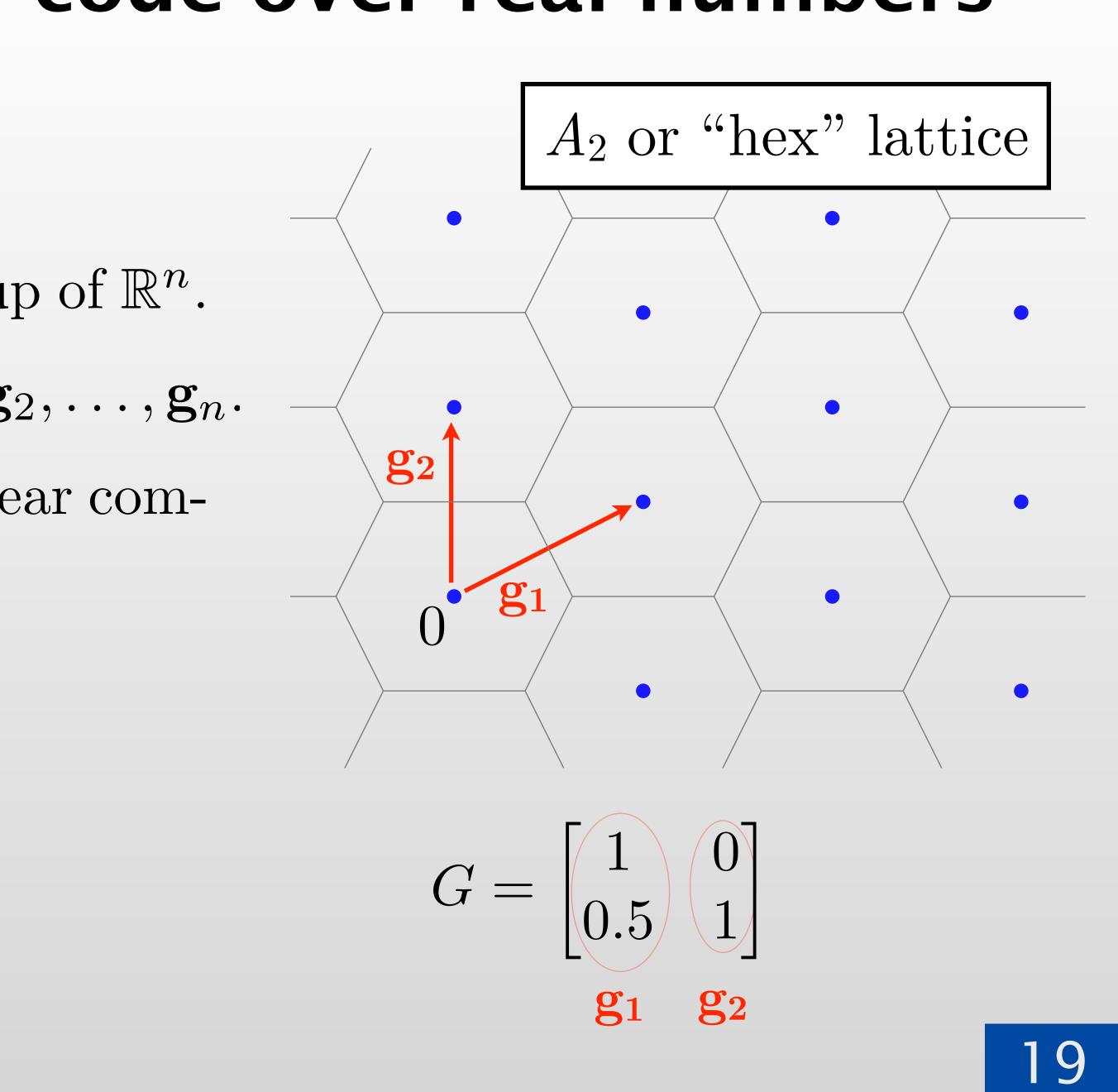
+	0	1	-2	-1
0	0	1	-2	-1
	1		-1	0
-2	-2	-1	0	1
-1	-1	0	1	-2

Lattice: Linear code over real numbers

A lattice Λ is a linear additive subgroup of \mathbb{R}^n . Λ may be represented by a basis of $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_n$. A lattice point $\mathbf{x} \in \Lambda$ is an integral, linear combination of the basis vectors:

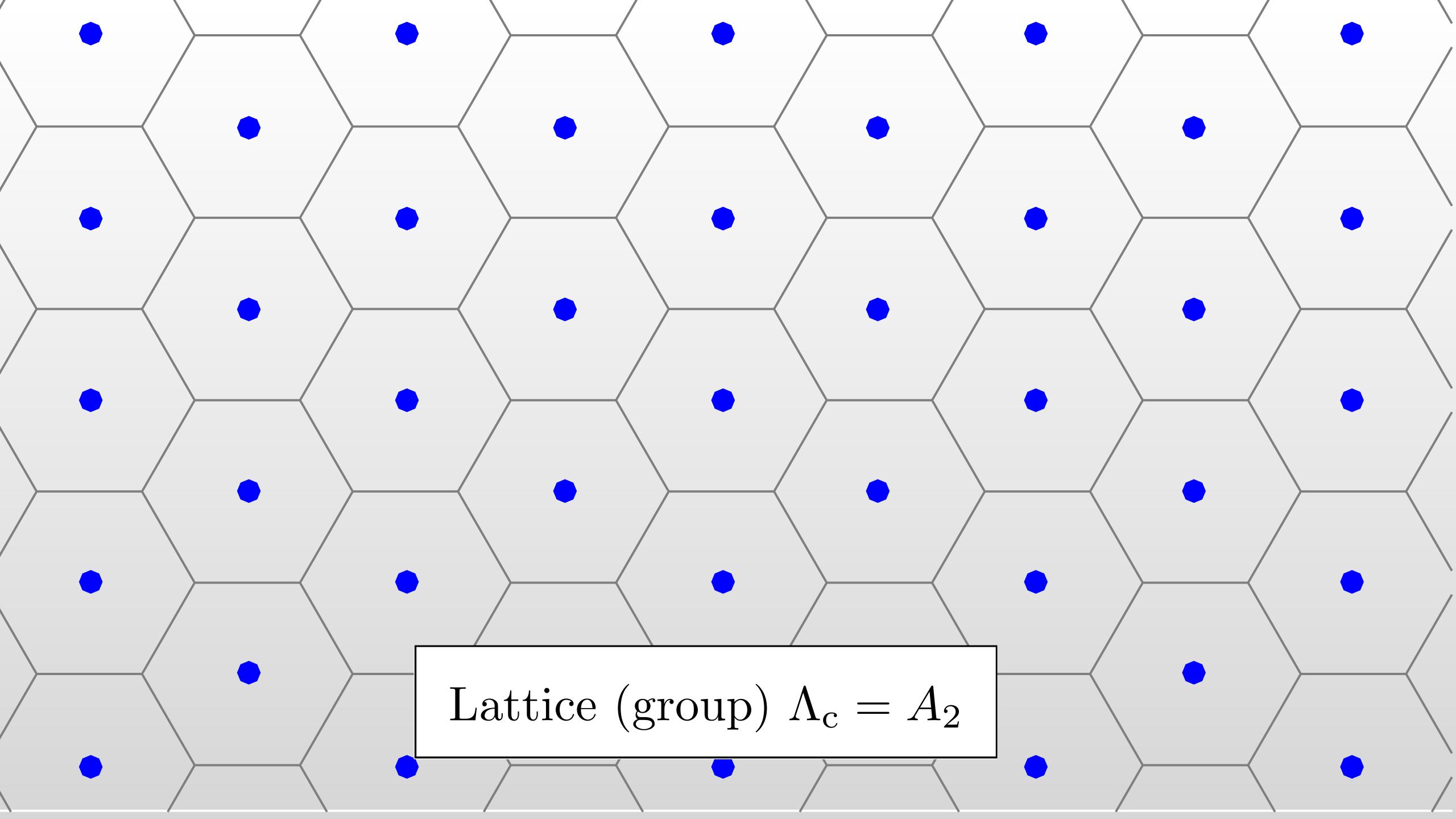
$$\mathbf{x} = \mathbf{g}_1 b_1 + \mathbf{g}_2 b_2 + \dots + \mathbf{g}_n b_n,$$

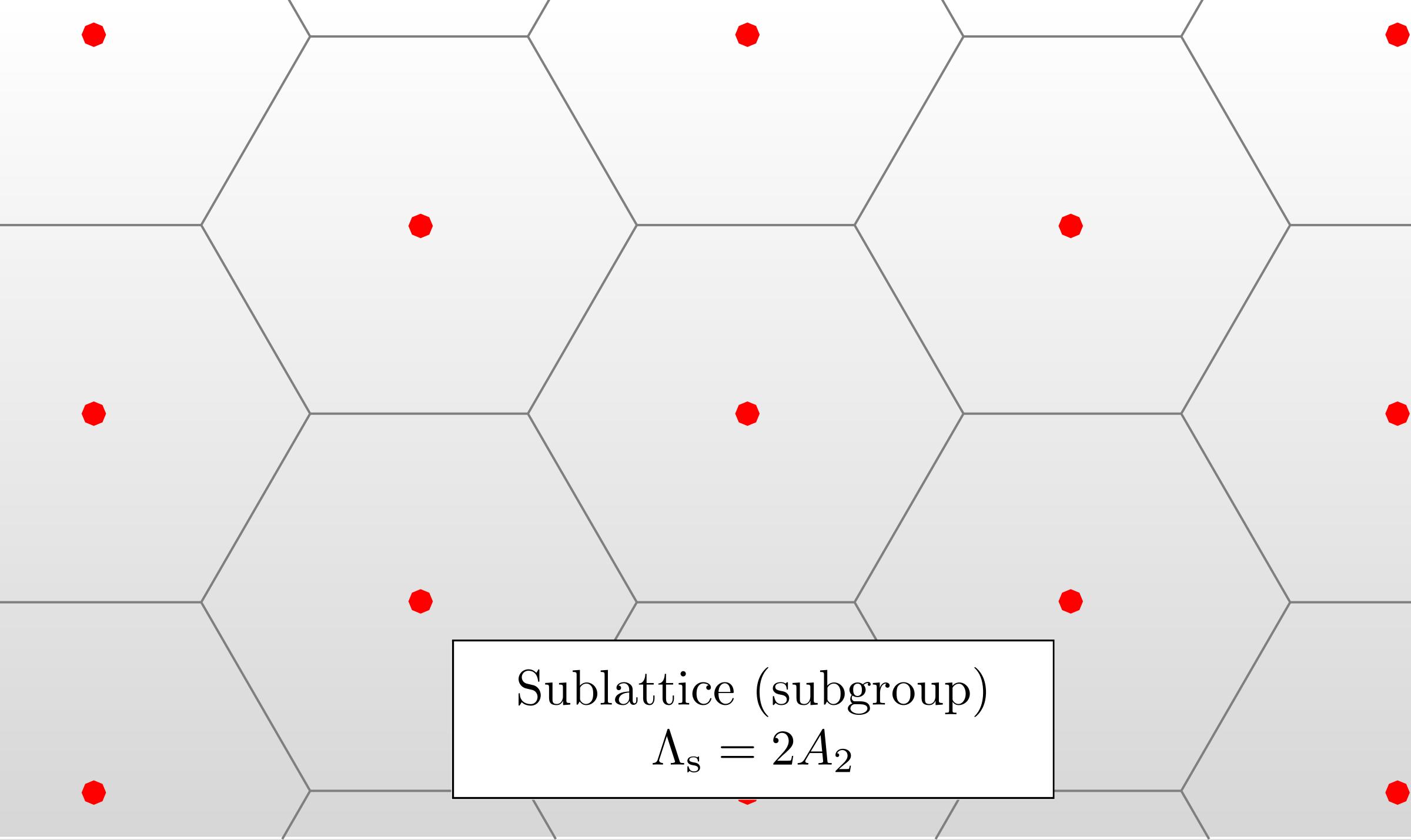
where the b_i are integers.

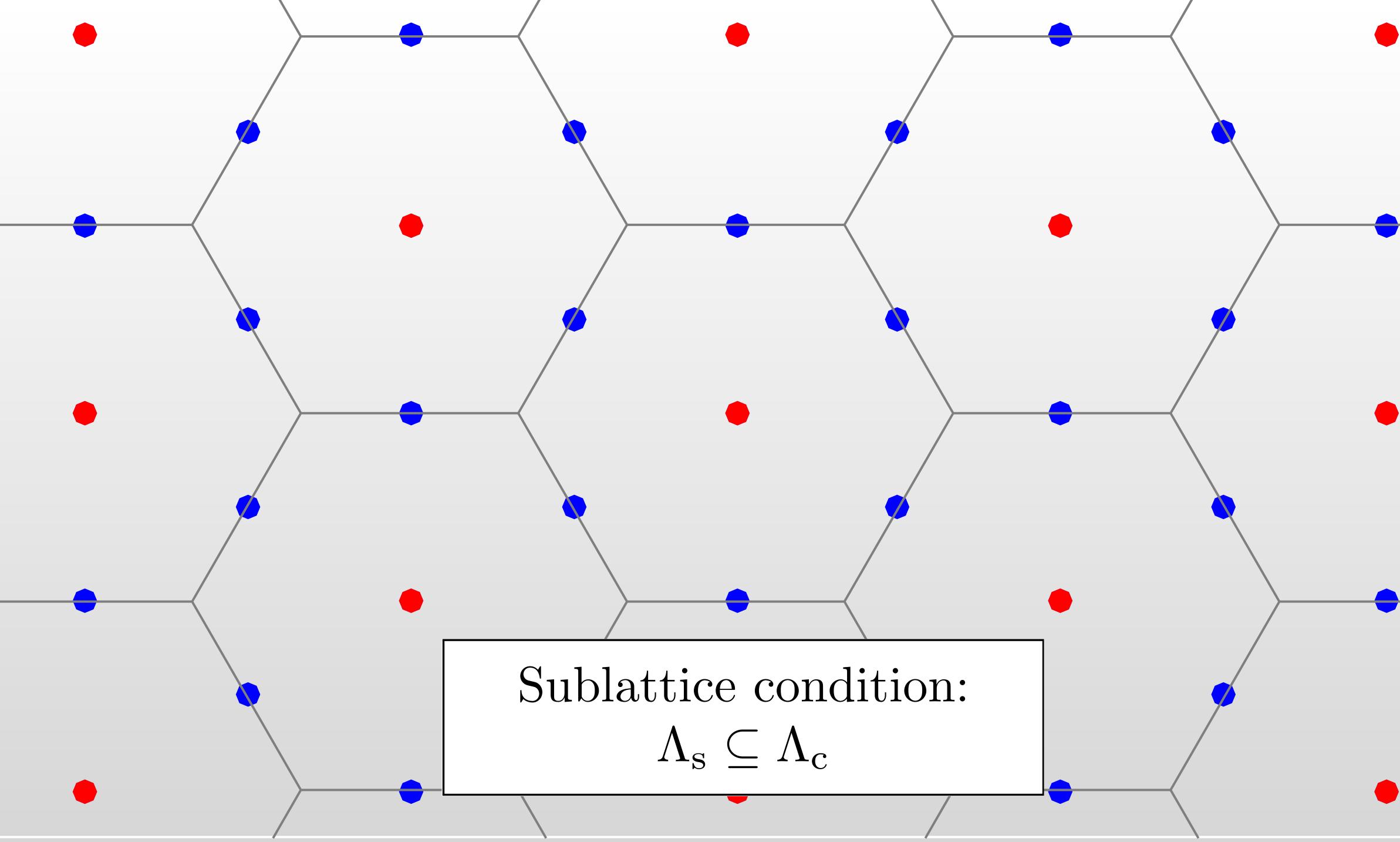


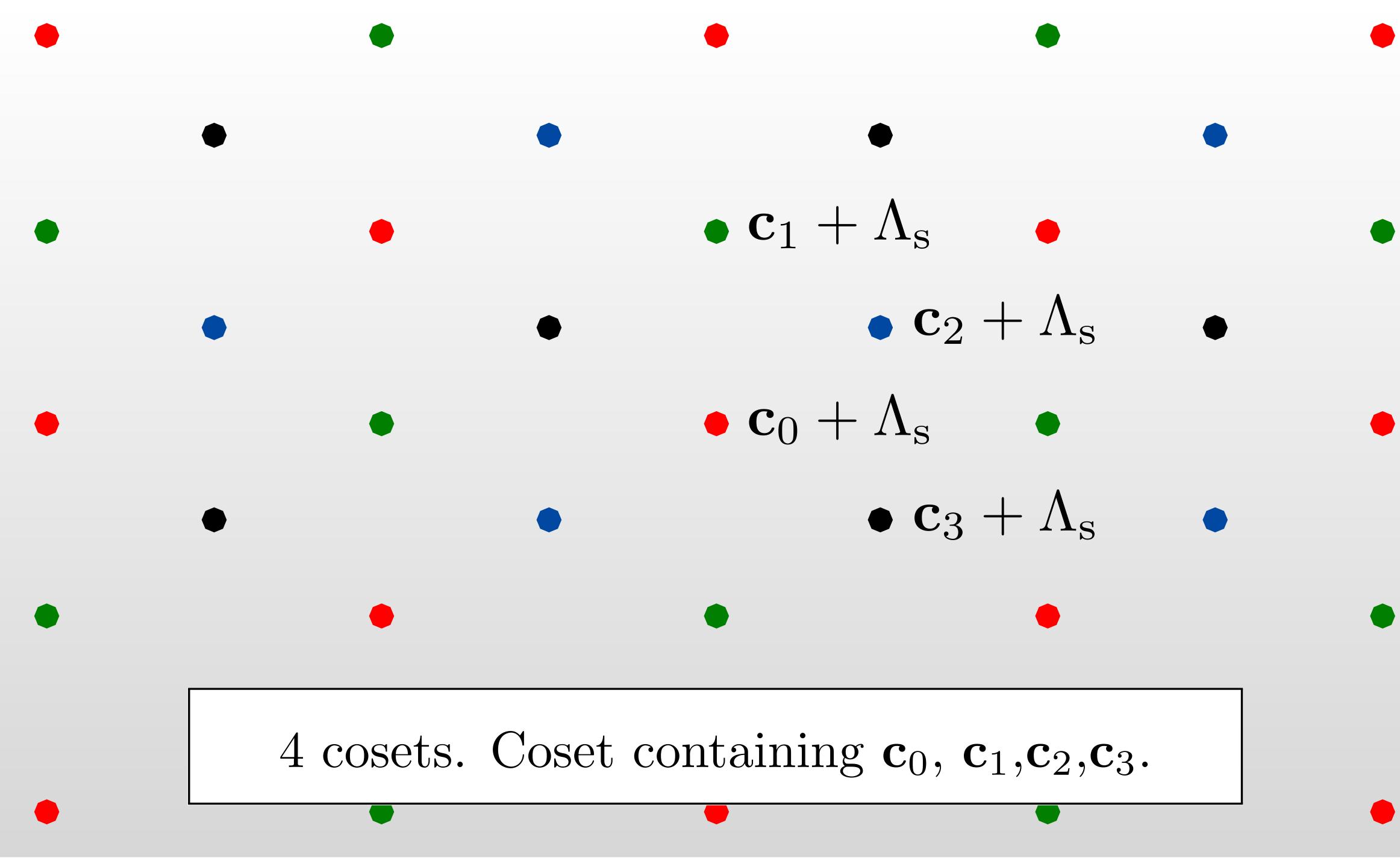
Quotient Groups Based on Lattices

- Let Λ_c be a lattice • "coding lattice" corrects errors. Also called fine lattice.
- Let Λ_s be a sublattice: $\Lambda_s \subset \Lambda_c$.
 - "shaping lattice" enforces power constraint. Also called coarse lattice.
- $K\Lambda_{c}$ is a lattice expanded by K.
 - Choosing $\Lambda_s = K\Lambda_c$ results in $\Lambda_s \subseteq \Lambda_c$ for $K = 1, 2, 3, \cdots$









Cosets form a group under addition

The set Λ_c/Λ_s is a quotient group.

This table expresses group addition:

 $\mathbf{c}_0 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_1 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_2 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_3 + \Lambda_{\mathrm{s}}$ $\mathbf{c}_0 + \Lambda_{\mathrm{s}} \mid \mathbf{c}_0 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_1 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_2 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_3 + \Lambda_{\mathrm{s}}$ $\mathbf{c}_1 + \Lambda_{\mathrm{s}} \mid \mathbf{c}_1 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_0 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_3 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_2 + \Lambda_{\mathrm{s}}$ $\mathbf{c}_2 + \Lambda_{\mathrm{s}} \mid \mathbf{c}_2 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_3 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_0 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_1 + \Lambda_{\mathrm{s}}$ $\mathbf{c}_3 + \Lambda_{\mathrm{s}} \mid \mathbf{c}_3 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_2 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_1 + \Lambda_{\mathrm{s}} \quad \mathbf{c}_0 + \Lambda_{\mathrm{s}}$

Construct a lattice code C:

$\mathcal{C} = \Lambda_{\rm c} \cap \mathcal{F}$

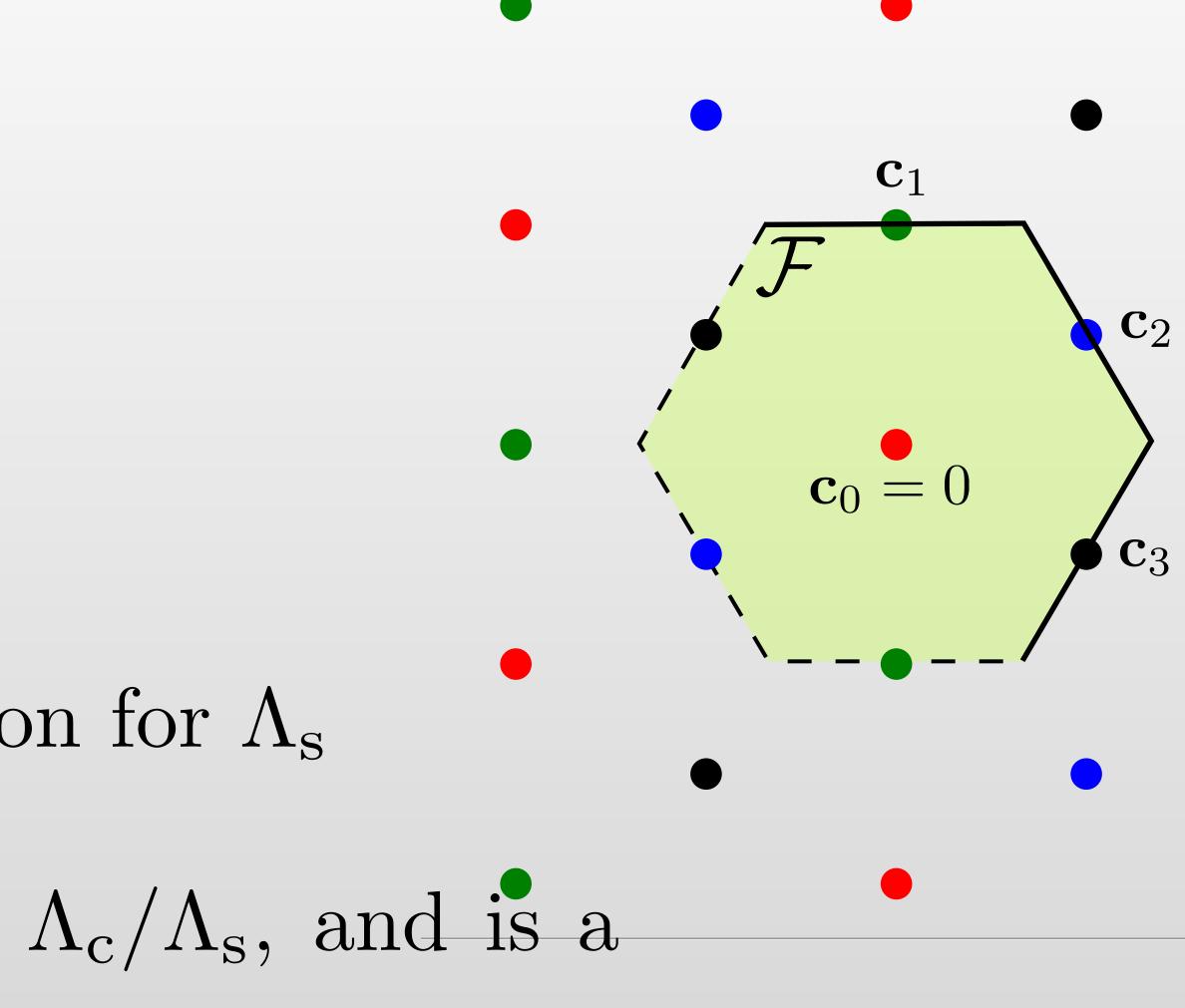
We need:

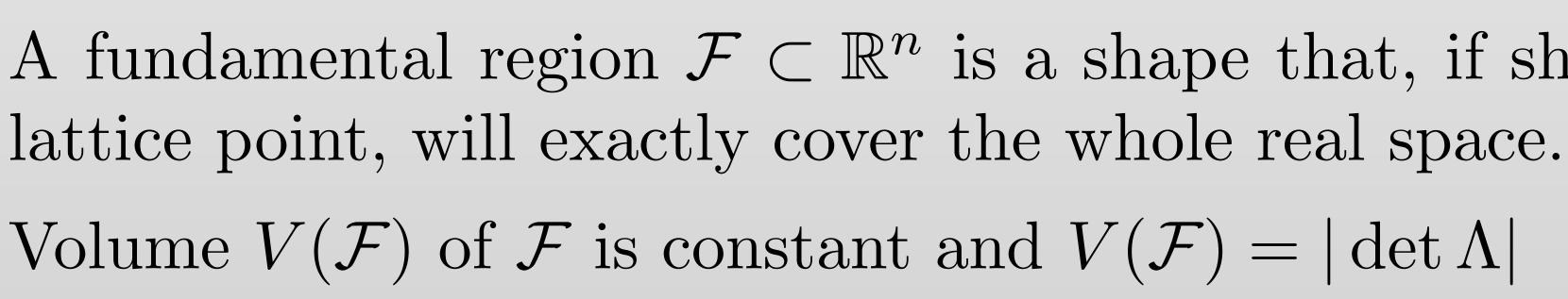
• Quotient Group $\Lambda_{\rm c}/\Lambda_{\rm s}$

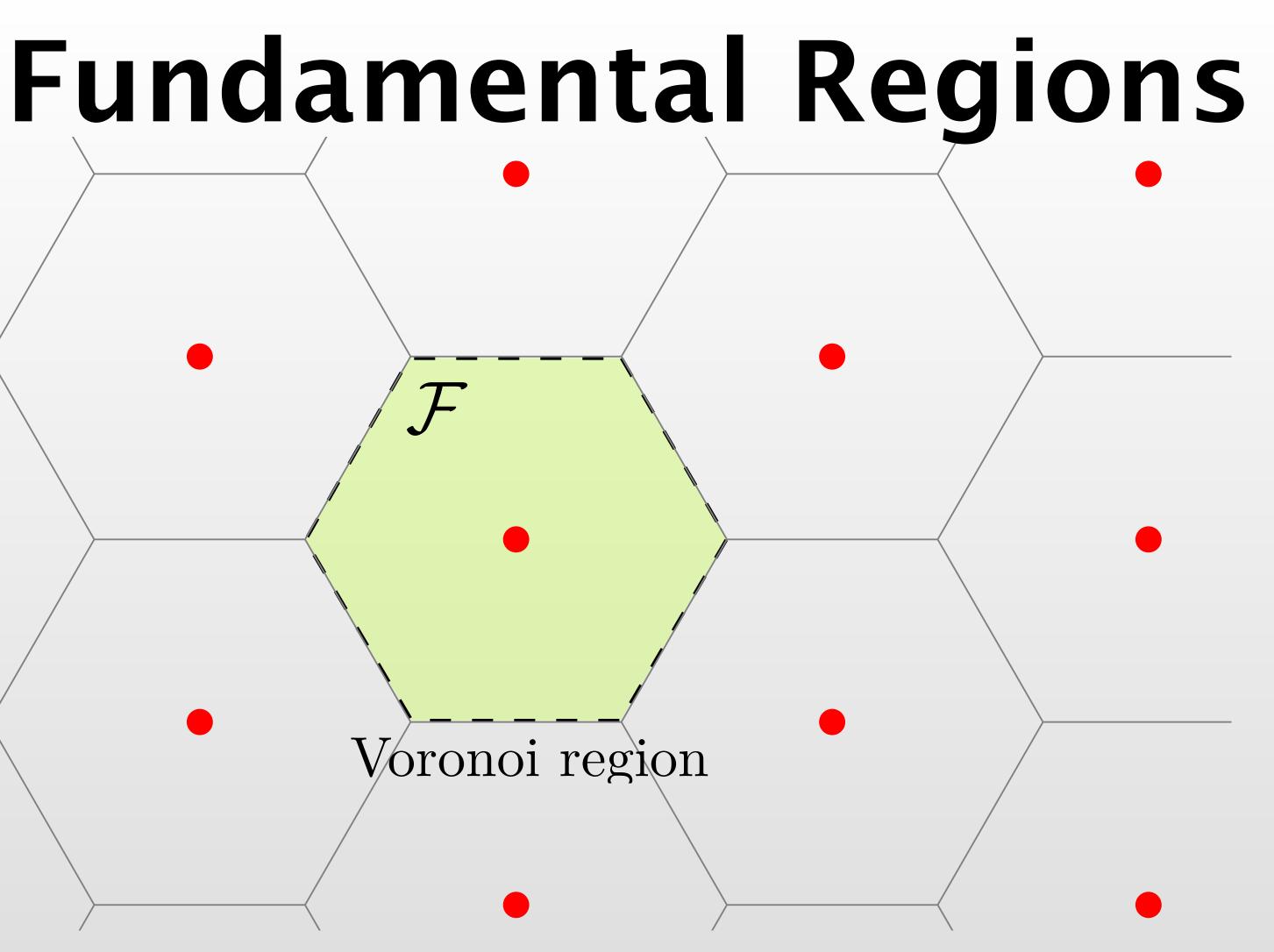
• \mathcal{F} is a fundamental region for Λ_s

The code \mathcal{C} are coset leaders $\Lambda_{\rm c}/\Lambda_{\rm s}$, and is a group.

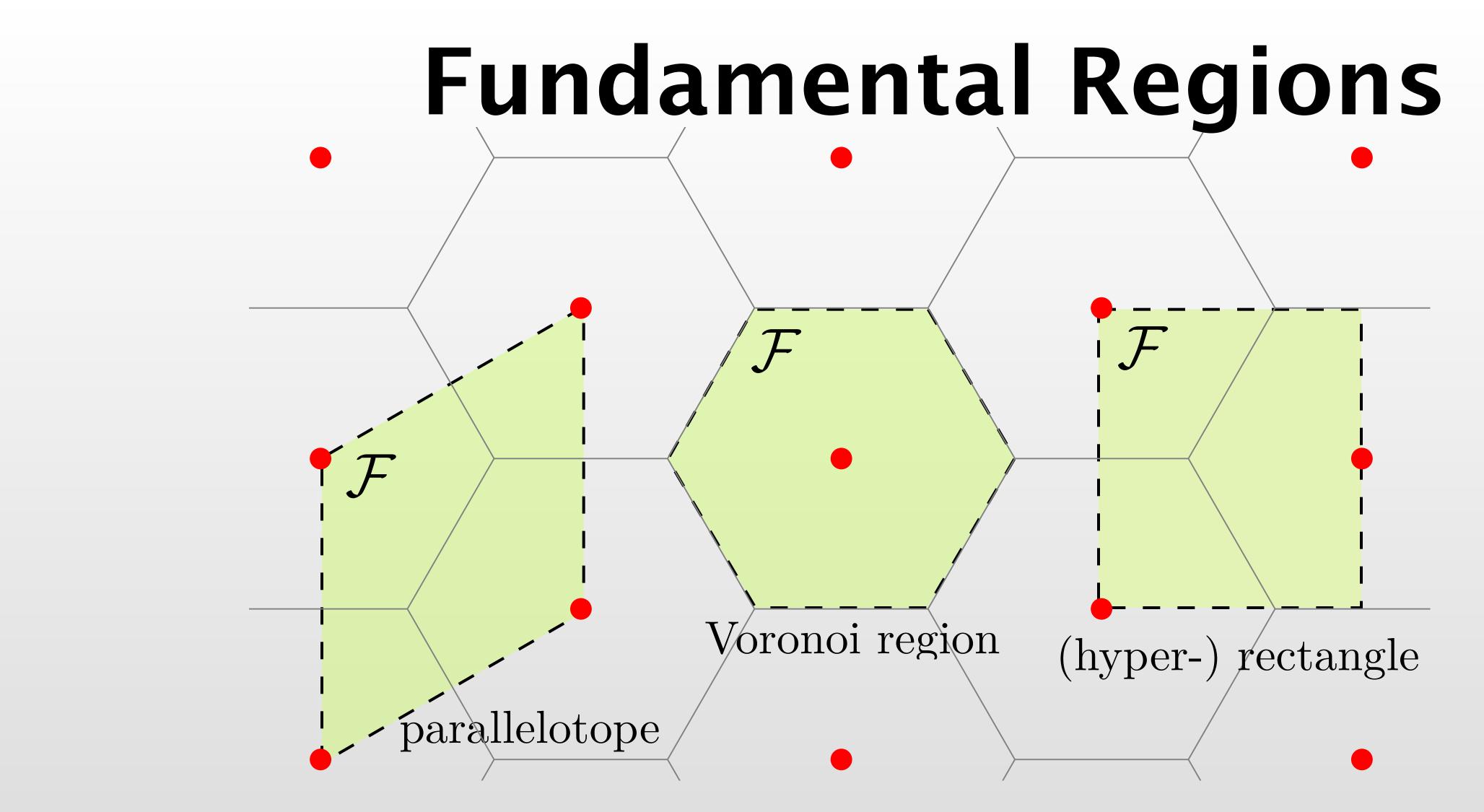
Nested Lattice Codes



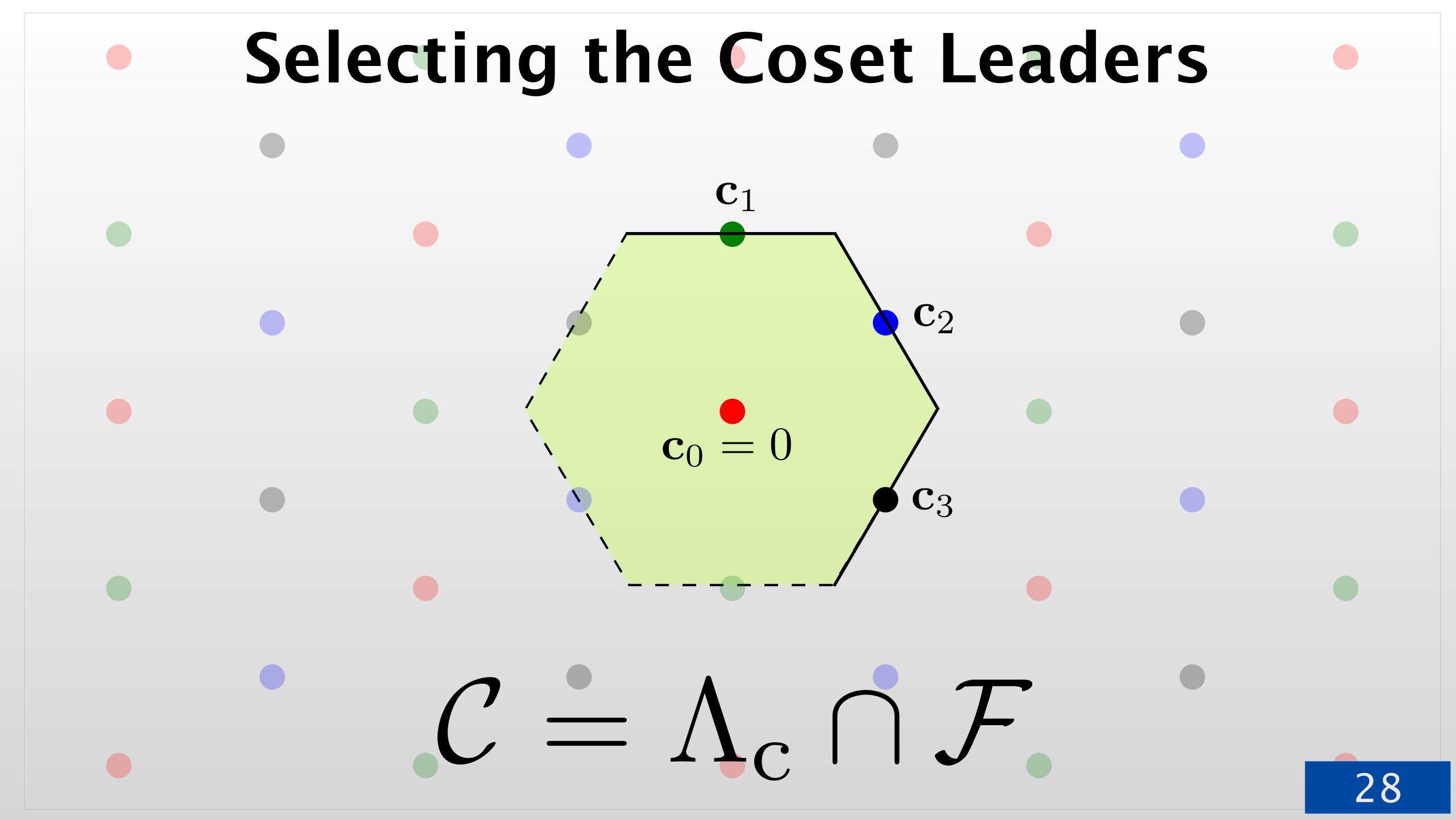




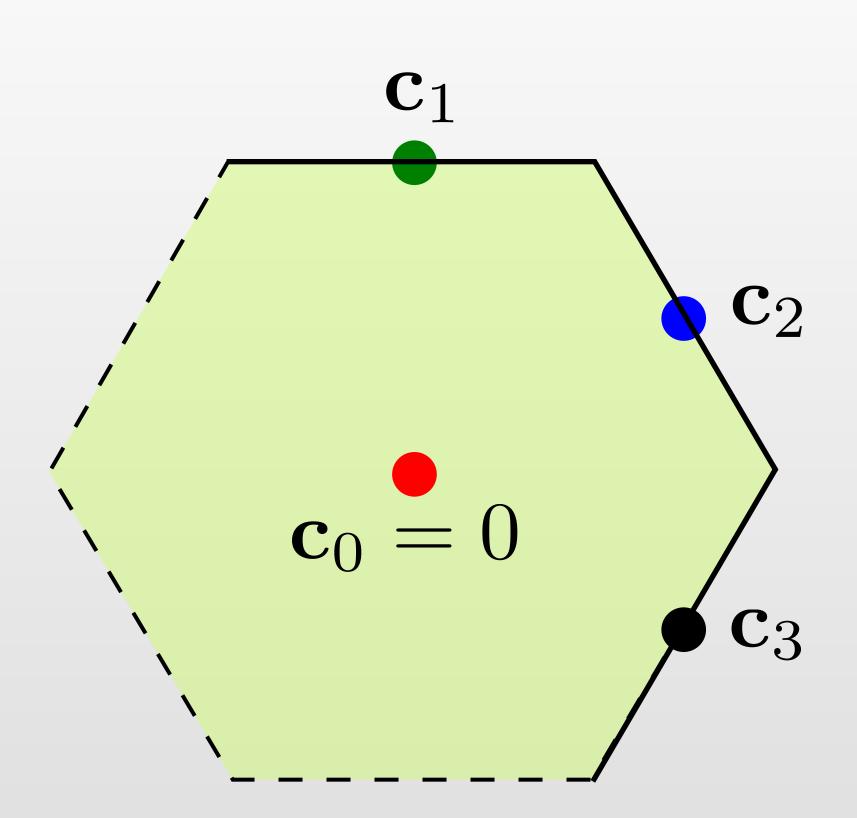
A fundamental region $\mathcal{F} \subset \mathbb{R}^n$ is a shape that, if shifted by each



A fundamental region $\mathcal{F} \subset \mathbb{R}^n$ is a shape that, if shifted by each lattice point, will exactly cover the whole real space. Volume $V(\mathcal{F})$ of \mathcal{F} is constant and $V(\mathcal{F}) = |\det \Lambda|$



Nested Lattice Codes Form a Group



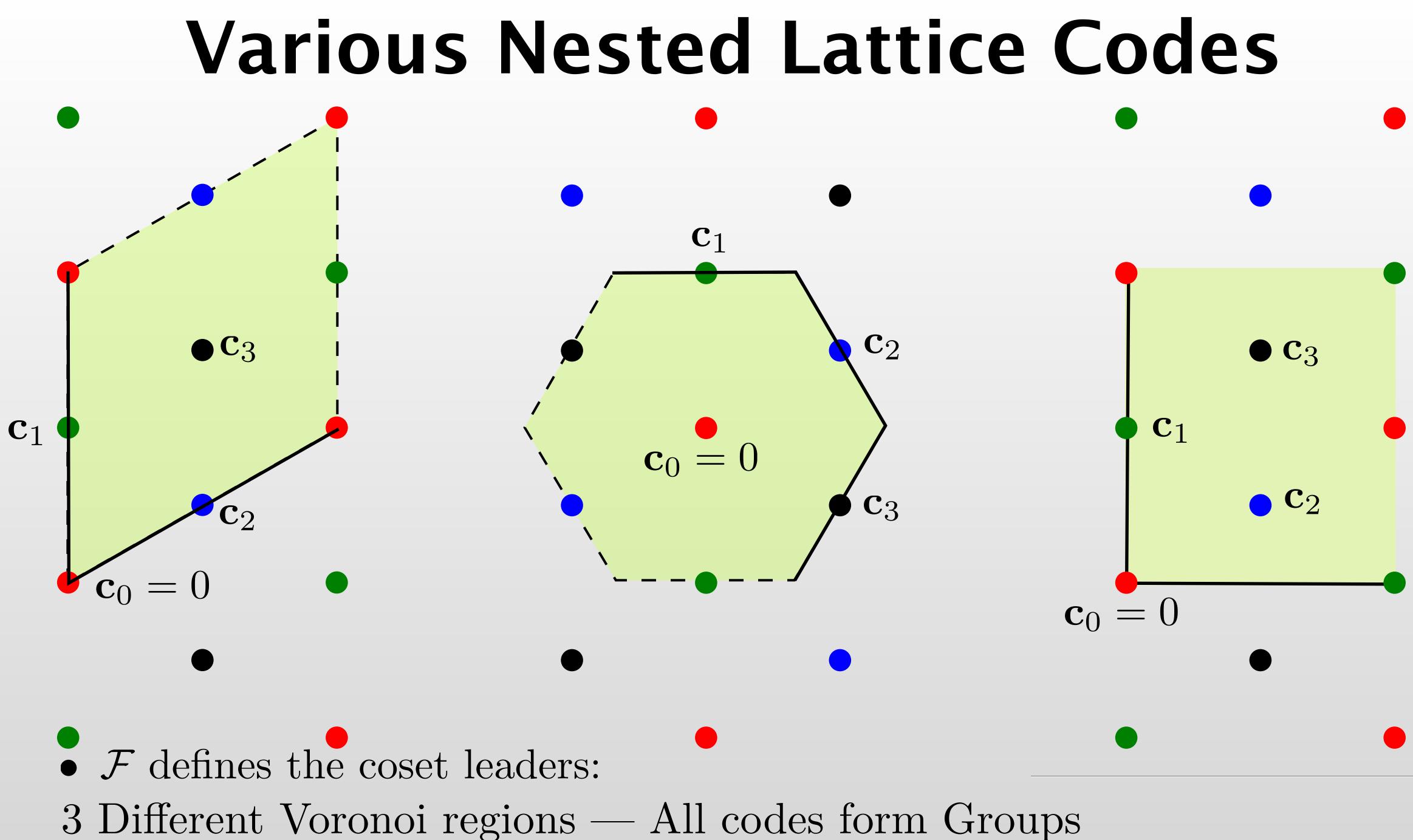
 $\mathcal{C} = \Lambda_{\rm c} \cap \mathcal{F}$

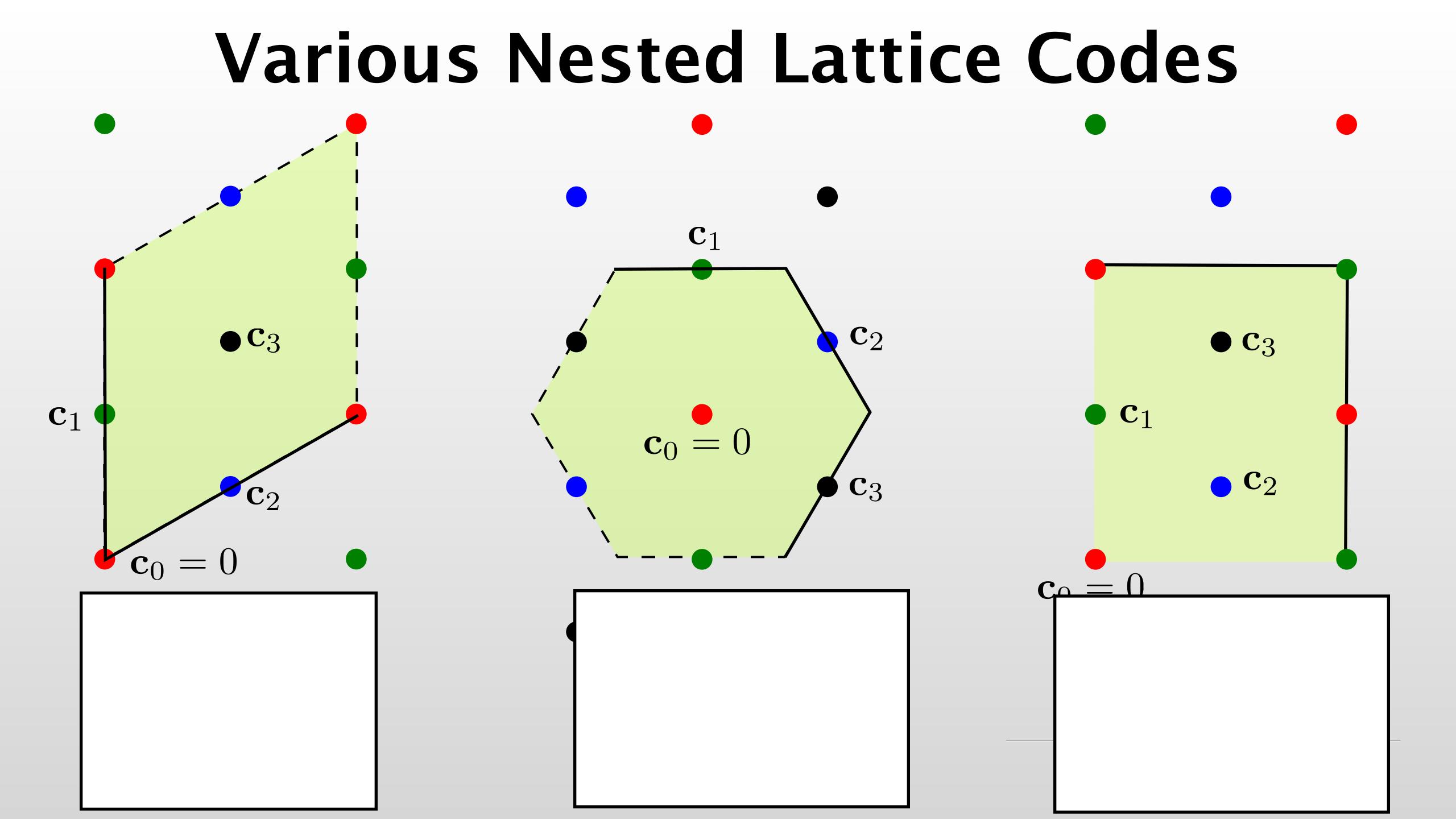
 \mathcal{C} is closed under addition

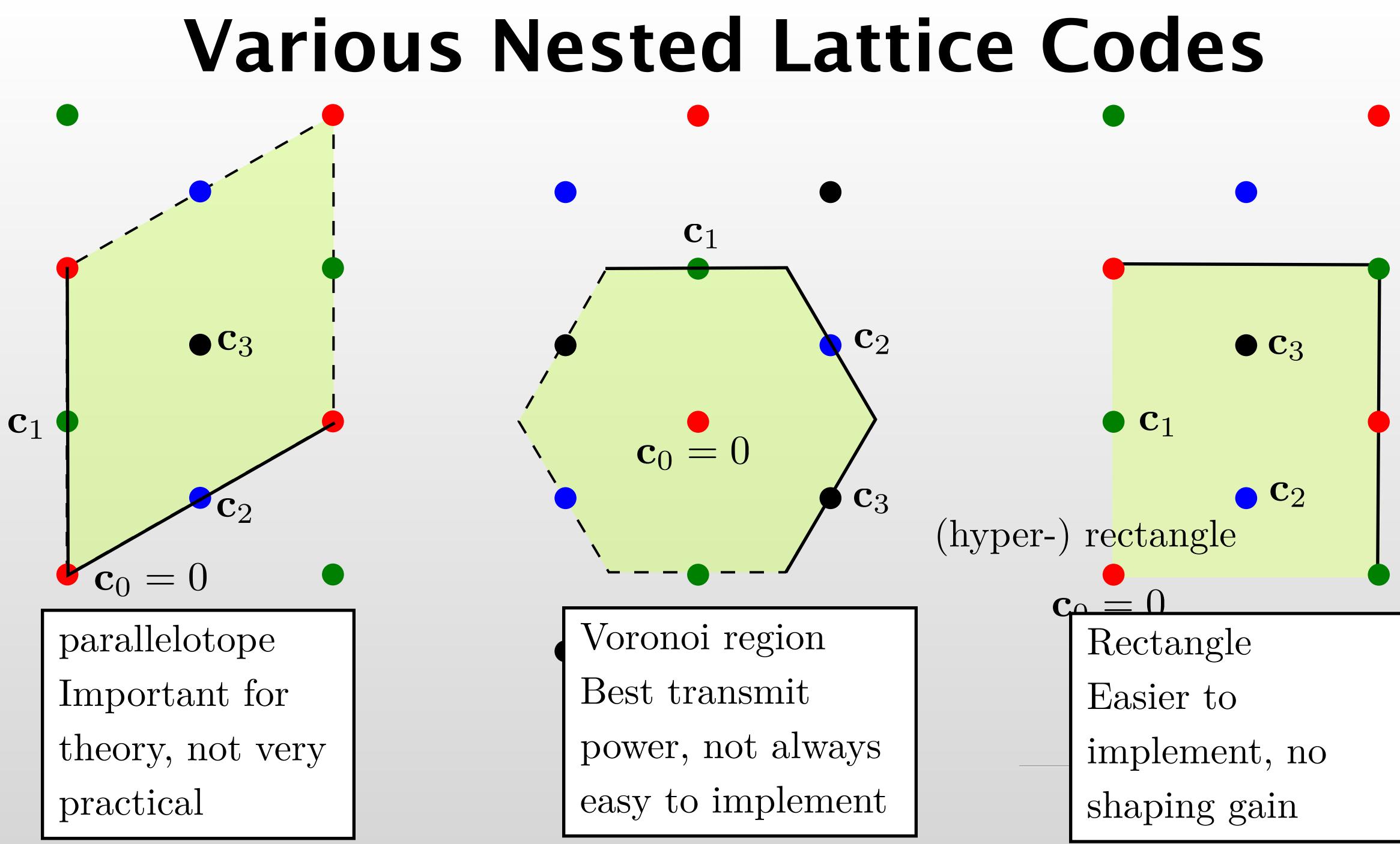
+	c_0	c_1	c_2	c_3
c_0	c_0	c_1	c_2	c_3
c_1	c_1	c_0	c_3	c_2
c_2	c_2	c_3	c_0	c_1
c_3	c_3	c_2	c_1	c_0

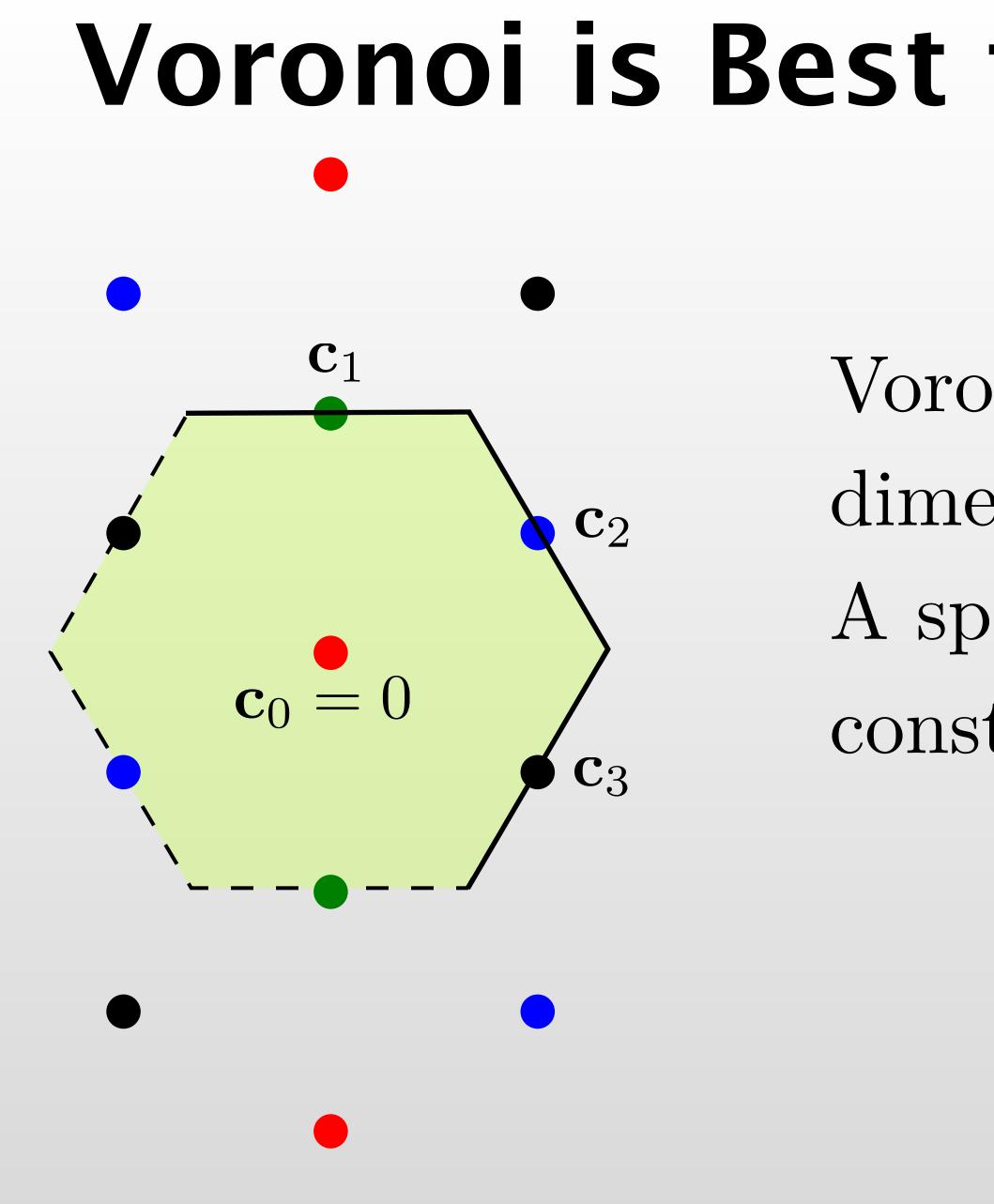
codebook $C = \{c_0, c_1, c_2, c_3\}$

 \mathbf{c}_i are coset leaders of $\Lambda_{\rm c}/\Lambda_{\rm s}$.









Voronoi is Best for AWGN Channel

- Voronoi regions are sphere-like in high dimension.
- A sphere satisfies the AWGN power constraint

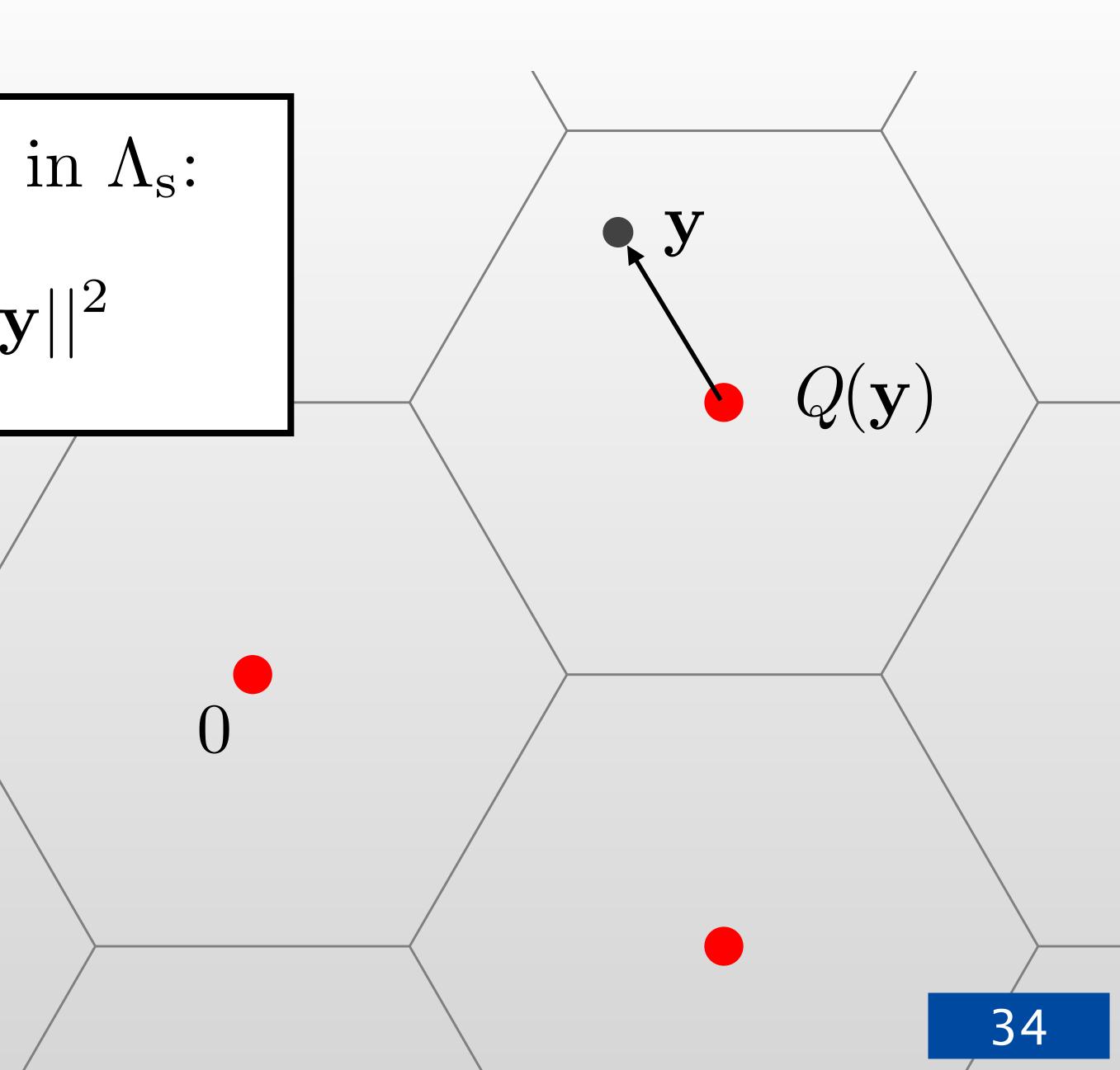
$$\frac{1}{n} \sum_{i=1}^{n} x_i^2 \le P$$

Encoding: mapping information to codewords Indexing: mapping codewords to information (group)

Encoding and Isomorphism

- Isomorphism between information (ring) and codewords

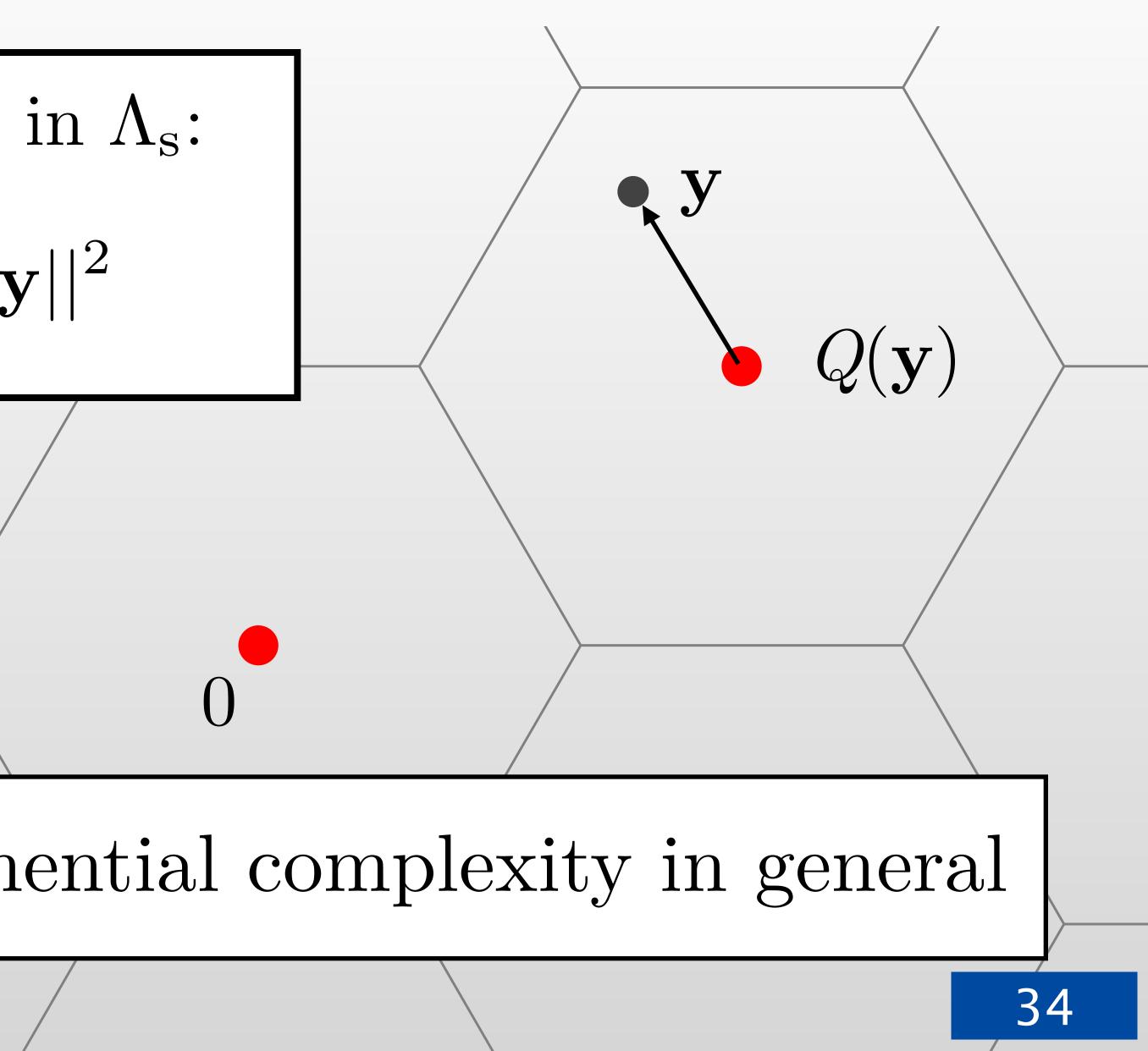
Quantization Closest point in Λ_s : $Q_{\Lambda_{s}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\Lambda_{s}} ||\mathbf{x}-\mathbf{y}||^{2}$



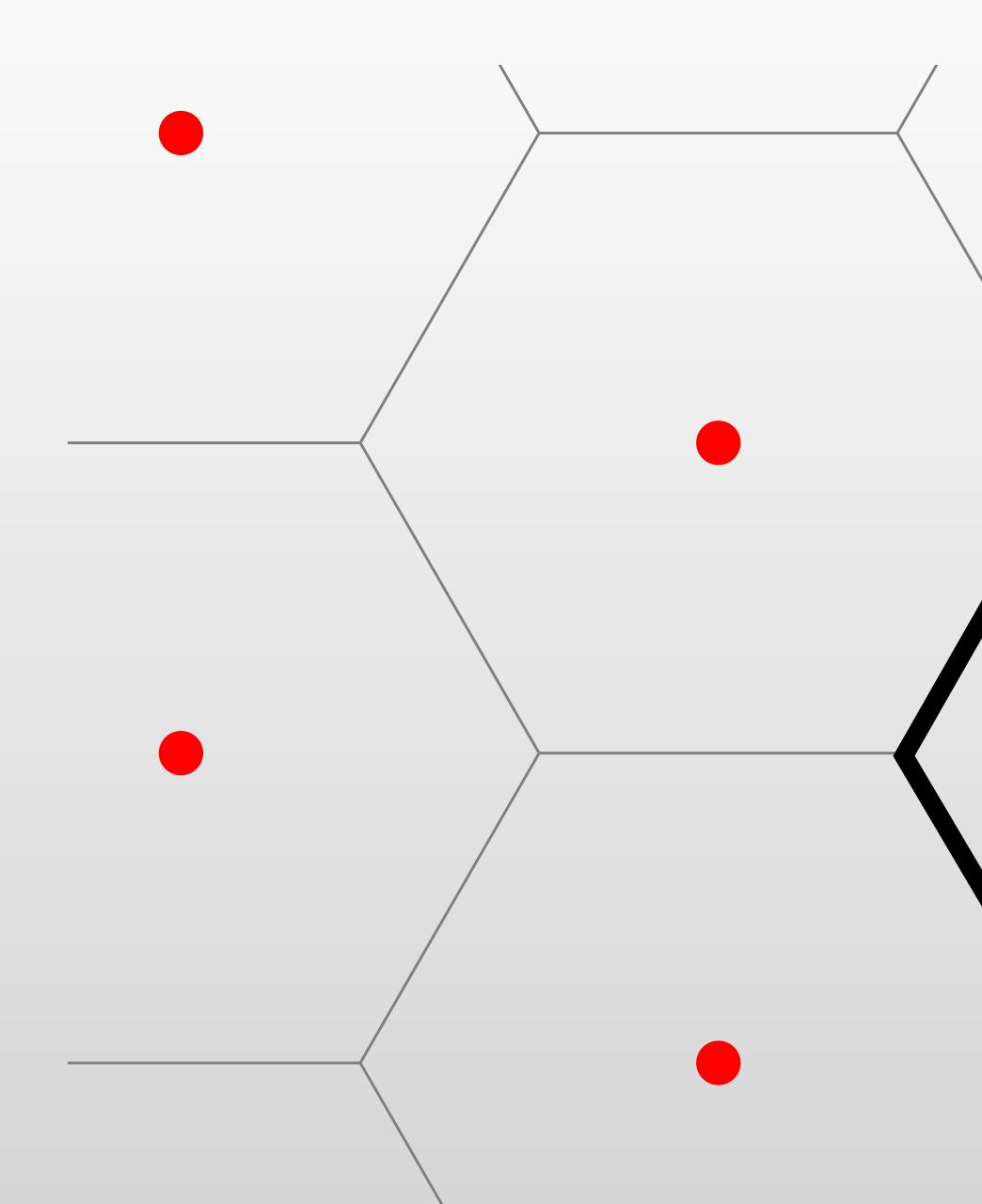
Quantization Closest point in Λ_s :

$Q_{\Lambda_{s}}(\mathbf{y}) = \arg\min_{\mathbf{x}\in\Lambda_{s}} ||\mathbf{x} - \mathbf{y}||^{2}$

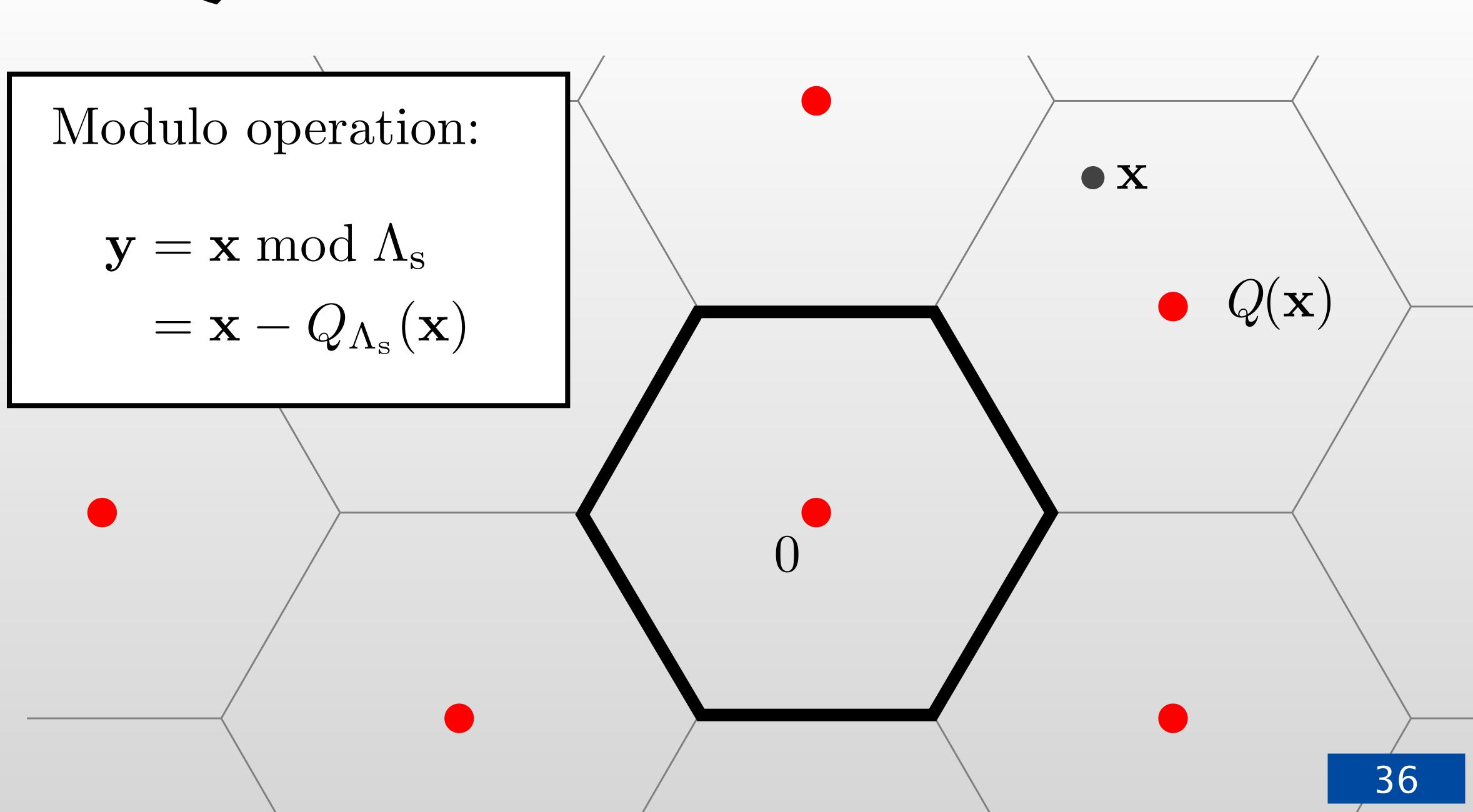
Quantization has exponential complexity in general

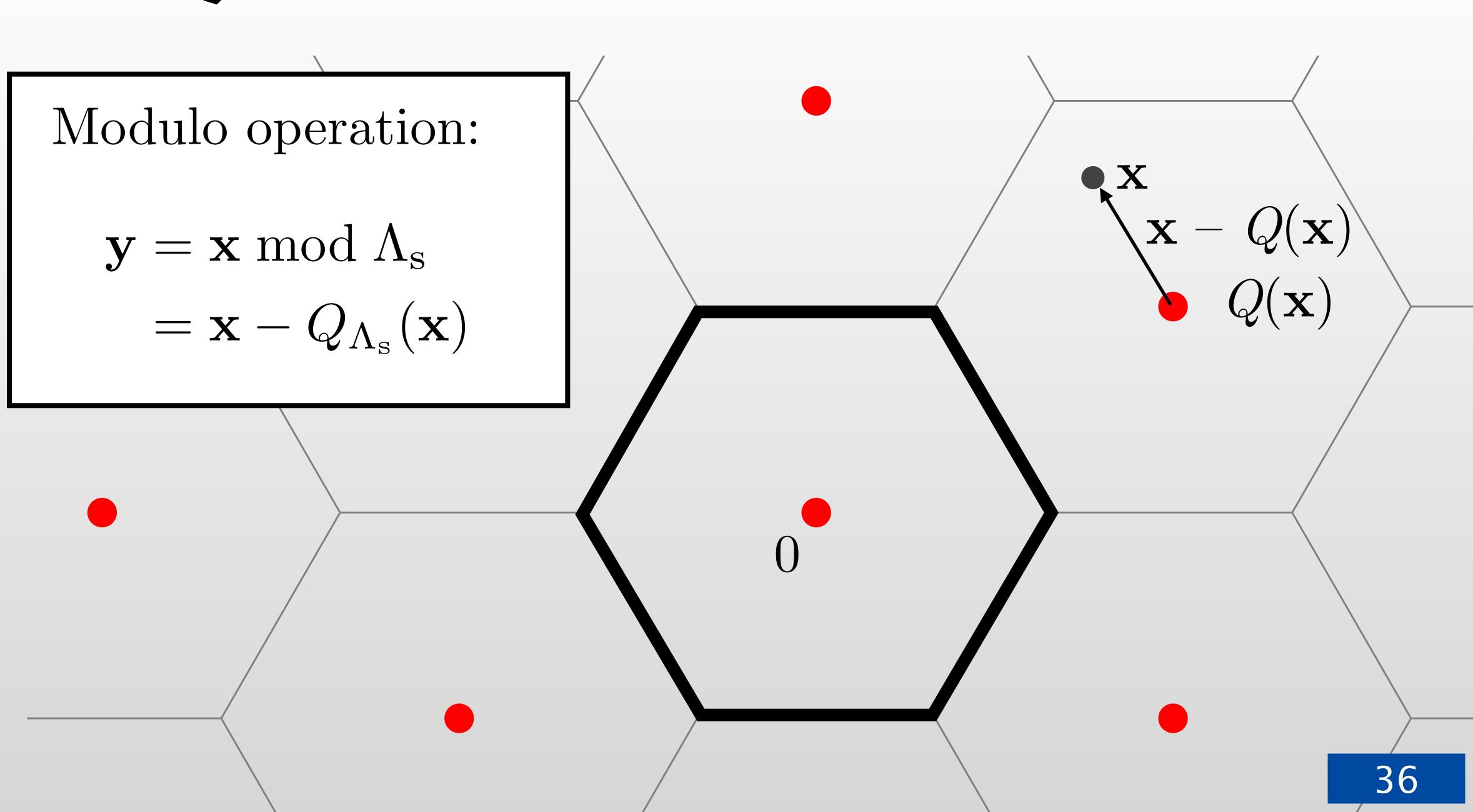


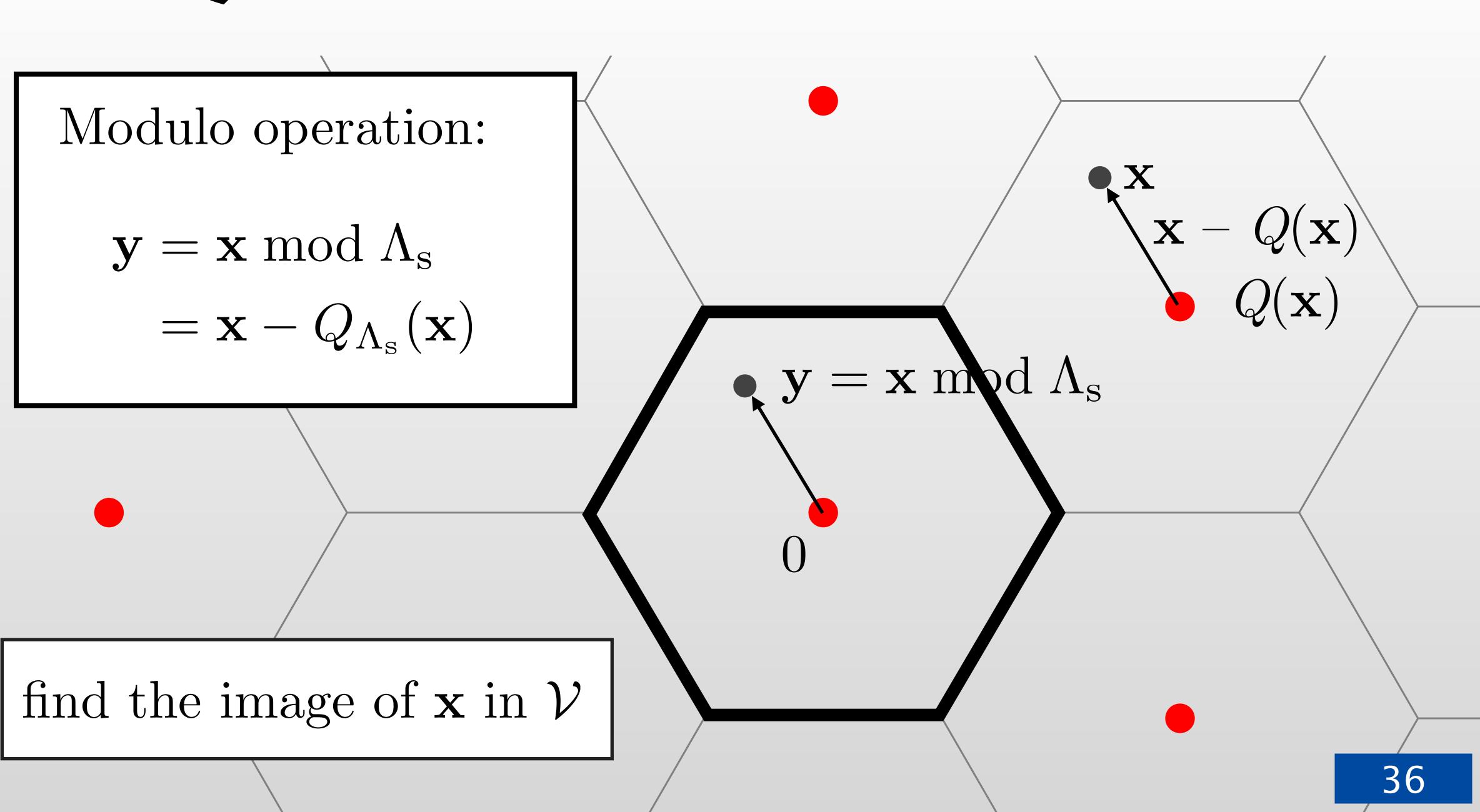
0



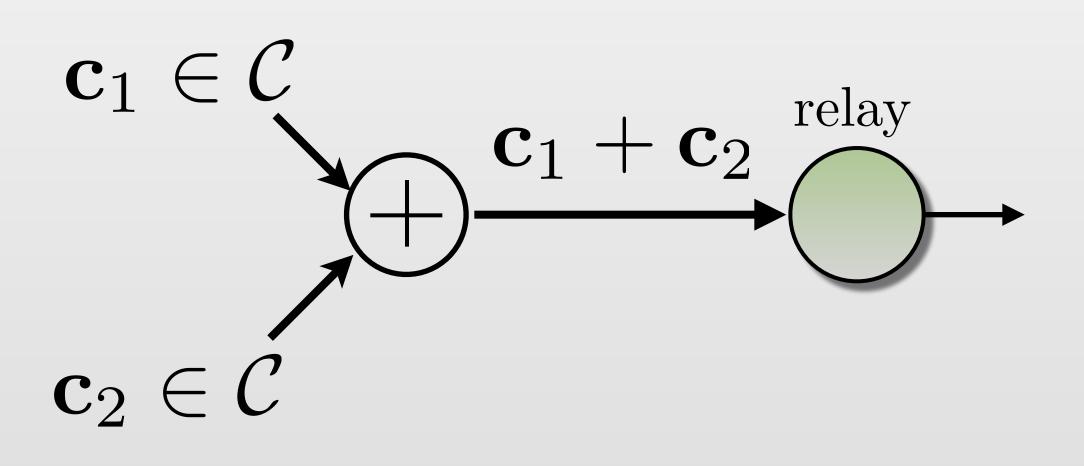
Voronoi region at origin







Real Addition with Lattice Codes

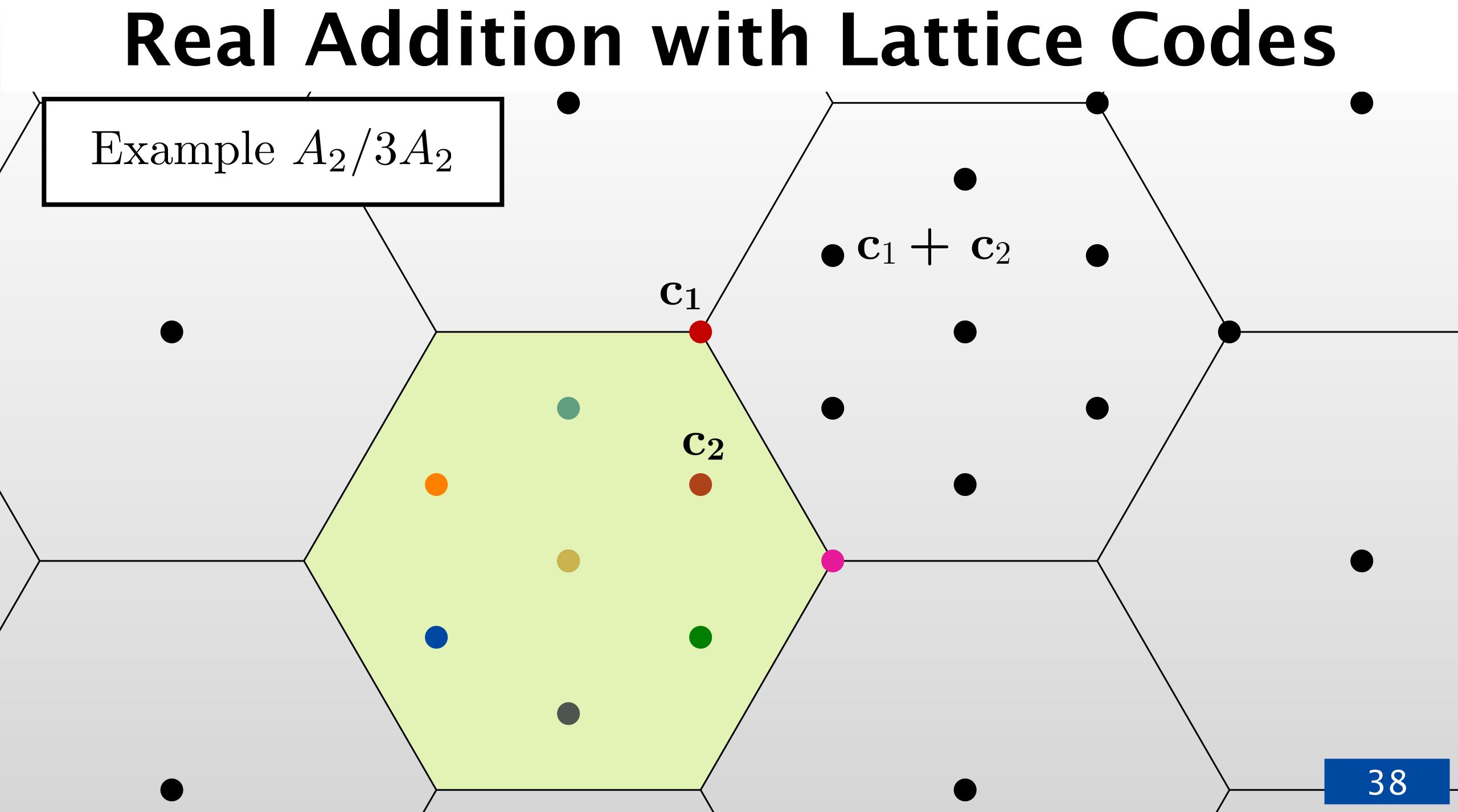


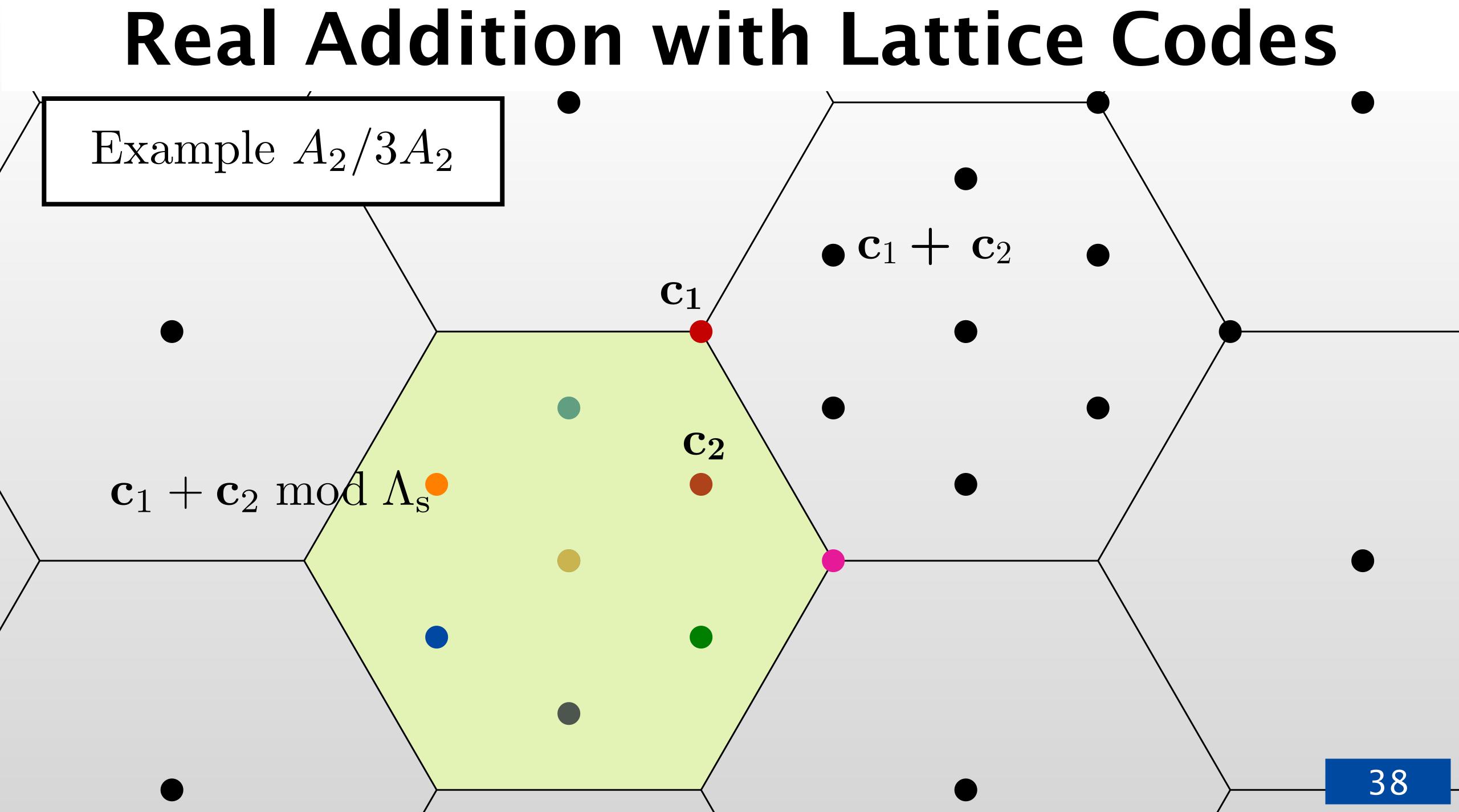
Recall the multiple-access scenario

- $\mathbf{c}_1, \, \mathbf{c}_2 \in \mathcal{C}$ are finite group elements
- $\mathbf{c}_1 \oplus \mathbf{c}_2 \in \mathcal{C}$ is well defined
- But, real addition in the channel:

 $\mathbf{c}_1 + \mathbf{c}_2 \not\in \mathcal{C}$

• Solution: $\mathbf{c}_1 + \mathbf{c}_2 \mod \Lambda_s \in \mathcal{C}$

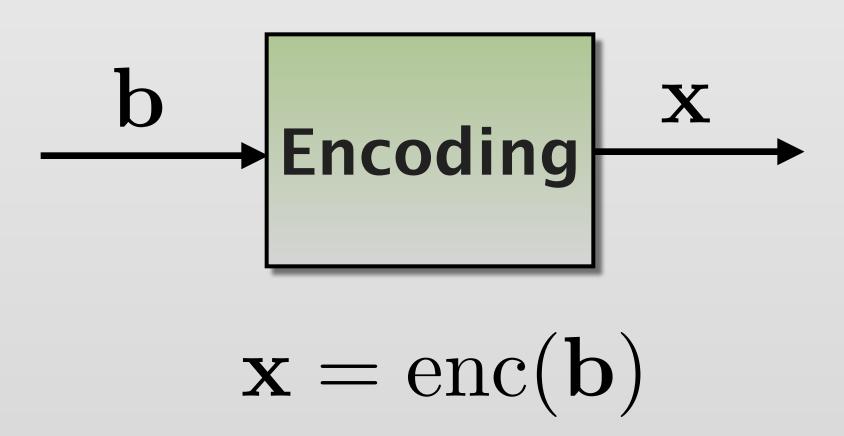




Encoding and Indexing

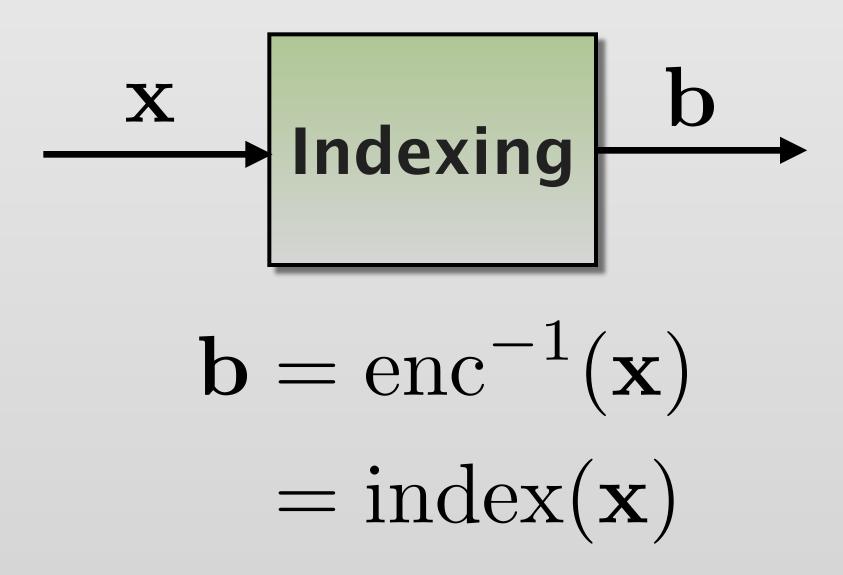
where $b_i \in \{0, 1, \cdots, K-1\}$.

given index b, find $\mathbf{x} \in \mathcal{C}$

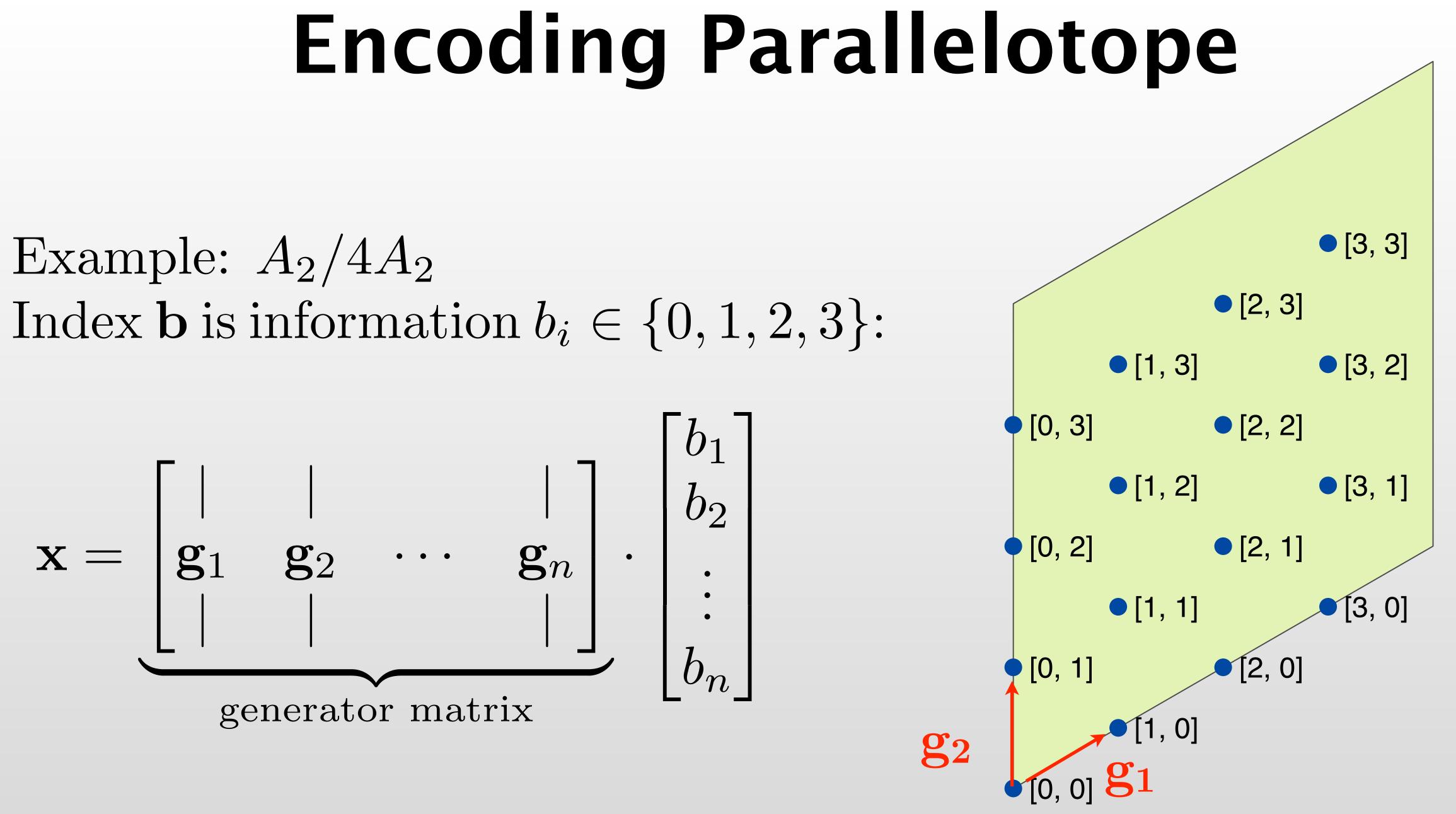


- Index **b** is information: $\mathbf{b} = [b_1 \ b_2 \ \cdots \ b_n]^t$,

given $\mathbf{x} \in \mathcal{C}$, find index **b**



Example: $A_2/4A_2$



Encoding the Voronoi Region

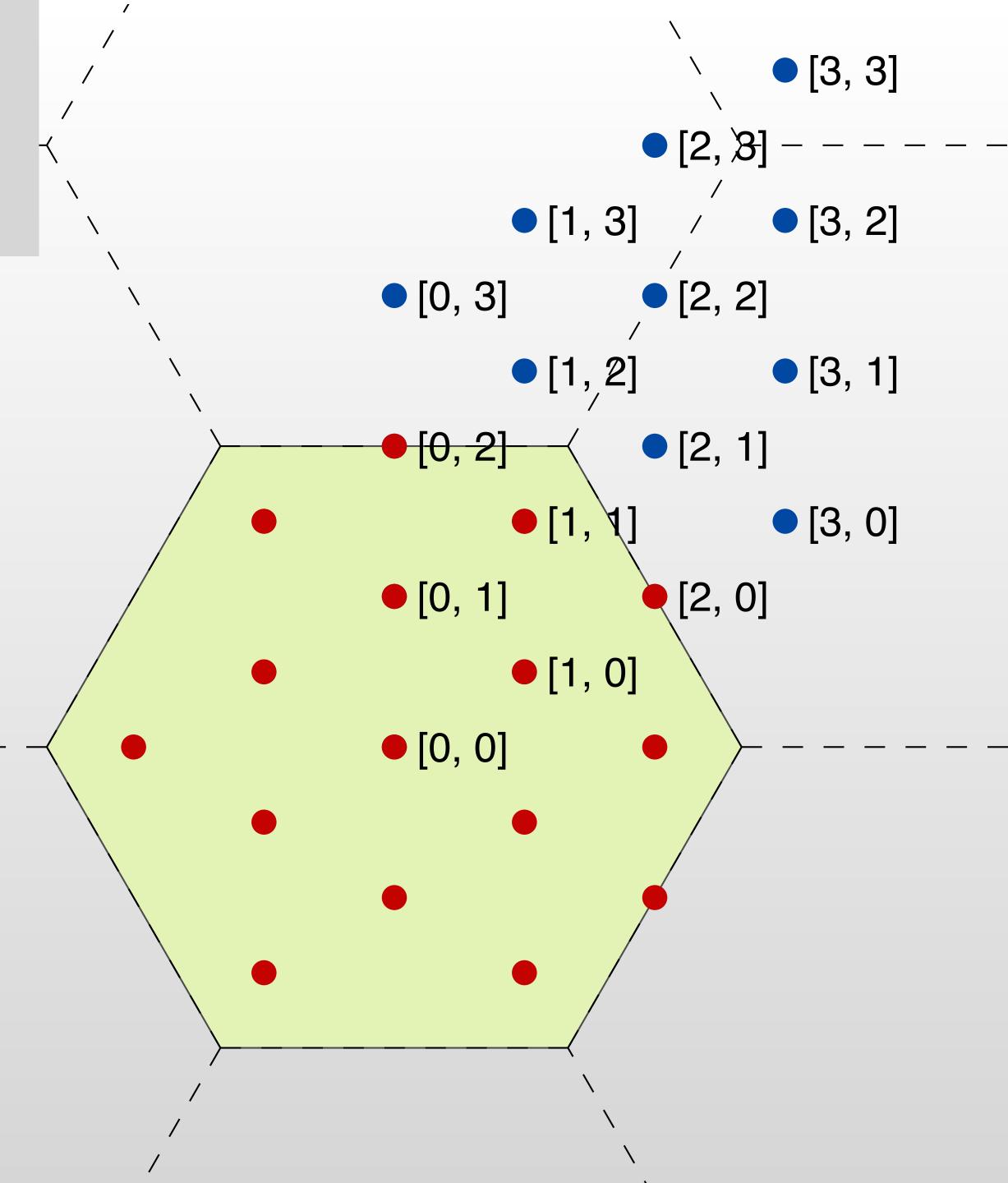
Two steps:

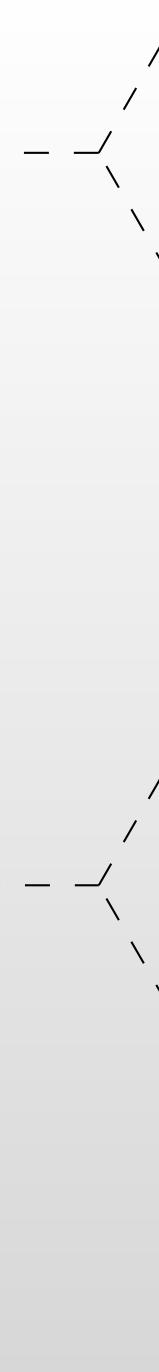
1. Parallelotope encoding

$\mathbf{x} = G \cdot \mathbf{b}$

2. Modulo operation

 $\mathbf{x} = G \cdot \mathbf{b} - Q_{\Lambda_{\mathrm{s}}} (G \cdot \mathbf{b})$





Encoding the Voronoi Region

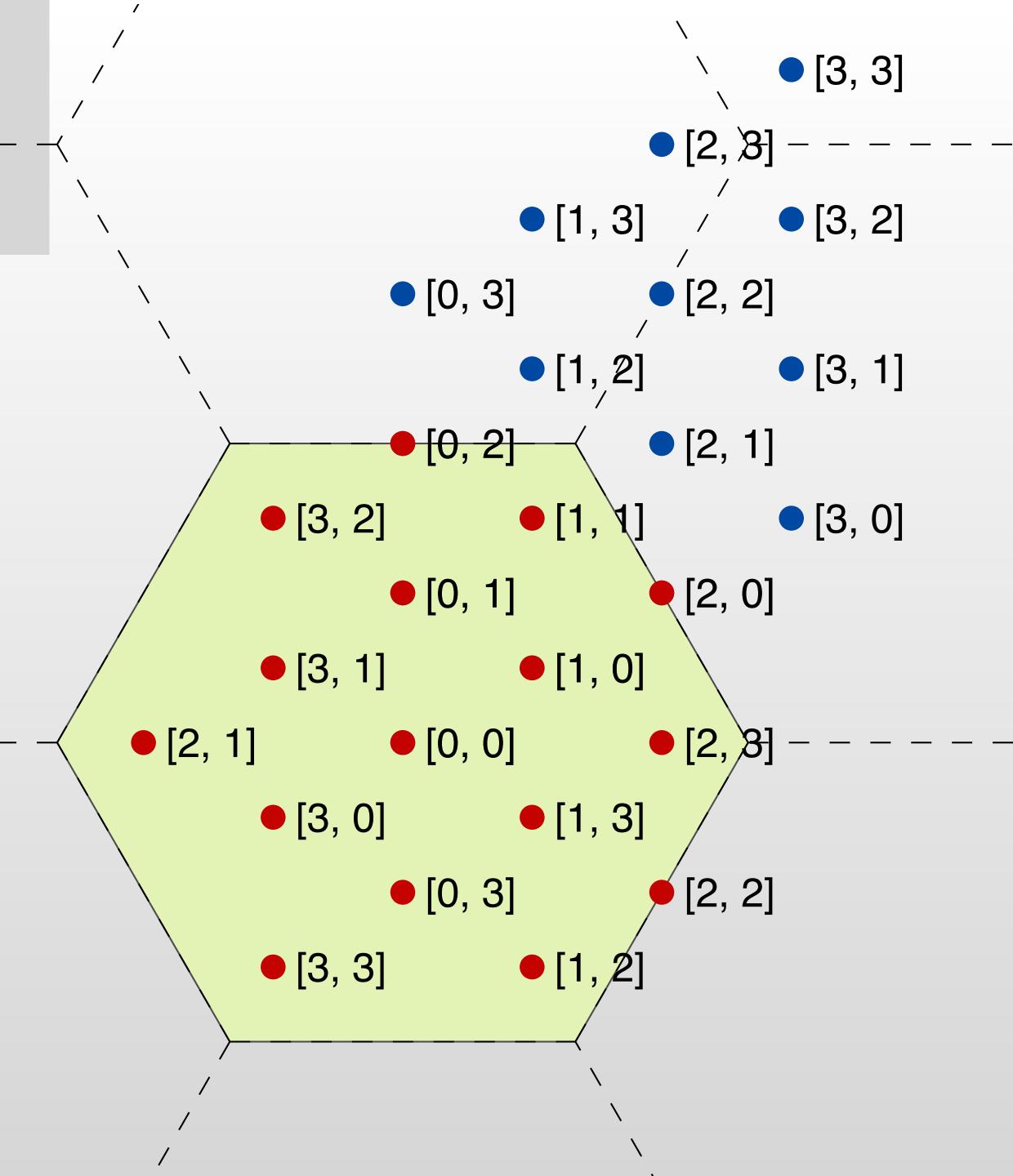
Two steps:

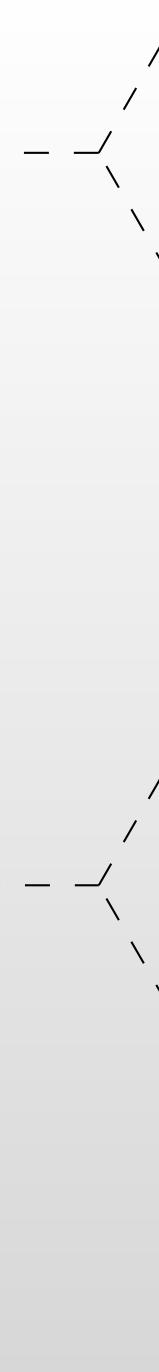
1. Parallelotope encoding

$\mathbf{x} = G \cdot \mathbf{b}$

2. Modulo operation

 $\mathbf{x} = G \cdot \mathbf{b} - Q_{\Lambda_{\mathrm{s}}} (G \cdot \mathbf{b})$





 \oplus, \otimes (integers modulo K).

addition modulo Λ_s).

Easy to show there is isomorphism:

 $index(\mathbf{x}_1) \oplus index(\mathbf{x}_1) = index(\mathbf{x}_1 + \mathbf{x}_2)$

Information (indices) $\mathbf{b}_i \in \mathbb{Z}/K\mathbb{Z}$ form a ring with operation

Lattice codewords $\mathbf{x} \in \mathcal{C}$ for a group with operation + (vector

- $\operatorname{enc}(\mathbf{b}_1 \oplus \mathbf{b}_2) = \operatorname{enc}(\mathbf{b}_1) + \operatorname{enc}(\mathbf{b}_2)$ or

 \oplus, \otimes (integers modulo K).

addition modulo Λ_s).

Easy to show there is isomorphism:

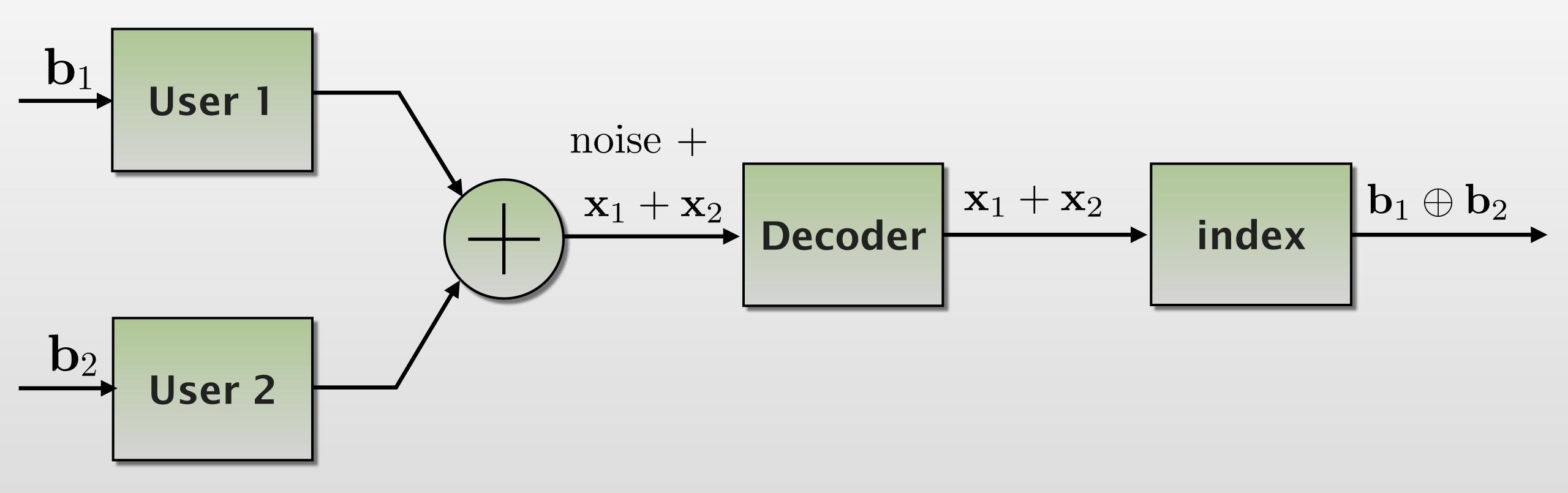
 $index(\mathbf{x}_1) \oplus index(\mathbf{x}_1) = index(\mathbf{x}_1 + \mathbf{x}_2)$

Information (indices) $\mathbf{b}_i \in \mathbb{Z}/K\mathbb{Z}$ form a ring with operation

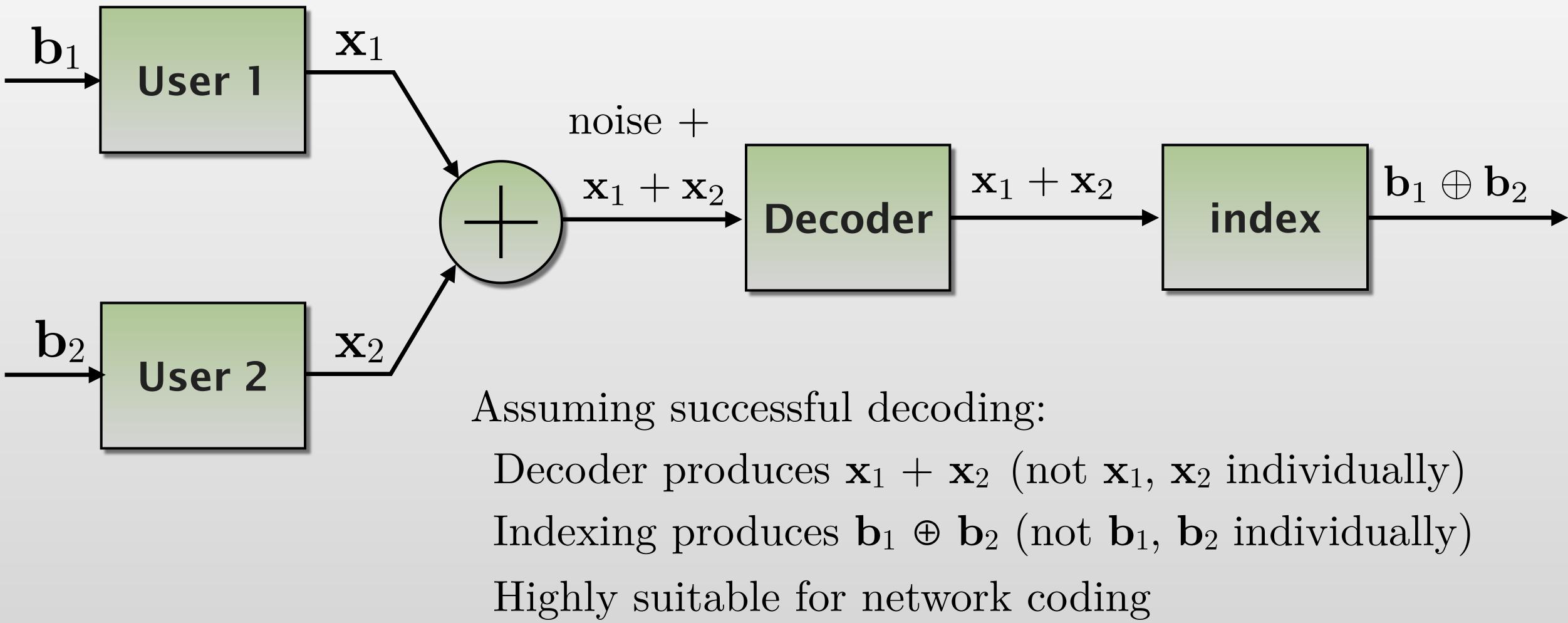
Lattice codewords $\mathbf{x} \in \mathcal{C}$ for a group with operation + (vector

- $\operatorname{enc}(\mathbf{b}_1 \oplus \mathbf{b}_2) = \operatorname{enc}(\mathbf{b}_1) + \operatorname{enc}(\mathbf{b}_2)$ or

<u>Simple multiple access channel</u>



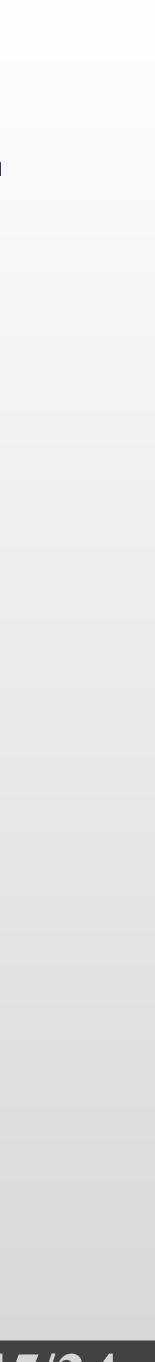
Simple multiple access channel



And now for something new...

Nested lattice codes with non-self-similar lattices coding gain.

- High dimension lattices (LDLC, etc.): excellent
- coding gain, computationally hard to perform shaping,
 - Low dimension lattices (E8, Barnes-Wall): Good
- shaping gain with efficient algorithms, not very good



Nested lattice codes with non-self-similar lattices

Proposed method. Construct a quotient group:

$\Lambda_{\rm C}/\Lambda_{\rm S}$ High-dimension lattice: n = 1,000 to 10^5

Brian Kurkoski, JAIST

E8, Barnes-Wall, etc. lattice n = 8, 16

Nested lattice codes with non-self-similar lattices

Proposed method. Construct a quotient group:

$\Lambda_{\rm c}/\Lambda_{\rm s} \times \cdots \times \Lambda_{\rm s}$ High-dimension lattice: n = 1,000 to 10^5

Brian Kurkoski, JAIST

E8, Barnes-Wall, etc. lattice n = 8, 16

Sufficient Conditions to form a Group

 $\Lambda_{\rm s} \subseteq \Lambda_{\rm c}$.

Let $G_{\rm s}$ be a $n \times n$ generator matrix for $\Lambda_{\rm s}$.

Let $H = G^{-1}$ be the check matrix for Λ_c

Lemma $\Lambda_s \subseteq \Lambda_c$ if and only if $H \cdot G_s$ is a matrix of integers.

Easy to design Λ_{c} such that $\Lambda_{c} \subseteq \Lambda_{s}$

Brian Kurkoski, JAIST

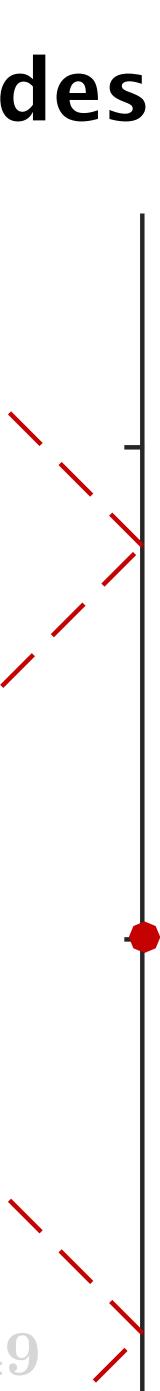
Given a coding lattice $\Lambda_{\rm c}$ and a shaping lattice $\Lambda_{\rm s}$, we need to test the condition

Achieving $\Lambda_s \subset \Lambda_c$ is easy. Encoding/indexing is nontrivial. Example for n = 2:

$$G_{\rm s} = \begin{bmatrix} 4 & 0 \\ 4 & 8 \end{bmatrix} \quad \longleftarrow \quad \Lambda_{\rm s}$$

Brian Kurkoski, JAIST

Indexing Non-Nested Lattice Codes



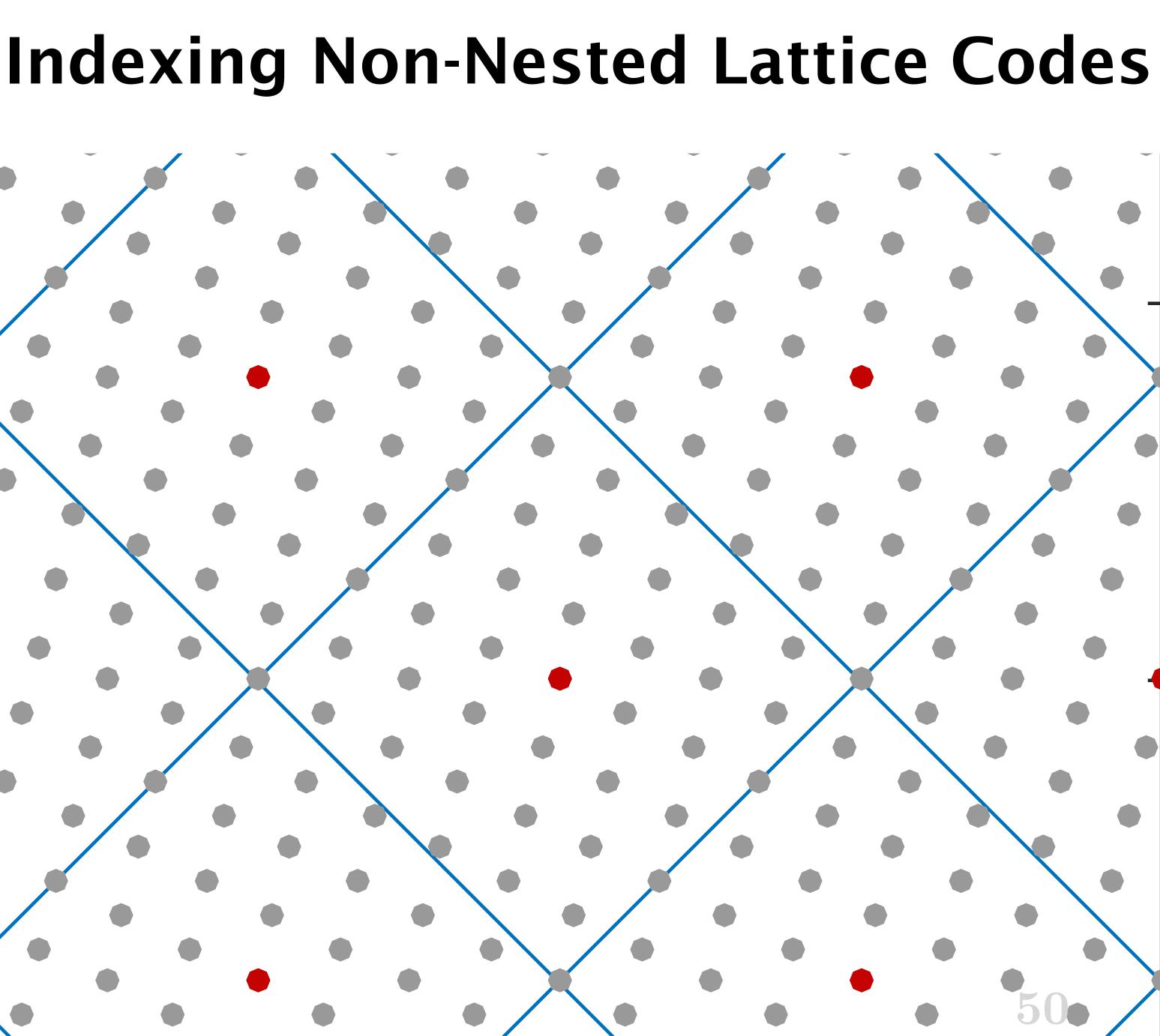
Achieving $\Lambda_s \subset \Lambda_c$ is easy. Encoding/indexing is nontrivial. Example for n = 2:

$$G_{\rm s} = \begin{bmatrix} 4 & 0\\ 4 & 8 \end{bmatrix} \longleftarrow \Lambda_{\rm s}$$
$$G_{\rm c} = \begin{bmatrix} 8/9 & 2/9\\ -4/9 & 8/9 \end{bmatrix} \longleftarrow \Lambda_{\rm s}$$
$$G_{\rm c}^{-1} = \begin{bmatrix} 1 & -1/4\\ 1/2 & 1 \end{bmatrix}$$

Note:

• $\Lambda_{\rm s} \neq K \Lambda_{\rm c}$ not self similar

• but $\Lambda_{\rm s} \subset \Lambda_{\rm c} \Rightarrow \Lambda_{\rm c} / \Lambda_{\rm s}$



Indexing Non-Nested Lattice Codes

Number of codewords:

$$\frac{\det(G_{\rm s})}{\det(G_{\rm c})} = 36$$

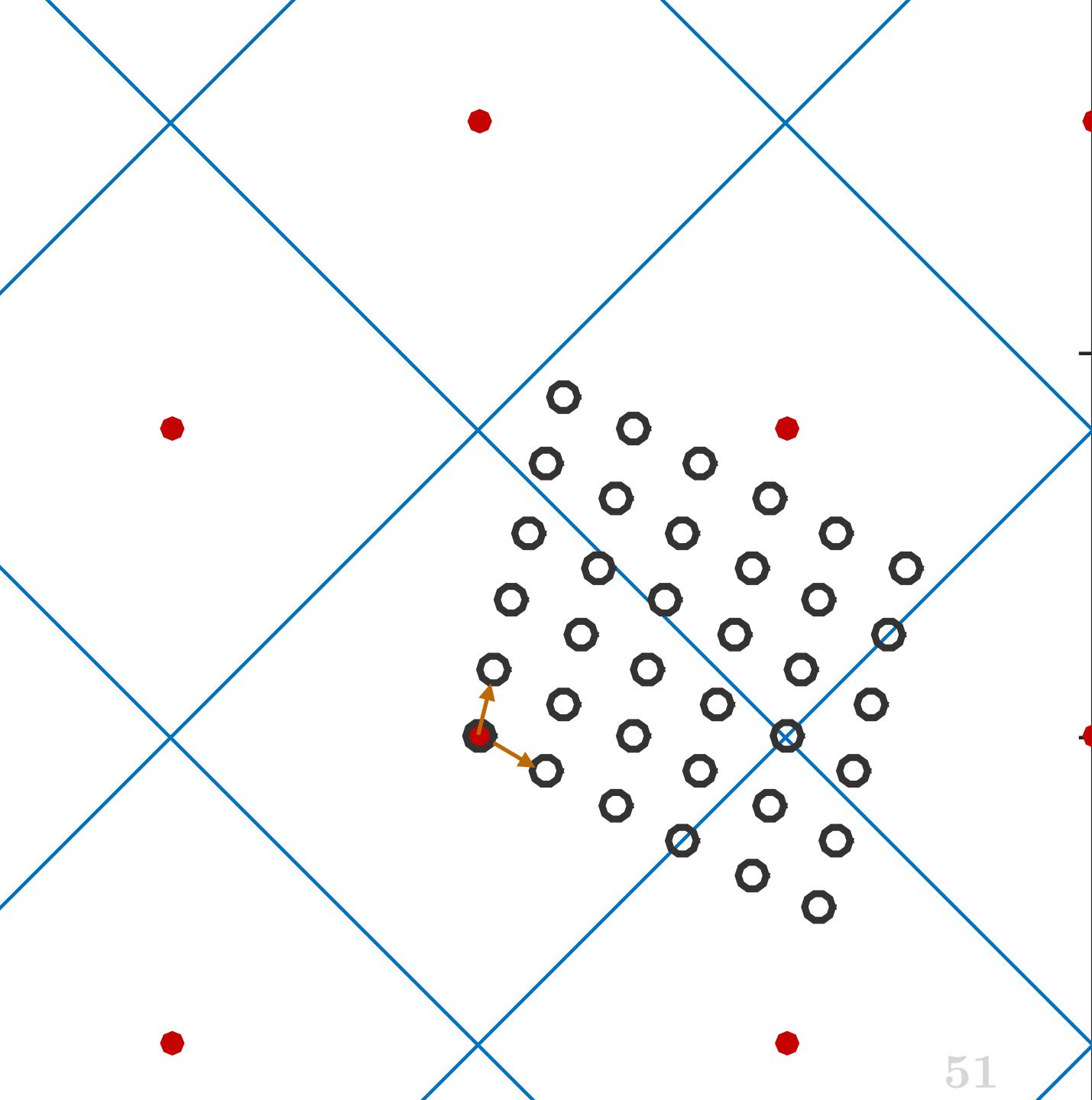
Natural candidate:

 $b_1 \in \{0, 1, 2, 3, 4, 5\}$ $b_2 \in \{0, 1, 2, 3, 4, 5\}$

Parallelotope encoding step:

$$G_{\rm c}\mathbf{b} = \begin{bmatrix} 8/9 & 2/9 \\ -4/9 & 8/9 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Do these points form coset leaders?



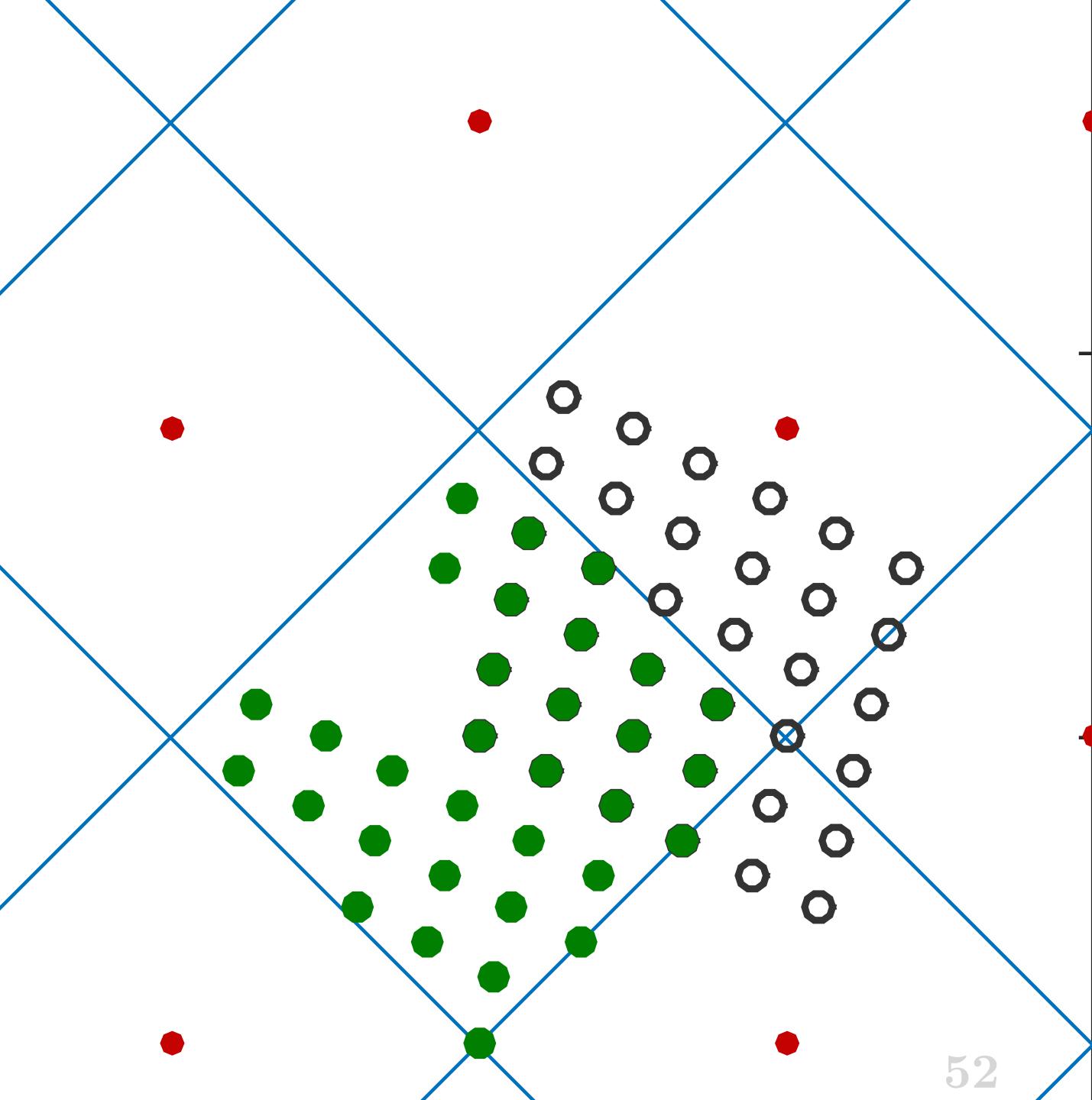
Indexing Non-Nested Lattice Codes

Encoding Step 2:

$$x = G\mathbf{b} - Q_{\Lambda_{\mathrm{s}}}(G\mathbf{b})$$

No! Coset leaders not formed.

What about a change of basis?



Finding a Basis Suitable for Encoding

We want to transform the basis of G_c :

where W is has integer entires and det W = 1. New basis is:

$$G'_{\rm c} = \begin{bmatrix} \mathbf{g}_1 & \mathbf{g}_2 \\ \overline{M_1} & \overline{M_2} \end{bmatrix}$$

where \mathbf{q} is some vector to be found. Find W:

Then det W = 1 is a linear diophantine equation in z_1, z_2, \ldots, z_n .

Brian Kurkoski, JAIST

 $G'_{\rm c} = G_{\rm c} W$

 $\cdots \quad \frac{\mathbf{g}_{n-1}}{M_{n-1}} \quad \mathbf{q}$

 $w_{n,2} \cdots w_{n,n-1} z_n$

53/34

Finding a Basis Suitable for Encoding

We want to transform the basis of G_c :

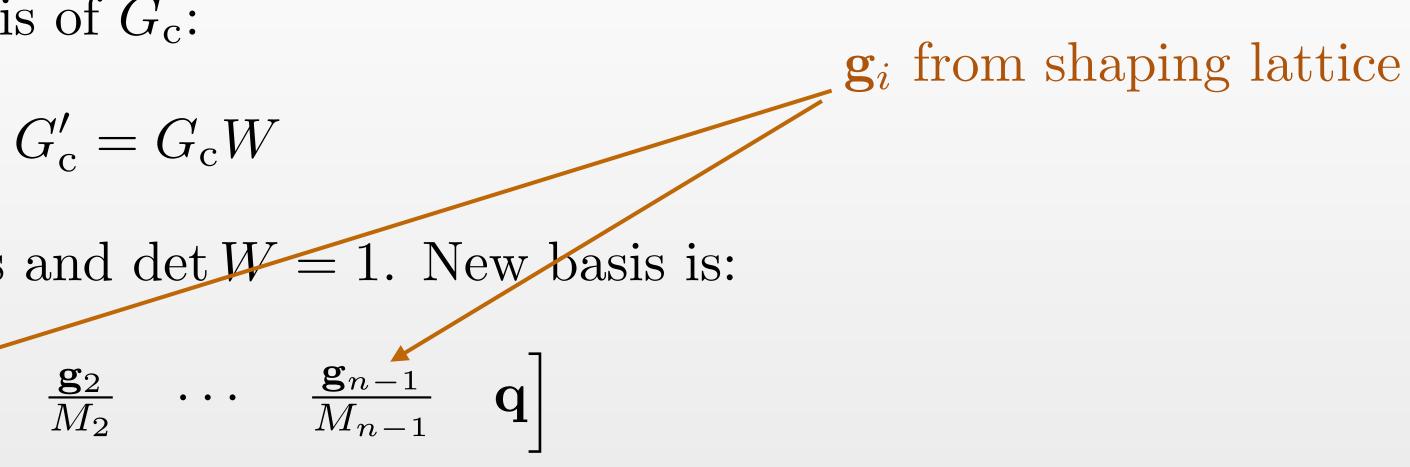
where W is has integer entires and det W = 1. New basis is:

$$G_{\rm c}' = \begin{bmatrix} \frac{\mathbf{g}_1}{M_1} & \frac{\mathbf{g}_2}{M_2} \end{bmatrix}$$

where \mathbf{q} is some vector to be found. Find W:

Then det W = 1 is a linear diophantine equation in z_1, z_2, \ldots, z_n .

Brian Kurkoski, JAIST



 $w_{n,2} \cdots w_{n,n-1} z_n$

Finding a Basis Suitable for Encoding

We want to transform the basis of G_c :

where W is has integer entires and $\det W = 1$. New basis is:

$$G_{\rm c}' = \begin{bmatrix} \mathbf{g}_1 & \mathbf{g}_2 \\ \overline{M_1} & \overline{M_2} \end{bmatrix}$$

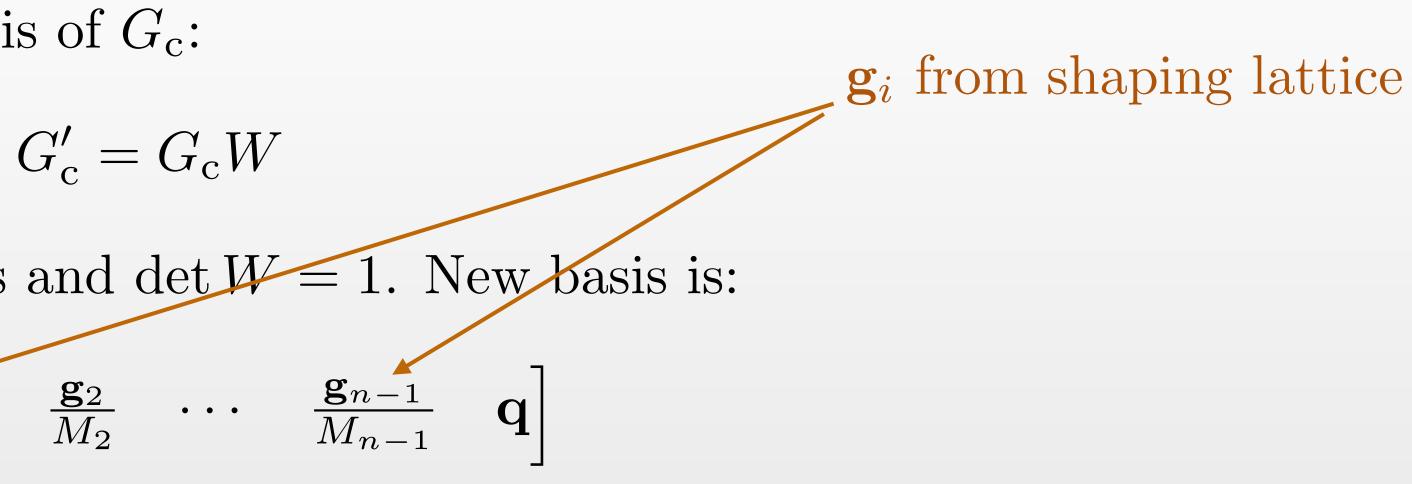
where \mathbf{q} is some vector to be found. Find W:

$$(G_{c})^{-1} \cdot G'_{c} = W$$

$$= \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1,n-1} & z_{1} \\ w_{21} & w_{22} & \cdots & w_{2,n-1} & z_{2} \\ \vdots & & & \\ w_{n,1} & w_{n,2} & \cdots & w_{n,n-1} & z_{n} \end{bmatrix}$$

Then det W = 1 is a linear diophantine equation in z_1, z_2, \ldots, z_n .

Brian Kurkoski, JAIST

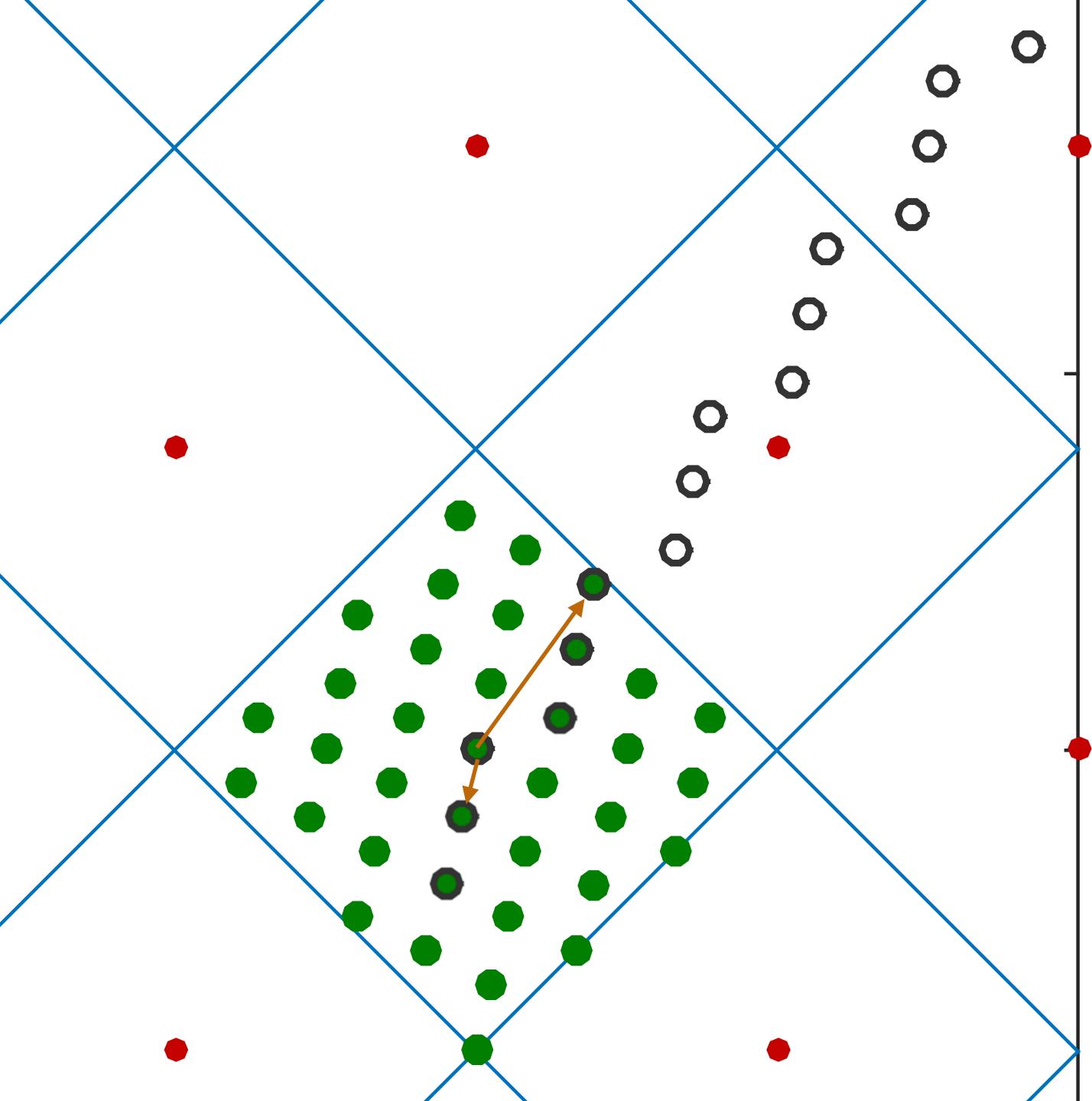


linearly dependent

Indexing Non-Nested Lattice Codes Using a Suitable Basis

$$\begin{bmatrix} 1 & -1/4 \\ 1/2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4/3 & q_1 \\ 4/3 & q_2 \end{bmatrix} = \begin{bmatrix} 1 & z_1 \\ 2 & z_2 \end{bmatrix}$$

det $W = 1 \Rightarrow 1z_2 - 2z_1 = 1$ has numerous solutions.



Summary – Physical Layer Network Coding

PLNC:

- Technique for cooperative wireless networks • Exploit network coding to increase capacity • Lattices: real codes to correct errors, shaping gain • Remove noise first, and interference later • Compute-and-Forward relaying also deals with fading

Recommended Reading

John Conway and Neil Sloane, Sphere Packings, Lattices and Groups, Springer, Third Edition, 1999

G. David Forney, Lecture notes for Principles of Digital Communications II Course at MIT http://dspace.mit.edu/

Ram Zamir, Lattice Coding for Signals and Networks, Cambridge Univ Press, September 2014

Bobak Nazer and Michael Gastpar, "Reliable Physical Layer Network Coding," *Proceedings of the IEEE*, March 2011

LATTICE CODING for Signals and Networks RAM ZAMIR

> INVITED P A P E R

Reliable Physical I Network Coding

N.LA SLOANE

Using the idea of network coding in the physical lopaper, as a means to improve throughput in wir

By BOBAK NAZER, Member IEEE, AND MICHAEL GASTP.

