
<#>

Message-Passing Decoding of Lattices 
Using Gaussian Mixtures

 

International Symposium on Information Theory 
July 11, 2008 

Toronto, Canada

Brian M. Kurkoski  

University of  
Electro-Communications 

Tokyo, Japan

Justin Dauwels 

MIT and  
Harvard Medical School 

(formerly RIKEN Brain Science 
Institute)



Brian Kurkoski and Justin Dauwels, “Message-Passing Decoding of Lattices Using Gaussian Mixtures” /21

Introduction

• Low-density lattice codes (LDLC) were proposed by Sommer, Feder and 
Shalvi. 

• LDLC’s are lattices, decoded using belief-propagation, like low-density parity 
check codes. 

• Decoding complexity is linear in the dimension.   Dimension n=105 possible 
! “Classical” lattices can be decoded in dimension n=2~100 

• Messages (beliefs) are functions. 
• Sommer et al. recognized the messages are mixtures of Gaussians, but in 

practice used quantized messages. 

• This talk has two parts:  
!Propose Gaussian Mixture Reduction algorithm: Approximate a 

mixture of Gaussians by a smaller number of Gaussians.    
!Review LDLC lattices.   Apply our algorithm to LDLC decoding. Messages 

that are true mixtures of Gaussians. The proposed algorithm 
performs as well as quantization. 
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How do we approximate a mixture of  
N Gaussians with M Gaussians, M < N ?
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True p(x)Approximate q(x)

Given:
A mixture of N Gaussians,

p(x) =
N�

i=1

ciN (z;mi, vi)

with known mixing coe⇥cients ci, means mi, variances vi,
Find:

A mixture of M Gaussians, q(x), which is a good approximation,
M < N :

q(x) � p(x).

Other Applications: Kernel density estimation, classification, speech
estimation, compressed sensing.
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Global Minimization of KL Divergence

• Kullback-Leibler divergence is widely used as a measure of similarity of two 
distributions.  
!EM algorithm, variational methods, generalized belief propagation can be 

phrased as KL minimization. 
• Ideally, minimize over all possible distributions of M Gaussians,     : 

• Possible when M = 1: moment matching. 
• Optimal approaches with M > 1 appear computationally demanding 
• Not suitable for: 

!Large data sets (kernel density estimation) 
!Decoding algorithm (our problem of LDLC decoding)
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Q

q(x) = arg min
q�⇥Q

KL
�

p(x)
⇤⇤⇤⇤q�(x)
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Gaussian Mixture Reduction Algorithm

The proposed Gaussian Mixture Reduction algorithm uses greedy, pairwise replacement 
of Gaussians 

Begin with a mixture of N Gaussians 
1. Compute a distance metric between all pairs of Gaussians 
2. For the pair with the lowest metric, combine into a single Gaussian 

•Now there is one fewer Gaussians 
Repeat from Step 1 until a stopping condition is reached. 

Combining — Easy 
! Moment matching: the moments of the two distributions are equal 
! Moment matching minimizes KL divergence 

Distance Metric — Hard 
! KL divergence is hard to compute efficiently 
! Instead, use the squared distance. 

■ Squared distance is a lower bound on KL divergence
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Moment Matching: Replace  
Two Gaussians with A Single Gaussian

• Find a single Gaussian which is a good approximation of two Gaussians 
!Use “moment matching”: the mean and variance of the mixture is equal to 

the mean and variance of the single Gaussian 
!Minimizing the Kullback-Leiber divergence leads to moment matching
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Mixture of Two 
Gaussians 
mean m1, m2 
var v1, v2

X1

X2

Y

E[Y ] = c1m1 + c2m2

E[Y 2] = c1 · (v1 + m2
1) + c2 · (v2 + m2

2)

Single Gaussian 
Approximation
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Distance Metric: 
Squared Distance has Closed Form

The local divergence between p1+p2 and q: 

also has no closed-form solution.  However, the squared distance: 

does have a closed-form solution.  Showed that the KL divergence is lower bounded 
by the squared distance.
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Single Gaussian 
Approximation q(x)

Mixture of Two 
Gaussians 
p1(x), p2(x)

KL
�
p1(x) + p2(x)

⇤⇤⇤⇤q(x)
⇥

SD
�
p(x)

⇤⇤⇤⇤q(x)
⇥

=
⌅

(p(x)� q(x))2dx
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Example: 
Gaussian Mixture Reduction Algorithm
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Begin: 12 Gaussian Mixture

• Looks like it would be well approximated by a three-Gaussian function
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Example 
Gaussian Mixture Reduction Algorithm
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After 7 iterations: 5 Gaussian Mixture

True p(x)Approximate q(x)
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Example 
Gaussian Mixture Reduction Algorithm
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Example 
Gaussian Mixture Reduction Algorithm
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• When error (squared distance) becomes too large, stop.

True p(x)Approximate q(x)
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Lattices

A lattice is an infinite and regular set of points x in n-dimensional Euclidean space: 

x = G . b 

b = (b1, b2, ... , bn): n-by-1 vector of integers 
G: n-by-n generator matrix 
x = (x1, x2, ... , xn): n-by-1 vector, lattice point 

e.g. n =2, G = 

12
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Pictures n=2 
Lattices n=100~100000
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Sommer, Feder and Shalvi gave a lattice construction and decoding algorithm based upon 
low-density parity-check codes.  Extensive convergence analysis in IT Trans, April 2008. 

Low-Density Parity-Check 
Codes Codes

• Code over a finite field (binary) 
• Sparse parity check matrix 

LDLC 

• Lattice: Code over the real numbers 
• Inverse generator H=G-1 is sparse 

Low-Density Lattice Codes (LDLCs)
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Low-Density Parity-
Check Codes Codes

14

So, messages 
are scalars 
(LLRs)

Low-Density Lattice 
Codes (LDLC)

# check nodes < # variable nodes 
x1 + x2 + x3 = 0 (over field) 

Approaches BIAWGN channel capacity 

Variables are from the field
xi � {0, 1}

x1 x2 x3 x4 x5 x6 x7 x8

Variables are real numbers
xi � R

So, messages 
are functions (!)

# check nodes = # variable nodes 
x1 + x2 + x3 = b (over real numbers) 
b is an integer 

Comes within 0.6 dB of a specialized 
communications problem
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Volume V

Code: Lattice and shaping region, power constraint S

Dec.:Maximum likelihood Decoder: Lattice decoding

Achieves Shannon limit: Achieves only: No power constraint:

Urbanke & Rimoldi 1998 
Erez & Zamir 2004

de Buda, 1975 
Loeliger, 1997

Poltyrev, 1994

Code: Lattice only 
Power constraint through 

volume
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LDLC Decoder:  
Check Node
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x3

• All operations preserve Gaussianity: input is a Gaussian, output is a Gaussian 
• Similarly at variable node: Gaussians input, Gaussian output

x2 � N (m2, v2)

h2h1

x1 � N (m1, v1)

hkxk � N (hkmk, h2
kvk)

x3 ⇥
�

a

N (�h1m1 + h2m2 � a

h3
,
h2

1v1 + h2
2v2

h2
3

)

h3x3 ⇥
�

a

N (h1m1 + h2m2 � a, h2
1v1 + h2

2v2)

h3x3 � N (h1m1 + h2m2, h
2
1v1 + h2

2v2)

h3

Input: Single Gaussian  
or Mixture

Output: Always a Mixture

1

Shift-and-repeat: unknown integer

Convolution:
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Explosion of Gaussians
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• Number of Gaussians grows quickly 
• Prior work: quantize the Gaussians 
• Our work: apply the Gaussian-mixture reduction algorithm

Mixutre of: n1 n2 n3 Gaussians
Input :

Output :
Mixture of: n1n2n3I Gaussians

where I is the number
of integer repeats

m1
m2

m3
m1m2m3

1
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LDLC Performance: 
Quantized Decoder
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Gaussian Mixture Decoding 
Max allowed penalty θ=2
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Gaussian Mixture Decoding 
Max allowed penalty θ=0.01
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Open Problem
• Convergence is obtained for lattice point + noise. 
• BP fails for general quantization, greater noise. 
• A high dimension lattice quantizer is of great  

interest for achieving channel capacity,  
dirty paper coding, lossy source coding. 

Summary 
• Low density lattice codes, proposed by Sommer, Feder and Shalvi are 

interesting. 
• Proposed a Gaussian mixture reduction algorithm, which approximates a 

mixture of Gaussians with a smaller number of Gaussians 
• This algorithm can be applied to LDLC decoding, and shows no performance loss 

• “Nicer” to represent the messages as Gaussians, amenable for further 
analysis.
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BACKUP 
Complexity: Memory

• Quantized: Used 1024 points to quantize each point 
• Gaussian mixtures: Each message requires a maximum of 10x3= 30 numbers 

• Quantized: computation is dominated by a fast Fourier transform, we used 
length 128 

• Gaussian mixtures: Computation is about O(M4) where  
!Distribution of M depends upon other parameters.

Complexity: Computation
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