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Background

The capacity of the constrained-power AWGN channel (Shannon):

can be achieved using lattices
!de Buda, Loeliger, Richardson & Urbanke, Erez & Zamir

Belief-propagation: Codes and Lattices
!Low-density parity-check codes are highly successful, but these are finite-

field codes, rather than lattices.
! "LDPC lattices" are lattices based upon LDPC codes.   Non-binary LDPC 

were shown to be better than binary.
!LDLC — Low density lattice codes    

n Within 0.6 dB of capacity of unconstrained-power channel.
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In This Talk...

Consider LDLC lattices on the constrained-power AWGN channel.
!Limited attention so far.

Use “nested lattices” for encoding, requires quantization
"Continuous approximation" separate shaping gain from coding gain

Propose a simple modification to BP to improve shaping loss (gain)
!Standard belief-propagation does not work well for quantization

Design LDLC lattices which minimize (maximize) the sum of the shaping 
loss (gain) and coding loss (gain). 

Numerical results M=8 (3 bits per dimension), dimension n=100
! Individually: shaping loss of 1.45 dB and coding loss of 2.2 dB = 3.65 dB
!Communication system: Loss of 3.6 dB
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Low-density lattice codes (LDLC) introduced by Sommer, Shalvi and Feder.
LDLC have a sparse inverse generator matrix:

H = G-1

 H has constant row and column weight d.  Dominant 1, other positions w < 1  

Each row and each column has:

LDLC Lattices
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=⇒Theorem [Sommer et al.] If α ≤ 1,
Gaussian variances converge exponentially fast.

H =





h2 0 0 0 h1 0 0 −h3

0 −h1 0 0 0 h3 h2 0
0 0 −h1 h3 0 −h2 0 0
h3 0 −h2 0 0 0 h1 0
0 −h2 h3 h1 0 0 0 0
0 0 0 0 h3 h1 0 −h2

−h1 0 0 0 h2 0 h3 0
0 h3 0 −h2 0 0 0 −h1





h1 ≥ h2 ≥ · · · ≥ hd Define α =
h2

2 + h2
3 + · · · + h2

d

h2
1

≥ 0

Use α as LDLC
design parameter.
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H =
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±w 0 0 0 ±1 0 0 ±w

]

h1 ≥ h2 ≥ · · · ≥ hd Define α =
h2

2 + h2
3 + · · · + h2

d

h2
1

≥ 0

Use α as LDLC
design parameter.
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Unconstrained Power Channel

Transmit an arbitrary lattice 
point over AWGN channel.  

No power constraint, but the 
lattice density is constrained.

Study coding gain, no shaping 
gain.

“Capacity”

(see Poltyrev 1994)
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   simplified (single Gaussian) decoder
   increasing alpha improves threshold
   increasing d increases complexity
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Lattices Codes for the AWGN Channel
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Lattice Code C = Λ
⋂

B
Lattice Λ

√
nS

Shaping region B

• Lattice is an infinite number of points.

• Lattice code (finite) is the intersection of a shaping region and a lattice.

• Shaping region satisfies the power constraint.

• Lattices have elegant structure, are “easy” to decode.
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Continuous Approximation 
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Depends only on shape of B
(normalized second moment)

Depends only 
on coding lattice Λ

lim
n→∞

G(n-sphere) =
1

2πe
G(cube) =

1
12

Shaping Loss (Gain) 

lim
n→∞

G(cube)
G(n-sphere)

=
πe

6
= 1.53 dB
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Separate lattice Λ and shaping region B contribution to signal power:

Average Power ≈
∫

B ||x||2dx
nV (B) 2

n +1

︸ ︷︷ ︸
G(B)

·MnV (Λ)
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Practical Encoding:
Nested Lattices (Conway and Sloane 1983)
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x = G · b
Easy to encode,

poor shaping gain

x = G · b mod Λs

Shaping by
“self-similar” Voronoi region

• How to map information b ∈ {0, 1, ...,M − 1}n to those lattice points inside B.

• B is the Voronoi region of a sublattice.

coding lattice

shaping lattice

Find x = G · b mod Λs by quantizing G · b to the nearest point in Λs.
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Proposed Quantizer
Modification of Belief-Propagation Decoder

Belief-propagation algorithm:
! Is effective when the input is a lattice point plus noise.
!Does not usually converge when input is an arbitrary point.

Proposed quantizer
!Let the belief-propagation algorithm run for 100 iterations
!After each iteration, make hard decisions on integers
!Using 100 hard decisions, construct a distribution for each integer
! Identify the Q least reliable symbols (e.g. Q = 10)
!Perform a brute-force search over these symbols (exponential in Q)
!Accept the integer sequence with the lowest mean squared error. 

This method is not optimal, but optimality is not required for encoding
!penalty is unnecessary increase in signal power.
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Proposed Quantizer 
Hard Decisions After Each Iteration
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Shaping Loss (Gain)

Compute G(B) via Monte Carlo integration.

Increasing alpha increases shaping loss.
Both lattice design and suboptimal quantizer contribute to shaping loss.
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G(B) =
∫

B ||x||2dx
nV (B) 2

n +1
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Coding Loss (Unconstrained Power)

Dimension 100 lattice has 1.8 dB loss from sphere bound
This loss decreases for increasing dimension (0.7 dB at dimension 10,000)
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Lattice Design 

Continuous approximation allows separation of shaping loss and coding loss
Find the value of alpha which minimizes sum losses.
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Power-Constrained Channel, n=100
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Simu.

M=8 1.45 + 2.2 = 3.65 3.6

M=4 1.3 + 2.2 = 3.5 3.8

sphere bound

sphere bound

M=4
(2 bits) M=8 (3 bits/dim.)

End-to-end simulation: proposed encoder, standard BP lattice decoding

Continuous approximation is better at higher dimensions.
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Conclusion

Considered LDLC lattices on the power-constrained AWGN channel.

Coding loss (gain) and shaping loss (gain) can be separated, 
!But with nested lattices, the shaping lattice is a sublattice of the coding 

lattice. 
!Designed LDLC lattices to minimize the signal power

Encoding for the power-constrained channel requires quantization
!Made a simple modification to BP decoder to improve shaping loss
!The modification has complexity exponential in lattice dimension
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