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Background

• Low-density lattice codes (LDLC) are lattices [Sommer, Feder and Shalvi, IT 2008]
• Decoded using belief-propagation, like low-density parity check codes.
• Decoding complexity is linear in the dimension.  Dimension n=105 possible.

! “Classical” lattices can be decoded in dimension n=2~200
• Within 0.6 dB of unconstrained power capacity
• Messages (beliefs) are functions, rather than numbers.  Existing implementations

! Quantize the functions
! Gaussian mixture approximation

• Propose a LDLC decoder: belief-propagation messages approximated by a single 
Gaussian, 

• Single-Gaussian decoding has a noise threshold within 0.1 dB of the quantized-
message implementation (that is, 0.7 dB from capacity)

• But, single-Gaussian decoding has much lower complexity than other methods
• Design of regular LDLC lattices alpha=0.7 is better than alpha approaching 1
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In this talk
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Sommer, Feder and Shalvi gave a lattice construction and decoding algorithm based upon 
low-density parity-check codes.  Extensive convergence analysis in IT Trans, April 2008.

Low-Density Parity-Check 
Codes Codes

• Code over a finite field 
(binary)

• Sparse parity check matrix

LDLC

• Lattice: Code over the real numbers

• n-by-n inverse generator H=G-1 is sparse
• H has row and column weight d
• Non-zero entries in rows and columns:

Low-Density Lattice Codes (LDLCs)

3

x = G · b

±{h1, h2, · · · , hd}

n-dim integer vectorn-dim lattice points



Kurkoski, Yamaguchi, Kobayashi: University of Electro-Communications /14

Low-Density Parity-
Check Codes Codes
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So, messages 
are scalars 
(LLRs)

Low-Density Lattice 
Codes (LDLC)

# check nodes < # variable nodes
x1 + x2 + x3 = 0 (over field)

Approaches BIAWGN channel capacity

Variables are from the field
xi ∈ {0, 1}

x1 x2 x3 x4 x5 x6 x7 x8

Variables are real numbers
xi ∈ R

So, messages 
are functions (!)

# check nodes = # variable nodes
x1 + x2 + x3 = b (over real numbers)
b is an integer

Comes within 0.6 dB of unconstrained 
power AWGN channel capacity.
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!Use entire lattice for transmission
!The code is linear!

!Reliable “communication” [Poltyrev, etc.] if and only if

!Transmit power is unconstrained; no shaping region.

!
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Implementations of LDLC Decoders

How to represent messages, which are functions?

0. Exact  True message is a mixture of Gaussians, but 
number is exponential in iterations.

1. Quantization of the the messages [Sommer et al.]
! About 1024 quantization points gets good performance 

2.  Mixture of Gaussians —  Approximate the message 
with a mixture of Gaussians [joint work with Justin Dauwels]
! Uses a "Gaussian Mixture Reduction Algorithm"
! preserves Gaussian nature of messages, low memory 

requirements.
! Further improvements: Yona and Feder, ISIT 2009

3.  Single Gaussian (this talk)  Approximate the message 
with a single Gaussian
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x3x2 ∼ N (m2, v2)

h2

h1

x1 ∼ N (m1, v1)

h3

Input: Single Gaussian 

Output: Single Gaussian
(wait for shift-and-repeat)

Single Gaussian Decoder: 

Check Node (Easy Part)

m1, v1

m
2
, v

2

Message is two scalars

m3 = −h1m1 + h2m2

h3

v3 =
h2

1v1 + h2
2v2

h2
3

h1x1 + h2x2 + h3x3 = b

h3

Unknown integer

Check node function is quite simple:
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Moment Matching — Gaussian Approximation
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X1

X2

Y

Let X be the mixture of two Gaussians X1 and X2:

X = X1 + X2

= c1N (m1, v1) + c2N (m2, v2).

Let Y be the single Gaussian (mean mY , variance vY )
which approximates X. Then, KL(X||Y ) is minimized when:

E[Y ] = E[X] (first moment)
E[Y 2] = E[X2] (second moment)

Then,

mY = E[Y ] = c1m1 + c2m2

E[Y 2] =
∑

i

ci · (vi + m2
i )

Of course:

vY = E[Y 2]− E[Y ]2
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Single Gaussian Decoder:
Variable Node (Hard Part)

Forward-backward algorithm
at variable node

Inputs from check node: Single Gaussians (implied periodicity) 

Output: Single Gaussian

Input: 
From Channel 

(single Gaussian)

Input: 
From Channel 
(single Gaussian)
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Next recursion step
or output

Moment Matching 
Approximation

Variable Node One-Step Function
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−1 0 1
(a)

−1 0 1
(b)

−1 0 1
(c)

−1 0 1
(d)

Input from check node
(must be shift-and-repeated)

Single Gaussian Input
(from recursion)

Belief propagation:
Multiply

h
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Complexity Measure: Can you write the 
decoding rule on one slide?
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Variable Node Check Node

Quantized 
message

128-point DFT Sum of 1024 numbers

Multiple 
Gaussians 

Gaussian Mixture Reduction:

• Compute pair-wise distance between M2 Gaussians

• Repeatedly combine Gaussians

Single 
Gaussian m = v′

∑

b∈B

( b

vch
+

mc

vc
+

ma

va

)
exp

(
− 1

2
(b/h + mc −ma)2

vc + va

)

v = v′ −m2

+v′2
∑

b∈B

( b

vch
+

mc

vc
+

ma

va

)2 exp
(
− 1

2
(b/h + mc −ma)2

vc + va

)

Binary 
LDPC 
(log 
domain)

xa + xc

m = ma + mc

v = va + vc

• Single-Gaussian decoder is considerably simpler that previous methods
• Single-Gaussian decoder is more complicated than binary LDPC, but at least the decoding 

rule fits on the page.

sgn(xa, xb) · 2 tanh−1
(

log
∣∣ tanh

xa

2
∣∣ + log

∣∣ tanh
xb

2
∣∣
)



Kurkoski, Yamaguchi, Kobayashi: University of Electro-Communications /14

Noise Thresholds — 
Monte Carlo Density Evolution

• Single-Gaussian decoding  
noise threshold within 0.1 
dB of the quantized-
message implementation.

• Single-Gaussian decoder 
has a slight performance 
loss but is significantly 
simpler.
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Noise Thresholds — Regular Code Design

• Even alpha =0.7 is slightly better that other higher values.
• Increasing d beyond 7 gives little benefit (same as Sommer et al.)
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LDLC sparse matrix non-zero entries:

h1 ≥ h2 ≥ · · · ≥ hd

Characterized by parameter α:

α =
h2

2 + h2
3 + · · · + h2

d

h2
1

≥ 0

Theorem [Sommer, et al.]: Convergence
is exponentially fast for α ≤ 1.

It was noted,

α → 1

gave good performance.
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Conclusion

• Proposed a single-Gaussian decoder for LDLC lattices

• Complexity is much lower than previous methods — we could write the decoding rule 
on one slide

• Performance: Minimal loss, noise threshold 0.1 dB away from more complicated 
decoder.

• Code Design  Regular codes found that alpha->1 wasn’t always best, slight gain by 
picking alpha = 0.7
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What about finite or smaller dimension?

"Low" dimension lattices (dimension 100-1000) 
• Single Gaussian numerical results poor.
• Multiple Gaussian decoder works OK at low dimension.

• Suggestion: modify BP decoder to improve convergence at low dimensions
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Low Dimension (100-1000)
More Gaussians
(Performance loss with single Gaussian)

High dimension (10000 to infinity)
Single Gaussian OK


