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Information Theoretic Limits
on Channel Quantization

» Detection and decoding algorithms: algorithms with real-valued numbers

» VLSI implementation: numbers are converted to bits — quantization

» Power consumption, cost, etc. of receivers increases with the number of bits
» Broad goal: Reduce the number of bits without sacrificing performance.

» What are the information theoretic limits?

D~ X—>»| channel Y| quantizer @ >/

Two simpler questions:

1. Find channel quantizer to

2. Find the quantized channel capacity

maximize the information rate

Q* = arg mgxI(X; Z) p*, Q" = arg m%XI(X; Z)
p,
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Quantization of Continuous-Output Channels

»1960s and 70s: The cut-off rate as a criterion for channel quantizer design
» Mutual information is a better criterion (capacity-achieving LDPC codes)
1. Channel Quantization
» BI-AWGN quantized to 3 levels [Ma et. al, 2002]
» “Locally optimal” quantization algorithm [Liveris and Georghiades 2003]
» Quantization of flash memory channel models [Wang et al 2011]
2. Quantized Channel Capacity
» Singh et al 2007, 2009: Continuous channels quantized to K levels
®input distribution: K or K+1 discrete levels sufficient
¥ Jocally optimal /brute force channel quantization

» Quantization of channels with memory |Zeitler, Singer and Kramer 2010, 2011]

These are hard problems! Few proofs of optimality
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mutual information

(Highly Simplified)

Channel Quantization

Mutual information I(X; Z): function of

e input distribution p

e and quantizer ()
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Channel capacity :
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Channel quantization :
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Optimization conditions

Known as

Class of problem

Maximize over p, fixed channel

Classical channel capacity

Fixed p, minimize over ()

Classical rate-distortion

convex optimization

Arimoto-Blahut algorithm [1972]

Fixed p, maximize over ()

1. Channel quantization

concave optimization, NP hard

Maximize over p and over ()

2. Quantized channel capacity

convex-concave optimization
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Contributions of This Work

Consider discrete memoryless channels,

rather than continuous channels

p~X— DMC P—Y— Q — 7

1. Channel Quantization
» Maximize mutual information I( X;Z), provably optimal
» Polynomial-complexity algorithm, dynamic programming approach
2. Quantized Channel Capacity
> Find the jointly optimal input distribution/quantizer or declare failure
» also polynomial complexity

Applies to arbitrary DMCs with binary inputs
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Optimal quantizer is convex

Y 1
Consider a DMC with P;;. Goal: max I(X; Z)
1 The channel outputs are points in a 1-D space
1 ) b
i|1
2 P’

K, K<M

fori:=1,2,...,. M
1, Quantizer

P;); Qi

M channel outputs P2
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. P Pop P
Lemma: If the outputs are labeled according to: — < — < --- < :
P2 P2 P2

then the mutual-information maximizing quantizer is convex on {1,2,..., M}.
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Statistical Learning Theory

Optimal Quantizer is Convex: Proof Sketch

Proof sketch: [I(X;Z) = H(X)— H(X|Z)

\——

H(X|Z) = —Ez|Bxjz[logp(X|2)]|
Statistical/Machine Learning Theory (X12) Z|=X12 [ og p(X]| )]

» Classification: from observation, make a classification (e.g. optical character recognition)
» Minimize some loss function (supervised learning)

» Impurity (or risk) is the expectation of an expectation of a loss function:

partition of the sample space. Hence the risk (1) can be rewritten

[Chou, 1991]

R(g) =) P(t)- E[((Y,9(t) | 1], )

teT

Broad class of loss functions, preimage of optimum classification mapping forms a convex set:

2. Results.

THEOREM 1. For any C: 2> € there exists a C: %— € such that [Burshtein et al., 1992]
V(C(Y)) < W(C) and such that C~'(¢) is convex for all ¢c € €.

Identify H(X|Z) as an impurity. Quantizer (mapping) image forms a convex set.
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1. Channel Quantization
Possible algorithmic approaches

Algorithms (M channel outputs, K quantizer outputs):
1. Brute force (ignore convexity): complexity KM

2. Search all convex sets. Complexity:

M —1
K -1
e Worst-case complexity: exponential in K

3. Proposed Dynamic programming approach:

e Avoid recomputing part of the total sum
e Parts are called “partial mutual information”

e Complexity M3
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example: M = 5 channel outputs,
K = 3 quantizer outputs
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1. Channel Quantization
Algorithm for Optimal quantization

Dynamic programming: Optimal solution contains optimal solutions to subproblems
Subproblem find optimal quantization of ch. outputs 1...m to quantizer outputs 1...k

» Key: use the optimal quantization 1...k1 to find optimal quantization of 1...k

Example: how to quantize outputs 1-4 to two values
B A
(1—=1)+ ) | | | |
(1—=2)+:(3—4) | | |
(1—=3)+u(4d—4) | | |

k_ partial sum of mutual information

i Zppl‘lof-fi 2 ir—ars1 Py
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1. Channel Quantization
Algorithm for Optimal quantization

Dynamic programming: Optimal solution contains optimal solutions to subproblems
Subproblem find optimal quantization of ch. outputs 1...m to quantizer outputs 1...k

» Key: use the optimal quantization 1...k1 to find optimal quantization of 1...k

Example: how to quantize outputs 1-5 to three values
O © ©® @ O © «
| | ] | : |

| | | b | |
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2. Quantized Channel Capacity
Jointly Optimal Quantizer and Input Distribution

» Similar procedure to previous. For m outputs quantized to k levels:
B for each quantizer: maximum partial mutual information
B select the quantizer with the greatest partial mutual information

B for this one, find a range L of locally optimal input distributions

» This range is important
(1) if final p* is range L,
then it is known optimal.
(2) otherwise, another quantizer
may be optimal

-> Declare a failure

Partial Mutual Information

B Continue recursively:

® Jocally optimal quantizer and

® the range of input distributions
0 0.2 0.4 0.6 0.8 1
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2. Quantized Channel Capacity
Example: Optimal Quantizers

Create a DMC:
» BPSK +1/-1
» data-dependent AWGN noise

» quantize uniformly M levels

Example:
» M = 16 output channel
» quantize to K = 4 levels

Observations:

» data-independent noise:

decisions cluster at cross-over

» data-dependent noise:

decisions move towards reliable data
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2. Quantized Channel Capacity
Example: Capacity 055 , , , | |
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Conclusion

Channel quantization is important for reducing complexity of receivers
» Maximization of mutual information is a highly suitable metric
» These concave optimization problems are NP-Hard

Easier to work with discrete problems than continuous problems

For arbitrary binary-input DMCs:
> 1. Channel quantization (fixed input distribution):
® Maximize mutual information, provably optimal
¥ Polynomial (cubic) complexity
» 2. Quantized channel capacity
¥ Find the jointly optimal input distribution/quantizer or declare failure

® Also polynomial-complexity
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