Finding the Capacity of a Quantized Binary-Input DMC

Brian M. Kurkoski Japan Advanced Institute of Science and Technology

and

Hideki Yagi University of Electro-Communications

Tokyo, Japan

July 2, 2012 International Symposium on Information Theory MIT, Cambridge, Massachusetts, USA

Information Theoretic Limits on Channel Quantization

Detection and decoding algorithms: algorithms with real-valued numbers
VLSI implementation: numbers are converted to bits — quantization
Power consumption, cost, etc. of receivers increases with the number of bits
Broad goal: Reduce the number of bits without sacrificing performance.

≻ What are the information theoretic limits?

$$p \sim X \longrightarrow$$
 channel $\longrightarrow Y \longrightarrow$ quantizer $Q \longrightarrow Z$

Two simpler questions:

<u>1. Find channel quantizer to</u> <u>maximize the information rate</u>

$$Q^* = \arg\max_Q I(X;Z)$$

2. Find the quantized channel capacity

$$p^*, Q^* = \arg\max_{p,Q} I(X;Z)$$

Quantization of Continuous-Output Channels

- > 1960s and 70s: The **cut-off rate** as a criterion for channel quantizer design
- > Mutual information is a better criterion (capacity-achieving LDPC codes)

1. Channel Quantization

- \geq BI-AWGN quantized to 3 levels [Ma et. al, 2002]
- ➤ "Locally optimal" quantization algorithm [Liveris and Georghiades 2003]
- \geq Quantization of flash memory channel models [Wang et al 2011]

2. Quantized Channel Capacity

- Singh et al 2007, 2009: Continuous channels quantized to K levels
 - Input distribution: K or K+1 discrete levels sufficient
 - locally optimal/brute force channel quantization
- \geq Quantization of channels with memory [Zeitler, Singer and Kramer 2010, 2011]

These are hard problems! Few proofs of optimality

(Highly Simplified) Channel Quantization is Concave Optimization

Mutual information I(X; Z): function of

- input distribution p
- and quantizer Q

Optimization conditions	Known as	Class of problem
Maximize over p , fixed channel	Classical channel capacity	convex optimization
Fixed p , minimize over Q	Classical rate-distortion	Arimoto-Blahut algorithm [1972]
Fixed p , maximize over Q	1. Channel quantization	concave optimization, NP hard
Maximize over p and over Q	2. Quantized channel capacity	convex-concave optimization

Brian Kurkoski and Hideki Yagi

Contributions of This Work

Consider discrete memoryless channels, rather than continuous channels

$$p \sim X \longrightarrow DMC \longrightarrow Y \longrightarrow Q \longrightarrow Z$$

- 1. Channel Quantization
 - \succ Maximize mutual information I(X;Z), provably optimal
 - \succ Polynomial-complexity algorithm, dynamic programming approach
- 2. Quantized Channel Capacity
 - \geq Find the jointly optimal input distribution/quantizer or declare failure
 - \geq also polynomial complexity

Applies to arbitrary DMCs with **binary inputs**

Optimal quantizer is convex

Lemma: If the outputs are labeled according to: $\frac{P_{1|1}}{P_{1|2}} < \frac{P_{2|1}}{P_{2|2}} < \cdots < \frac{P_{M|1}}{P_{M|2}}$, then the mutual-information maximizing quantizer is convex on $\{1, 2, ..., M\}$.

 $\frac{P_{i|1}}{P_{i|2}}$

Optimal quantizer is convex

Lemma: If the outputs are labeled according to: $\frac{P_{1|1}}{P_{1|2}} < \frac{P_{2|1}}{P_{2|2}} < \cdots < \frac{P_{M|1}}{P_{M|2}}$, then the mutual-information maximizing quantizer is convex on $\{1, 2, ..., M\}$.

Statistical Learning Theory Optimal Quantizer is Convex: Proof Sketch

Proof sketch:
$$I(X;Z) = H(X) - \underbrace{H(X|Z)}_{H(X|Z)} = -E_{Z} \Big[E_{X|Z} \Big[\log p(X|Z) \Big] \Big]$$

Statistical/Machine Learning Theory

 \succ Classification: from observation, make a classification (e.g. optical character recognition)

- \succ Minimize some loss function
- \succ Impurity (or risk) is the expectation of an expectation of a loss function:

partition of the sample space. Hence the risk (1) can be rewritten $R(q) = \sum_{t \in \hat{T}} P(t) \cdot E[\ell(\boldsymbol{Y}, \hat{\boldsymbol{y}}(t)) \mid t], \quad (2)$

[Chou, 1991]

(supervised learning)

Broad class of loss functions, preimage of optimum classification mapping forms a convex set:

2. Results.

THEOREM 1. For any $C: \mathscr{X} \to \mathscr{C}$ there exists a $\tilde{C}: \mathscr{U} \to \mathscr{C}$ such that $\Psi(\tilde{C}(Y)) \leq \Psi(C)$ and such that $\tilde{C}^{-1}(c)$ is convex for all $c \in \mathscr{C}$.

[Burshtein et al., 1992]

Identify H(X|Z) as an impurity. Quantizer (mapping) image forms a convex set. Brian Kurkoski and Hideki Yagi

1. Channel Quantization Possible algorithmic approaches

Algorithms (M channel outputs, K quantizer outputs):

- 1. Brute force (ignore convexity): complexity K^M
- 2. Search all convex sets. Complexity:

 $\binom{M-1}{K-1}$

- Worst-case complexity: exponential in K
- 3. Proposed Dynamic programming approach:
 - Avoid recomputing part of the total sum
 - Parts are called "partial mutual information"
 - Complexity M^3

example: M = 5 channel outputs, K = 3 quantizer outputs = 62 25 3 2 52 3 5 2 3 5 2 5 k = 2 k = 3k = 1 $I(X;Z) = \sum_{k=1}^{K} \left(\sum_{j=1}^{2} p_j T_{k|j} \log \frac{T_{k|j}}{\sum p'_j T_{k|j}} \right)$ $I(X;Z) = \sum_{k=1}^{K} (\iota_k)$

1. Channel Quantization Algorithm for Optimal quantization

Dynamic programming: Optimal solution contains optimal solutions to subproblems
Subproblem find optimal quantization of ch. outputs 1...m to quantizer outputs 1...k
Key: use the optimal quantization 1...k-1 to find optimal quantization of 1...k

Example: how to quantize outputs 1-4 to two values

1. Channel Quantization Algorithm for Optimal quantization

Dynamic programming: Optimal solution contains optimal solutions to subproblems
Subproblem find optimal quantization of ch. outputs 1...m to quantizer outputs 1...k
▶ Key: use the optimal quantization 1...k-1 to find optimal quantization of 1...k

Example: how to quantize outputs 1-5 to three values

2. Quantized Channel Capacity Jointly Optimal Quantizer and Input Distribution

 \succ Similar procedure to previous. For *m* outputs quantized to *k* levels:

- for each quantizer: maximum partial mutual information
- select the quantizer with the greatest partial mutual information
- for this one, find a range L of locally optimal input distributions
- \succ This range is important
 - (1) if final p^* is range L, then it is known optimal.
 - (2) otherwise, another quantizermay be optimal-> Declare a failure
- Continue recursively:
 - locally optimal quantizer and
 - the range of input distributions

2. Quantized Channel Capacity Jointly Optimal Quantizer and Input Distribution

 \succ Similar procedure to previous. For *m* outputs quantized to *k* levels:

- for each quantizer: maximum partial mutual information
- select the quantizer with the greatest partial mutual information
- for this one, find a range L of locally optimal input distributions
- \succ This range is important
 - (1) if final p^* is range L, then it is known optimal.
 - (2) otherwise, another quantizermay be optimal-> Declare a failure
- Continue recursively:
 - locally optimal quantizer and
 - the range of input distributions

2. Quantized Channel Capacity Example: Optimal Quantizers

Create a DMC:

- > BPSK +1/-1
- \succ data-dependent AWGN noise
- \succ quantize uniformly *M* levels

Example:

- $\succ M = 16$ output channel
- \geq quantize to K = 4 levels

Observations:

- > data-independent noise: decisions cluster at cross-over
- > data-dependent noise: decisions move towards reliable data

2. Quantized Channel Capacity Example: Capacity

Asymmetric channel (var 0.1 & 4)

- \succ Capacity increases in K,~M
- \succ Asymmetric optimal quantizer

Failure to converge

Large M: Many good candidate quantizers, so optimal range is narrow

Conclusion

Channel quantization is important for reducing complexity of receivers

- \succ Maximization of mutual information is a highly suitable metric
- \succ These concave optimization problems are NP-Hard

Easier to work with discrete problems than continuous problems

For arbitrary binary-input DMCs:

- \geq 1. Channel quantization (fixed input distribution):
 - Maximize mutual information, provably optimal
 - Polynomial (cubic) complexity
- \geq 2. Quantized channel capacity
 - Find the jointly optimal input distribution/quantizer or declare failure
 - Also polynomial-complexity