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Detection and decoding algorithms: algorithms with real-valued numbers
VLSI implementation: numbers are converted to bits — quantization
Power consumption, cost, etc. of receivers increases with the number of bits
Broad goal: Reduce the number of bits without sacrificing performance.

What are the information theoretic limits?

Two simpler questions:

Information Theoretic Limits 
on Channel Quantization
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1. Find channel quantizer to 
maximize the information rate 2. Find the quantized channel capacity

channel Y Zquantizer Q
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Quantization of Continuous-Output Channels

1960s and 70s: The cut-off rate as a criterion for channel quantizer design
Mutual information is a better criterion (capacity-achieving LDPC codes)

1. Channel Quantization
BI-AWGN quantized to 3 levels [Ma et. al, 2002]
 “Locally optimal” quantization algorithm [Liveris and Georghiades 2003]
Quantization of flash memory channel models [Wang et al 2011]

2. Quantized Channel Capacity
Singh et al 2007, 2009: Continuous channels quantized to K levels

 input distribution: K or K+1 discrete levels sufficient 
 locally optimal/brute force channel quantization

Quantization of channels with memory [Zeitler, Singer and Kramer 2010, 2011]

These are hard problems!   Few proofs of optimality
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(Highly Simplified)

Channel Quantization is Concave Optimization
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Channel capacity :
maxpj I(X;Y )
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convex

Channel quantization :
maxQk|i I(X;Z)

Qk|i

Optimization conditions Known as Class of problem

Maximize over p, fixed channel Classical channel capacity convex optimization
Arimoto-Blahut algorithm [1972] Fixed p, minimize over Q Classical rate-distortion

Fixed p, maximize over Q 1. Channel quantization concave optimization, NP hard

Maximize over p and over Q 2. Quantized channel capacity convex-concave optimization
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Contributions of This Work

1. Channel Quantization
Maximize mutual information I(X;Z), provably optimal
Polynomial-complexity algorithm, dynamic programming approach

2. Quantized Channel Capacity
Find the jointly optimal input distribution/quantizer or declare failure
also polynomial complexity

Applies to arbitrary DMCs with binary inputs
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DMC Y ZQ

Consider discrete memoryless channels, 
rather than continuous channels
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Optimal quantizer is convex 
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Lemma: If the outputs are labeled according to:

then the mutual-information maximizing quantizer is convex on {1,2,..., M}.

, K < M
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Optimal quantizer is convex 
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, K < M



/13Brian Kurkoski and Hideki Yagi

Statistical Learning Theory 
Optimal Quantizer is Convex: Proof Sketch

Proof sketch:

Statistical/Machine Learning Theory
 Classification: from observation, make a classification (e.g. optical character recognition)
 Minimize some loss function                                                    (supervised learning)
 Impurity (or risk) is the expectation of an expectation of a loss function:

Broad class of loss functions, preimage of optimum classification mapping forms a convex set:

Identify H(X|Z) as an impurity.   Quantizer (mapping) image forms a convex set.
7

[Burshtein et al., 1992]

[Chou, 1991]
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1. Channel Quantization
Possible algorithmic approaches
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1. Channel Quantization
Algorithm for Optimal quantization

Dynamic programming: Optimal solution contains optimal solutions to subproblems
Subproblem find optimal quantization of ch. outputs 1...m to quantizer outputs 1...k
Key: use the optimal quantization 1...k-1 to find optimal quantization of 1...k
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*

Example: how to quantize outputs 1-4 to two values
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1. Channel Quantization
Algorithm for Optimal quantization

Dynamic programming: Optimal solution contains optimal solutions to subproblems
Subproblem find optimal quantization of ch. outputs 1...m to quantizer outputs 1...k
Key: use the optimal quantization 1...k-1 to find optimal quantization of 1...k
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Example: how to quantize outputs 1-5 to three values
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2. Quantized Channel Capacity
Jointly Optimal Quantizer and Input Distribution
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 Similar procedure to previous. For m outputs quantized to k levels:
 for each quantizer: maximum partial mutual information
 select the quantizer with the greatest partial mutual information
 for this one, find a range L of locally optimal input distributions

 This range is important
 (1) if final p* is range L, 

then it is known optimal.
 (2) otherwise, another quantizer

may be optimal
-> Declare a failure

 Continue recursively:
 locally optimal quantizer and
 the range of input distributions

L
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2. Quantized Channel Capacity
Jointly Optimal Quantizer and Input Distribution
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 Similar procedure to previous. For m outputs quantized to k levels:
 for each quantizer: maximum partial mutual information
 select the quantizer with the greatest partial mutual information
 for this one, find a range L of locally optimal input distributions

 This range is important
 (1) if final p* is range L, 

then it is known optimal.
 (2) otherwise, another quantizer

may be optimal
-> Declare a failure

 Continue recursively:
 locally optimal quantizer and
 the range of input distributions

L
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2. Quantized Channel Capacity 
Example: Optimal Quantizers

Create a DMC:
BPSK +1/–1
 data-dependent AWGN noise
 quantize uniformly M levels

Example:
M = 16 output channel
 quantize to K = 4 levels

Observations:
 data-independent noise: 

decisions cluster at cross-over
 data-dependent noise:

decisions move towards reliable data
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2. Quantized Channel Capacity 
Example: Capacity

Asymmetric channel (var 0.1 & 4)
Capacity increases in K, M
Asymmetric optimal quantizer
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Conclusion

Channel quantization is important for reducing complexity of receivers

Maximization of mutual information is a highly suitable metric

These concave optimization problems are NP-Hard

Easier to work with discrete problems than continuous problems

For arbitrary binary-input DMCs:
1. Channel quantization (fixed input distribution):

 Maximize mutual information, provably optimal
 Polynomial (cubic) complexity

2. Quantized channel capacity
 Find the jointly optimal input distribution/quantizer or declare failure
 Also polynomial-complexity
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