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Quantized Channel Capacity

continuous-output Quantizer

channel

Given an arbitrary continuous-output channel Pr(Y|X), find quantized channel capacity

C' = maxmax I (X; Z)
px(z) @

This is a very difficult problem, in general.




Sample of Previous Work

Massey (1974): Algorithm to quantize channels to maximize the cutoff rate
Ma et al (2001) considered channel quantization with a mutual information metric
Singh et al (2009) quantized channel capacity with noise symmetry.

Koch and Lapidoth (2013): low SNR asymmetric quantizers eliminate quantization

penalty

Alirezaei and Mathar (2015): One-bit quantized capacity achieved with two support

points.




Problem Setup

continuous-output Quantizer

channel

Binary input X channel, fixed input distribution Pr(X)
Real-valued channel output Y
Arbitrary and data-dependent noise Pr( Y| X=0), Pr( Y| X=1) (not necessarily additive)

Quantize the channel output to one bit Z € {0,1}

Maximize mutual information I(X;Z2)




Contribution

continuous-output Quantizer

channel

By concentrating on the channel quantization aspect, we give two contributions:
e Optimal quantizer: the preimage of the backward channel quantizer are convex

o If the channel satisfies a “sorting condition” then the preimage of the optimal forward

channel quantizer is convex.

o Even this simple problem is difficult (nonconvex in general).




Quantization By Threshold Search
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Two Thresholds Has Greater |(X;Z)
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Forward Quantizer Convexity
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Preimage of Optimal Classifier
(Quantizer) is Convex
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By Davip BURSHTEIN, VINCENT DELLA PIETRA, DIMITRI KANEVSKY
AND ARTHUR NADAS
Tel Aviv Unwersity and IBM, T. J. Watson Research Center concave in PI'(X | Y)

Let U be the probability simplex for pxy(z|y). A backward channel quantizer
QisQ:U — Z.

Theorem There exists an optimal backward channel quantizer @* U = 2
for which any two distinct preimages Q* !(z) and Q*!(z’) are separated by a
hyperplane in U.




Backward Channel Pr(X = z|Y = y)
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Convex Backward Channel Quantizer

Threshold a. Backward channel quantizer Q):
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Optimal Quantizer in Backward Channel

Lemma 1 There exists an optimal backward channel quantizer which is a

convex quantizer.

Proot is direct application of Burshtein et al.'s theorem.

Consequences:
e The corresponding forward channel quantizer is not necessarily convex

e It is easier to search over convex quantizers, so better to consider the

backward channel




Optimal Quantizer in Backward Channel
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Optimal Convex Forward Quantizer

Lemma 2 If the channel log-likelihood ratio satisfies:

Pr(y|X = 1)
Pr(y| X = 0)

Pr(y'| X = 1)
Pr(y’'| X = 0)

log < log

for all y < v, then there exists an optimal forward channel quantizer (Q*
which 1s a convex quantizer.

Consequences:

e For many well-behaved channels, the optimal forward channel quantizer is

COoIvex.

e The BI-AWGN channel satisfies this condition




Even Backwards Channel is Hard
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Discussion

Using the theorem of Burshtein et al.,
it is far easier to deal with

quantization in the backward channel.

Unfortunately, channel quantization is
not convex optimization problem

in general.




