
Single-Bit Quantization of Binary-Input, 
Continuous Output Channels

June 29, 2017
International Symposium on Information Theory  

Aachen, Germany

Brian M. Kurkoski
Japan Advanced Institute of Science and Technology

Hideki Yagi
University of Electro-Communications



Quantized Channel Capacity

Given an arbitrary continuous-output channel Pr(Y|X), find quantized channel capacity 

This is a very difficult problem, in general.  
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continuous-output 
channel

C = max

pX(x)
max

Q

I(X;Z)



Sample of Previous Work

Massey (1974): Algorithm to quantize channels to maximize the cutoff rate 

Ma et al (2001) considered channel quantization with a mutual information metric 

Singh et al (2009) quantized channel capacity with noise symmetry. 

Koch and Lapidoth (2013): low SNR asymmetric quantizers eliminate quantization 
penalty 

Alirezaei and Mathar (2015): One-bit quantized capacity achieved with two support 
points. 

�3



Problem Setup

• Binary input X channel, fixed input distribution Pr(X) 

• Real-valued channel output Y 

• Arbitrary and data-dependent noise Pr(Y|X=0), Pr(Y|X=1) (not necessarily additive) 

• Quantize the channel output to one bit Z ∈ {0,1} 

• Maximize mutual information I(X;Z)
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Contribution

By concentrating on the channel quantization aspect, we give two contributions: 

• Optimal quantizer: the preimage of the backward channel quantizer are convex  

• If the channel satisfies a “sorting condition” then the preimage of the optimal forward 
channel quantizer is convex. 

• Even this simple problem is difficult (nonconvex in general).
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Quantization By Threshold Search
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Example: data-dependent 
Gaussian noise mixtures

a
Quantizer:

z =

(
0 y < a

1 y � a
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Quantization By Threshold Search

Example: data-dependent 
Gaussian noise mixtures 

max I(X;Z) = 0.493 at 
a* = -0.153

Quantizer:

z =

(
0 y < a

1 y � a
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Two Thresholds Has Greater I(X;Z)
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one threshold 
max I(X;Z) = 0.493 
at a* = -0.153

two thresholds 
max I(X;Z) = 0.559 
a* = -0.102,2.220
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Forward Quantizer Convexity
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Convex (1-D)

Not Convex
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Preimage of Optimal Classifier 
(Quantizer) is Convex
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I(X;Z) = H(X)�H(X|Z)

concave in Pr(X|Y )

Let U be the probability simplex for pX|Y(x|y). A backward channel quantizer

e
Q is

e
Q : U ! Z.

Theorem There exists an optimal backward channel quantizer

e
Q

⇤
: U ! Z

for which any two distinct preimages Q

⇤�1
(z) and Q

⇤�1
(z

0
) are separated by a

hyperplane in U .



Backward Channel
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Convex Backward Channel Quantizer
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Optimal Quantizer in Backward Channel

Lemma 1   There exists an optimal backward channel quantizer which is a 
convex quantizer. 

Proof is direct application of Burshtein et al.'s theorem. 

Consequences: 

•The corresponding forward channel quantizer is not necessarily convex 

•It is easier to search over convex quantizers, so better to consider the 
backward channel
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Optimal Quantizer in Backward Channel
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Optimal Convex Forward Quantizer
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Lemma 2 If the channel log-likelihood ratio satisfies:

log

Pr(y|X = 1)

Pr(y|X = 0)

 log

Pr(y0|X = 1)

Pr(y0|X = 0)

for all y < y0, then there exists an optimal forward channel quantizer Q⇤

which is a convex quantizer.

Consequences: 

•For many well-behaved channels, the optimal forward channel quantizer is 
convex. 

•The BI-AWGN channel satisfies this condition



Even Backwards Channel is Hard
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Discussion

Using the theorem of Burshtein et al.,  
it is far easier to deal with  
quantization in the backward channel. 

Unfortunately, channel quantization is  
not convex optimization problem  
in general.
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