Lattice-Based WOM Codebooks that Allow Two Writes

Brian M. Kurkoski

Japan Advanced Institute of Science and Technology

October 29, 2012 2012 International Symposium on Information Theory and its Applications Honolulu, Hawaii, USA

Flash Memories

Flash memories store charge on transistors called "cells" Increasing the number of bits/cell increases data storage density:

B

1.0E-05

5.0E-06

0.0E+00

0

B-MLC8 (72nm)

2,000

Grupp, et al.

4,000

6,000

8,000

Program/Erase Cycles

10,000

12,000

14,000

 \succ Each time the flash memory is erased, the error rate increases

WOM Codes for Non-Binary Flash

Codes for "Write Once Memories"

 \geq Pioneered by Rivest and Shamir [1982]

≻ Memory can change from $0 \rightarrow 1$ state but not $1 \rightarrow 0$

non-binary case: $0 \to 1 \to 2 \to \dots \to q-1$

▶ Remarkable! Possible to re-use a "write once" memory!

► Application: Increase flash write endurance

WOM Codes Rates

- \succ WOM codes allowing t = 2 writes, but q-levels
- $\succ n$ is the number of cells
- \succ Code rate for write *i* is R_i , normalized rate R_i
- \geq Questions. How to:

 $\blacksquare \text{ maximize } R_1 + R_2?$

• maximize $R_1 + R_2$ subject to $R_1 = R_2$?

image thanks: Paul Siegel

Capacity of Non-Binary WOM Codes

Fu and Han Vink [1999] gave capacity of a *t*-write code into *q*-ary cells. For *t*=2: $R_1 + R_2 \leq \log_2 \binom{q+1}{q-1}$

But, capacity-achieving rates are not equal in general, $R_1 \neq R_2$

Equal rates $R_1 = R_2$ is of practical concern.

Gabrys and Dolecek [2011] found an upper bound on equal-rate capacity:

$$2R_1 = 2R_2 \leq \frac{2}{3} \log\left(\frac{q(q+1)(2q+1)}{6}\right)$$

Capacity for t=2 Writes: Normalized Sum Rate vs. Levels q

The normalized sum rate is a measure of **efficiency**

 \succ Efficiency increases as q increases

In This Talk: WOM Properties of Lattices

Lattices have an inherent error-correction property What about the WOM properties of lattices?

Outline of this talk:

- $\succ \operatorname{Sphere}$ packings and lattices
- \succ Lattice Codes = intersection of a **shaping region** and a lattice
- \succ WOM properties of lattices
 - Using continuous approximation,

code rate is from the volume of the shaping region

- The ideal shaping region is **hyperbolic**
- Give an expression for normalized sum rate under equal rate assumption,

$$\widetilde{R} \ge 1 - \frac{1}{e \ln 2} \frac{1}{\log_2(q-1)}$$

close to Gabrys-Dolecek upper bound

A **Sphere Packing** is an arrangement of non-overlapping spheres in space

CC License image © JJ Harrison

A Lattice Is A Linear Sphere Packing

A lattice is a linear subgroup of \mathbb{R}^n

G: n-by-n generator matrix

$$\mathbf{x} = \mathbf{G} \cdot \mathbf{b}$$

 $\mathbf{b} = (b_1, b_2, ..., b_n)^{\mathrm{t}}: n$ -by-1 vector of integers
 $\mathbf{x} = (x_1, x_2, ..., x_n)^{\mathrm{t}}: n$ -by-1 vector, lattice point

Lattices:

- Have a rich theory
- Can correct errors, achieve AWGN capacity

What about the WOM properties of lattices?

Hexagonal Lattice 16 codewords, $d_{\min} = 4.29$

Lattice Code Construction

WOM Lattice Code Construction

Construct a code using two regions \mathcal{R}_1 and \mathcal{R}_2

- Codebook for region 1, $C_1 = \mathcal{R}_1 \cap C$
- Codebook for region 2, $C_2 = \mathcal{R}_2 \cap C$
- Separated by boundary B

Lattice Code Construction

WOM Lattice Code Construction

Construct a code using two regions \mathcal{R}_1 and \mathcal{R}_2

- Codebook for region 1, $C_1 = \mathcal{R}_1 \cap C$
- Codebook for region 2, $C_2 = \mathcal{R}_2 \cap C$
- Separated by boundary B

n-Dimensional Lattice in n Flash Cells

n = 2

Code Rates using Continuous Approximation

number of points in \mathcal{R} · Volume of Voronoi region \approx Volume of \mathcal{R} $|\mathcal{C}| \cdot V(\Lambda) \approx V$

Normalized Rate

$$\widetilde{R}_{i} = \frac{\log_{2} |\mathcal{C}_{i}|}{\log_{2} |\mathcal{C}|}$$
$$\widetilde{R}_{i} \approx 1 - \frac{\log_{2} V_{i}}{\log_{2} V(\Lambda)}$$

Code rates R_i expressed as volume V_i

Brian M. Kurkoski

Approximation Improves as $q \rightarrow large$

Continuous approximation was used by Forney for AWGN channels

• well-known shaping gain of 1.53 dB

Cell values increase = rectangular "accessible region"

Recall that cell values can only increase

- A path from:
 - \succ initial state
 - ▶ terminal state

Brian M. Kurkoski

Cell values increase = rectangular region "accessible points"

- Recall that cell values can only increase
- A path from:
 - \succ initial state
 - \succ terminal state

Consider a **current state**

The "accessible points" are in a rectangular region

Maximizing the Rate: B is a Hyperbola

 $V_2(\mathbf{x})$: volume of space from \mathbf{x}

Hypothesis For any $\mathbf{x} \in B$, selecting $V_2(\mathbf{x})$ equal to a constant V_2 will maximize the rate.

For any point on B, the volume V_2 should be constant:

$$V_2 = (1 - x_1)(1 - x_2)$$

and in n dimensions:

$$V_2 = \prod_{i=1}^n (1-x_i)$$

So, *B* is a hyperbola. We have a hyperbolic shaping region.

Maximizing the Rate: B is a Hyperbola

 $V_2(\mathbf{x})$: volume of space from \mathbf{x}

Hypothesis For any $\mathbf{x} \in B$, selecting $V_2(\mathbf{x})$ equal to a constant V_2 will maximize the rate.

For any point on B, the volume V_2 should be constant:

$$V_2 = (1 - x_1)(1 - x_2)$$

and in n dimensions:

$$V_2 = \prod_{i=1}^n (1-x_i)$$

So, *B* is a hyperbola. We have a hyperbolic shaping region.

Computation of Volume V1

We can calculate the volume (and thus the rate).

For n = 2:

$$V_1 = 1 - (1 - \alpha) + (1 - \alpha) \log(1 - \alpha)$$

For arbitrary *n*:

$$V_1 = 1 - e^{-z} \sum_{m=0}^{n-1} \frac{z^m}{m!},$$

where $z = -\log(1-\alpha)$

Assume equal rates for first and second writes:

$$V_1 = V_2$$

1 - e^{-z} $\sum_{m=0}^{n} \frac{z^m}{m!} = e^z - 1$

The solution z^* can only be found numerically. But can form an upper bound:

$$\widetilde{R} \ge 1 - \frac{1}{e \ln 2} \frac{1}{\log_2(q-1)}$$

for the cubic lattice

Brian M. Kurkoski

Hyperbolic shaping approaches capacity

as $n \rightarrow \infty$

Conditions:

- t=2 writes
- Capacity: non-equal rates (equal rates cannot achieve capacity)
- Hyperbolic lower bound: equal rates

lower bound approaches capacity as $q \to \infty$ If lower bound is tight, then gap to capacity for equal rates is small

What about encoding?

Bhatia, Iyengar and Siegel considered n = 2 [ITW 2012] > n = 2 Easy to label all points \rightarrow encode at the promised rate

 \succ for n > 2 some points are not "consistent" — there may be a rate penalty

≻ Hyperbolic shaping bound may not be tight (still unknown!)

Bhatia et al., Constructions with n=2 A Large Gap Remains!

Summary: WOM Properties of Lattices

WOM-properties of lattices

- \succ Used a "continuous approximation"
 - \succ Convert a discrete problem to a continuous problem
- \succ Shaping region is a **hyperbola** in *n* dimensions
- $\succ \mbox{Compute}$ a lower bound on the code rate
- \succ Much work to do on achievability of coding schemes