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Flash Memories 
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To re-write a memory, 
must first erase it

Each time the flash memory is erased, 
the error rate increases

Flash Memories Wear Out
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Flash memories store charge on transistors called “cells”
Increasing the number of bits/cell increases data storage density:
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WOM Codes for Non-Binary Flash
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Codes for “Write Once Memories”
Pioneered by Rivest and Shamir [1982]
Memory can change from 0→1 state but not 1→0

 non-binary case: 0 → 1 → 2 → ... → q – 1
Remarkable! Possible to re-use a “write once” memory!
Application: Increase flash write endurance

WOM codes allowing t = 2 writes, but q-levels
n is the number of cells 
Code rate for write i is Ri, normalized rate 
Questions.  How to: 

 maximize R1 + R2?
 maximize R1 + R2 subject to R1 = R2?

image thanks: Paul Siegel

first write second write

WOM Codes Rates

�R =
1

log2 q

log2 # of messages

n

Conventional Rate Definition:

Normalized rate:
�Ri
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Capacity of Non-Binary WOM Codes

4

Fu and Han Vink [1999] gave capacity of a t-write code into q-ary cells.
For t=2:

But, capacity-achieving rates are not equal in general, R1 ≠ R2

Equal rates R1 = R2  is of practical concern.
Gabrys and Dolecek [2011] found an upper bound on equal-rate capacity:
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Capacity for t=2 Writes:
Normalized Sum Rate vs. Levels q

The normalized sum rate is a measure of efficiency 
Efficiency increases as q increases
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In This Talk: WOM Properties of Lattices

Lattices have an inherent error-correction property
What about the WOM properties of lattices?

Outline of this talk:
Sphere packings and lattices
Lattice Codes = intersection of a shaping region and a lattice
WOM properties of lattices

 Using continuous approximation, 
             code rate is from the volume of the shaping region

 The ideal shaping region is hyperbolic
 Give an expression for normalized sum rate under equal rate assumption,

close to Gabrys-Dolecek upper bound
6

�R � 1 � 1

e ln 2

1

log2(q � 1)
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A Sphere Packing is an arrangement of 
non-overlapping spheres in space
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A lattice is a linear subgroup of 
G: n-by-n generator matrix

x = G . b

b = (b1, b2, ... , bn)t: n-by-1 vector of integers

x = (x1, x2, ... , xn)t: n-by-1 vector, lattice point

Lattices:
• Have a rich theory
• Can correct errors, achieve AWGN capacity

What about the WOM properties of lattices?

A Lattice Is A Linear Sphere Packing
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Lattice (linear)

Hexagonal Lattice
16 codewords, dmin = 4.29 
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Lattice Code Construction
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WOM Lattice Code Construction

Region 1

Region 2

second write

first
write

Construct a code using two regions R1 and R2

• Codebook for region 1, C1 = R1 � C

• Codebook for region 2, C2 = R2 � C

• Separated by boundary B
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Lattice Code Construction
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n-Dimensional Lattice in n Flash Cells
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Code Rates using Continuous Approximation
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Code 1

Code 2

Approximation Improves as q→large
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Boundary B

Continuous approximation was used by Forney for AWGN channels
• well-known shaping gain of 1.53 dB
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Cell values increase 
= rectangular “accessible region”

14

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x1

x 2

initial state

terminal state
Recall that cell values can only 

increase
A path from:
 initial state
 terminal state
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Cell values increase 
= rectangular region “accessible points”

Recall that cell values can only 
increase

A path from:
 initial state
 terminal state

Consider a current state
The “accessible points” are in a 

rectangular region
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Maximizing the Rate:
B is a Hyperbola
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Equal volume
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V2(x): volume of space from x

Hypothesis For any x � B, selecting
V2(x) equal to a constant V2 will maxi-
mize the rate.

For any point on B, the volume V2 should
be constant:

V2 = (1 � x1)(1 � x2)

and in n dimensions:

V2 =
n�

i=1

(1 � xi)

So, B is a hyperbola. We have a hy-
perbolic shaping region.
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Maximizing the Rate:
B is a Hyperbola
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We can calculate the volume (and 
thus the rate).

For n = 2:

For arbitrary n:
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Computation of 
Volume V1

0 1

1

volume V1

x1

x2
Assume equal rates for first and second
writes:

V1 = V2

1 � e�z
n�

m=0

zm

m!
= ez � 1

The solution z� can only be found nu-
merically. But can form an upper bound:

�R � 1 � 1

e ln 2

1

log2(q � 1)

for the cubic lattice

x2 = 1 � 1 � �

1 � x1
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Hyperbolic shaping approaches capacity
as n → ∞
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Conditions:
• t=2 writes
• Capacity: non-equal rates
   (equal rates cannot  

               achieve capacity)
• Hyperbolic lower bound: 

equal rates

lower bound approaches 
capacity as q → ∞

If lower bound is tight, then 
gap to capacity for equal 
rates is small
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What about encoding?

Bhatia, Iyengar and Siegel considered n = 2 [ITW 2012]
n = 2 Easy to label all points → encode at the promised rate

Problem: 
 for n > 2 some points are not “consistent” — there may be a rate penalty 
Hyperbolic shaping bound may not be tight (still unknown!)

20

Example: 2-write 8-level WOM Code 

6/11/2012 59 ICC 2012 image thanks: Paul Siegel
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Bhatia et al., Constructions with n=2
A Large Gap Remains!
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Summary: WOM Properties of Lattices
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WOM-properties of lattices
Used a “continuous approximation”

Convert a discrete problem to a continuous problem
Shaping region is a hyperbola in n dimensions
Compute a lower bound on the code rate
Much work to do on achievability of coding schemes


