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Flash Memories 
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To re-write a memory, 
must first erase it

Each time the flash memory is erased, 
the error rate increases

Flash Memories Wear Out
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Flash memories store charge on transistors called “cells”
Increasing the number of bits/cell increases data storage density:
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WOM Codes for Non-Binary Flash
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Codes for “Write Once Memories”
Pioneered by Rivest and Shamir [1982]
Memory can change from 0→1 state but not 1→0

 non-binary case: 0 → 1 → 2 → ... → q – 1
Remarkable! Possible to re-use a “write once” memory!
Application: Increase flash write endurance

WOM codes allowing t = 2 writes, but q-levels
n is the number of cells 
Code rate for write i is Ri, normalized rate 
Questions.  How to: 

 maximize R1 + R2?
 maximize R1 + R2 subject to R1 = R2?

image thanks: Paul Siegel

first write second write

WOM Codes Rates

�R =
1

log2 q

log2 # of messages

n

Conventional Rate Definition:

Normalized rate:
�Ri
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Capacity of Non-Binary WOM Codes
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Fu and Han Vink [1999] gave capacity of a t-write code into q-ary cells.
For t=2:

But, capacity-achieving rates are not equal in general, R1 ≠ R2

Equal rates R1 = R2  is of practical concern.
Gabrys and Dolecek [2011] found an upper bound on equal-rate capacity:
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Capacity for t=2 Writes:
Normalized Sum Rate vs. Levels q

The normalized sum rate is a measure of efficiency 
Efficiency increases as q increases
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In This Talk: WOM Properties of Lattices

Lattices have an inherent error-correction property
What about the WOM properties of lattices?

Outline of this talk:
Sphere packings and lattices
Lattice Codes = intersection of a shaping region and a lattice
WOM properties of lattices

 Using continuous approximation, 
             code rate is from the volume of the shaping region

 The ideal shaping region is hyperbolic
 Give an expression for normalized sum rate under equal rate assumption,

close to Gabrys-Dolecek upper bound
6

�R � 1 � 1

e ln 2

1

log2(q � 1)



/22Brian M. Kurkoski 7
CC License 

image © JJ Harrison

A Sphere Packing is an arrangement of 
non-overlapping spheres in space
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A lattice is a linear subgroup of 
G: n-by-n generator matrix

x = G . b

b = (b1, b2, ... , bn)t: n-by-1 vector of integers

x = (x1, x2, ... , xn)t: n-by-1 vector, lattice point

Lattices:
• Have a rich theory
• Can correct errors, achieve AWGN capacity

What about the WOM properties of lattices?

A Lattice Is A Linear Sphere Packing
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Lattice (linear)

Hexagonal Lattice
16 codewords, dmin = 4.29 
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Lattice Code Construction
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WOM Lattice Code Construction
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Construct a code using two regions R1 and R2

• Codebook for region 1, C1 = R1 � C

• Codebook for region 2, C2 = R2 � C

• Separated by boundary B
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Lattice Code Construction
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• Separated by boundary B
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n-Dimensional Lattice in n Flash Cells
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Code Rates using Continuous Approximation
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Code 1

Code 2

Approximation Improves as q→large
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Continuous approximation was used by Forney for AWGN channels
• well-known shaping gain of 1.53 dB



/22Brian M. Kurkoski

Cell values increase 
= rectangular “accessible region”
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Recall that cell values can only 

increase
A path from:
 initial state
 terminal state
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Cell values increase 
= rectangular region “accessible points”

Recall that cell values can only 
increase

A path from:
 initial state
 terminal state

Consider a current state
The “accessible points” are in a 

rectangular region
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Maximizing the Rate:
B is a Hyperbola
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V2(x): volume of space from x

Hypothesis For any x � B, selecting
V2(x) equal to a constant V2 will maxi-
mize the rate.

For any point on B, the volume V2 should
be constant:

V2 = (1 � x1)(1 � x2)

and in n dimensions:

V2 =
n�

i=1

(1 � xi)

So, B is a hyperbola. We have a hy-
perbolic shaping region.
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Maximizing the Rate:
B is a Hyperbola
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We can calculate the volume (and 
thus the rate).

For n = 2:

For arbitrary n:
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Computation of 
Volume V1

0 1

1

volume V1

x1

x2
Assume equal rates for first and second
writes:

V1 = V2

1 � e�z
n�

m=0

zm

m!
= ez � 1

The solution z� can only be found nu-
merically. But can form an upper bound:

�R � 1 � 1

e ln 2

1

log2(q � 1)

for the cubic lattice

x2 = 1 � 1 � �

1 � x1
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Hyperbolic shaping approaches capacity
as n → ∞
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Conditions:
• t=2 writes
• Capacity: non-equal rates
   (equal rates cannot  

               achieve capacity)
• Hyperbolic lower bound: 

equal rates

lower bound approaches 
capacity as q → ∞

If lower bound is tight, then 
gap to capacity for equal 
rates is small
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What about encoding?

Bhatia, Iyengar and Siegel considered n = 2 [ITW 2012]
n = 2 Easy to label all points → encode at the promised rate

Problem: 
 for n > 2 some points are not “consistent” — there may be a rate penalty 
Hyperbolic shaping bound may not be tight (still unknown!)

20

Example: 2-write 8-level WOM Code 

6/11/2012 59 ICC 2012 image thanks: Paul Siegel
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Bhatia et al., Constructions with n=2
A Large Gap Remains!
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Summary: WOM Properties of Lattices
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WOM-properties of lattices
Used a “continuous approximation”

Convert a discrete problem to a continuous problem
Shaping region is a hyperbola in n dimensions
Compute a lower bound on the code rate
Much work to do on achievability of coding schemes


