Shaping High-Dimensional Lattice Codes with Group Structure

Brian M. Kurkoski Japan Advanced Institute of Science and Technology

joint work with Nuwan S. Ferdinand (University of Oulu)

February 2, 2015 Information Theory and Applications Workshop La Jolla, California, USA

Usefulness of Nested Lattice Codes

User 1

Nested lattice codes: $\Lambda/M\Lambda$

Other *information theoretic* results using lattices:

- Lattices for relay channel e.g. [Song-Devroye '13]
- Two-way (Bidirectional) relay channel e.g. [Wilson et al.]
- Compute-forward relaying [Nazer-Gastpar '11]

How to construct practical, capacity-approaching lattices?

Brian Kurkoski, JAIST

Relay User 2 Lattice codes can achieve the capacity of AWGN channel [Erez and Zamir '04]

Capacity-Approaching Lattice Constructions

Recent high-dimension lattice constructions approach capacity

- Construction A with LDPC codes
- Construction D with turbo codes, spatially coupled LDPC
- Lattices based on polar codes
- Low-Density Lattice Codes [Sommer et al. 2008]

Common claim: within few tenth of dB of **unconstrained capacity**:

 $\frac{V(\Lambda)^{2/n}}{-2} \ge 2\pi e$

But the AWGN channel has a power constraint....

Brian Kurkoski, JAIST

Nested lattice code Λ_c/Λ_s :

- Λ_c is good for coding
- Λ_s is good for shaping, satisfies power constraint
- Quotient group Λ_c/Λ_s for network coding

$G_n(\Lambda)$ for Well-Known Lattices

ized Second Moment $G_n(\Lambda)$ mal Nor

Overview

Target is a nested lattice construction Λ_c/Λ_s :

- Λ_{c} is an *n*-dimension lattice of high dimension
- Λ_s is a product of $\frac{n}{m}$ lattices, e.g. $\Lambda_s = E_8 \times \cdots \times E_8$
- 1. Sufficient condition on Λ_c such that $\Lambda_s \subseteq \Lambda_c$
- 2. Lattice encoding technique for shaping high-dimension lattices
 - "Voronoi integers" \mathbb{Z}^n / Λ_s
 - Systematic encoding of $\Lambda_{\rm s} \to \Lambda_{\rm c}$
 - Obtain 0.65 dB shaping gain of the E8 lattice (vs. 0.4 dB)

Sufficient Conditions to form a Group

 Λ_{s} has a generator matrix G with all entries $g_{i,j}$ integers.

Definition g_{\min} is the greatest common divisor: $g_{\min} = \text{GCD}(|g_{i,j}|)$

 $\Lambda_{\rm c}$ has a check matrix $H = G_{\rm c}^{-1}$, with entries $h_{i,j}$

Lemma

If $\Lambda_s \subseteq \Lambda_c$, then Λ_s / Λ_c forms a quotient group.

Brian Kurkoski, JAIST

If $h_{i,j} \in \frac{1}{q_{\min}} \mathbb{Z} \implies \Lambda_{s} \subseteq \Lambda_{c}$

Design of Λ_c : candidate values lattice Design of Λ_{c} : $h_{i,j}$ candidate values g_{\min} $\overline{\widetilde{E}}_8 \qquad 1 \qquad \mathbb{Z} = \{0, \pm 1, \pm 2, \cdots\}$

Design Procedure for $\Lambda_{\rm C}/\Lambda_{\rm S}$

1. Select shaping matrix Λ_s

(b) scale to the target rate

- 2. Select coefficients $h_{i,j}$ for Λ_c that satisfy:
 - (a) group property so Λ_c/Λ_s exists (b) other design criteria for high-dimension lattice

Brian Kurkoski, JAIST

(a) e.g. E_8 for low shaping complexity or Leech for high shaping gain

$\Lambda_{\rm s} = 4D_2 \times 4D_2 \times 4D_2 \times 4D_2$

G for $\Lambda_{\rm S}$

Brian Kurkoski, JAIST

Design Example

and $g_{\min} = 4$

11	h_{12}	h_{13}	h_{14}	h_{15}	h_{16}	h_{17}	h_{18}
21	h_{22}	h_{23}	h_{24}	h_{25}	h_{26}	h_{27}	h_{28}
31	h_{32}	h_{33}	h_{34}	h_{35}	h_{36}	h_{37}	h_{38}
11	h_{42}	h_{43}	h_{44}	h_{45}	h_{46}	h_{47}	h_{48}
51	h_{52}	h_{53}	h_{54}	h_{55}	h_{56}	h_{57}	h_{58}
51	h_{62}	h_{63}	h_{64}	h_{65}	h_{66}	h_{67}	h_{68}
71	h_{72}	h_{73}	h_{74}	h_{75}	h_{76}	h_{77}	h_{78}
81	h_{82}	h_{83}	h_{84}	h_{85}	h_{86}	h_{87}	h_{88}

H for $\Lambda_{\rm C}$

Brian Kurkoski, JAIST

S

Design Example

LDLC example: • sparse matrix • *h* satisfy the convergence condition

High-Dimension Lattices

- dimension $n = 1,000 \sim 100,000$
- typically decoded using belief pro
- "integer check matrix" H

Examples:

- Construction A lattices have a ch
- Low-density lattice codes from here, assume LDLC H
- has triangular form
- dominant term in each row is on the diagonal
- assume dominant diagonal term is 1, although not strictly required

opagation	$\begin{pmatrix} 1.0\\0 \end{pmatrix}$	0 1.0	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	0 0
	0.7	0	1.0	0	0	0	0
	0	0	-0.7	1.0	0	0	0
	-0.5	0	0	0.7	1.0	0	0
	0	-0.7	0	0.5	0	1.0	0
neck matrix	0	-0.5	0	0	0.7	0	1.0
	$\setminus 0$	0	-0.5	0	0	0.7	0

Evaluation of Nested Lattice Codes

Design H using sufficient condition

Nested lattice codes $\mathbf{x} = \mathbf{u} - Q(\mathbf{u})$

Brian Kurkoski, JAIST

(could be) Nested lattice codes systematic lattice encoding

Block Diagram of Encoder

Information $\mathbf{u}\in\mathbb{Z}^m$ $\mathbb{Z}^m/\Lambda_{ m s}$ "Voronoi Integers"

Brian Kurkoski, JAIST

Encoding

Offset to reduce average power

"Voronoi Integers"

- Define "Voronoi Integers" Z^m / Λ_s Integers which are shaped. Require $\Lambda_s \subseteq Z^m$, easy to satisfy:
 - D_4, E_8 , Barnes-Wall, Leech satisfy this condition
 - Shaping (quantization) is feasible

Brian Kurkoski, JAIST

Systematic Lattice Encoding

Encode integers \mathbf{c} to lattice point \mathbf{x} such that:

$$\mathbf{c} = \operatorname{round}(\mathbf{x})$$

That is, $|x_i - c_i| \leq \frac{1}{2}$

Example using

$$H = \begin{bmatrix} 1 & 0\\ -0.3 & 1 \end{bmatrix}$$

Voronoi volume $det(H) = det(\mathbb{Z}^n) = 1$

Brian Kurkoski, JAIST

Power-Constrained AWGN Channel

AWGN channel with average power constraint

- 5 bits/dimension
- coding: LDLC lattice dimension n = 10,000
- shaping: E8 lattice with m = 8
- Compare with M-Algorithm LDLC shaping of Sommer et al

LDLCs: 0.65 dB Gain Over Hypercube

Brian Kurkoski, JAIST

Hypercube shaping Self-Similar shaping

0.15 dB better than self-similar shaping (using M-algorithm) and much lower complexity

Conclusion

- Gave conditions on check matrix H for Λ_c such that $\Lambda_s \subset \Lambda_c$:
 - Structured lattices Λ_s for modest shaping gain
 - High-dimension lattice $\Lambda_{\rm c}$ for high coding gain
 - Nested lattice code $\Lambda_{\rm c}/\Lambda_{\rm s}$ for physical layer network coding
- Open problems

 - Numerical evaluation of LDLCs under the sufficient condition - Suitability for Construction A, etc. lattices

