Message Variance Convergence Condition for Generalizations of LDLC lattices

Information Theory Workshop Hobart, Tasmania, Australia 2 November 2014

Brian M. Kurkoski Japan Advanced Institute of Science and Technology

Semi-Tutorial on Low-Density Lattice Codes

Brian M. Kurkoski Japan Advanced Institute of Science and Technology

Information Theory Workshop Hobart, Tasmania, Australia 2 November 2014

Low-Density Lattice Codes

LDLC lattices were described by Sommer, Shalvi and Feder [IT 2008]

- Inverse generator matrix $H = G^{-1}$ is sparse
- Decoding using Gaussian belief-propagation
- high dimension, n = 100, 1000, 10000, 100000

Low-Density Lattice Codes

LDLC lattices were described by Sommer, Shalvi and Feder [IT 2008]

- Inverse generator matrix $H = G^{-1}$ is sparse
- Decoding using Gaussian belief-propagation
- high dimension, n = 100, 1000, 10000, 100000
- come within 0.6 dB of unconstrained capacity
- spatially-coupled LDLCs come with 0.35 dB of unconstrained capacity

Merits of LDLC constructions

- High-dimension lattice design in the Euclidean space
- Fits naturally with many aspects of lattice theory
- Gaussian BP decoding is interesting

Tour of LDLC Lattices

- 1. Basics of LDLCs: 1a LDLC Latin Square construction 1b Encoding 1c Decoding 1d Design
- 2. Convergence condition with a new perspective
- 3. Gaussian belief-propagation decoding
- 4. LDLC vs. LDPC-based Construction A lattices
- 5. Open problems

Definitions

n is lattice dimension x is lattice point b is integer vector G is generator matrix $\mathbf{x} = G \mathbf{b}$

Brian Kurkoski, JAIST

inverse generator matrix $H = G^{-1}$ $H \mathbf{x} = \mathbf{b}$

(1a) LDLC "Latin Square" Construction

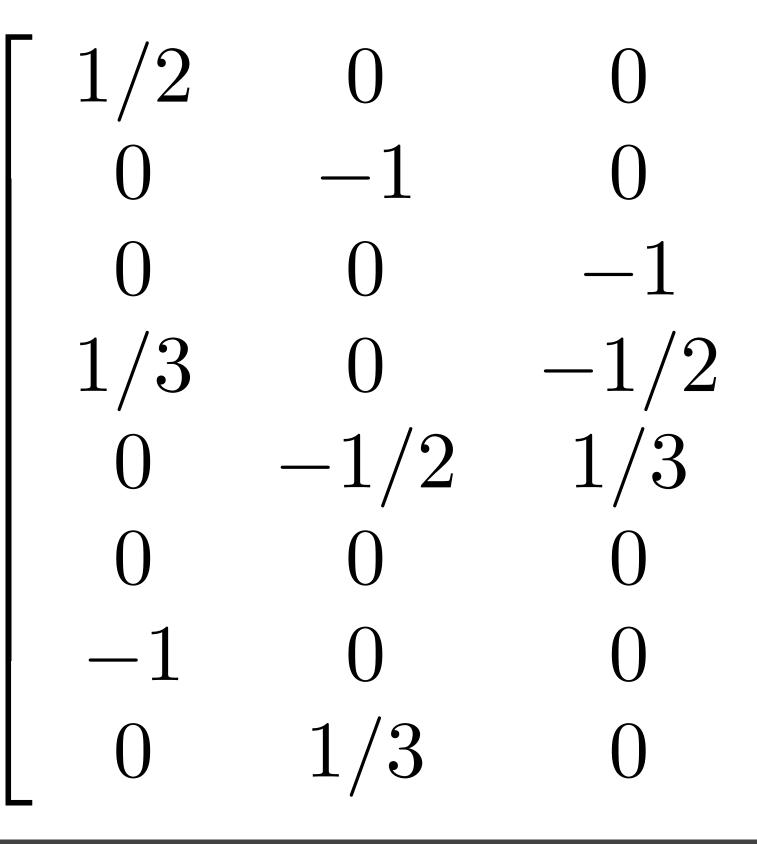
H has constant row and column weight d. Latin square: each row/column $\{h_1, h_2, \dots, h_d\}$ with random $\pm, h_1 \ge h_2 \ge \dots \ge h_d$ Necessary condition:

$$\alpha = \frac{\sum_{i=2}^d h_i^2}{h_1^2} \le 1$$

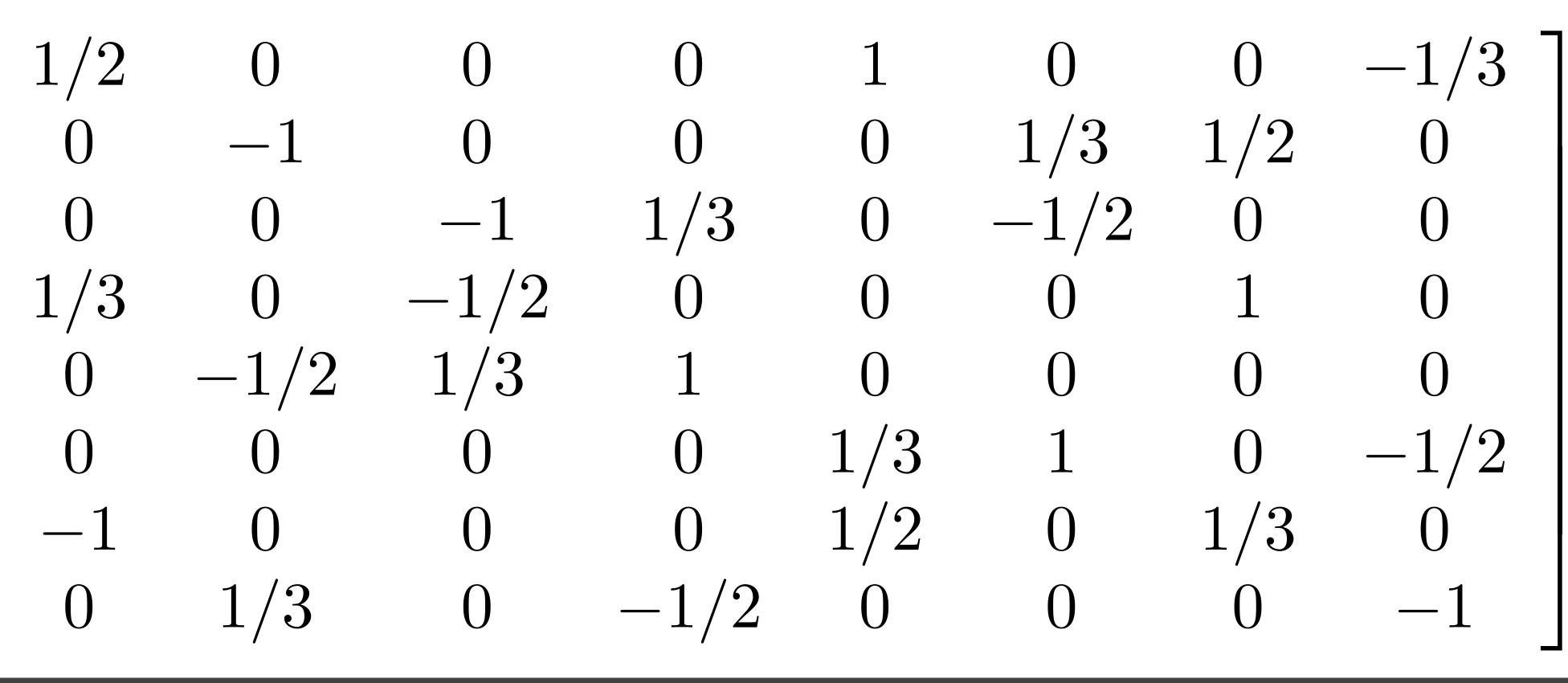
- Choose $h_1 = 1$ (forces $|\det H|$ to be = 1)
- Non-zero elts pseudo-random loc.
- Random sign changes

LDLC "Latin Square" Construction

Example: row/column weight 3

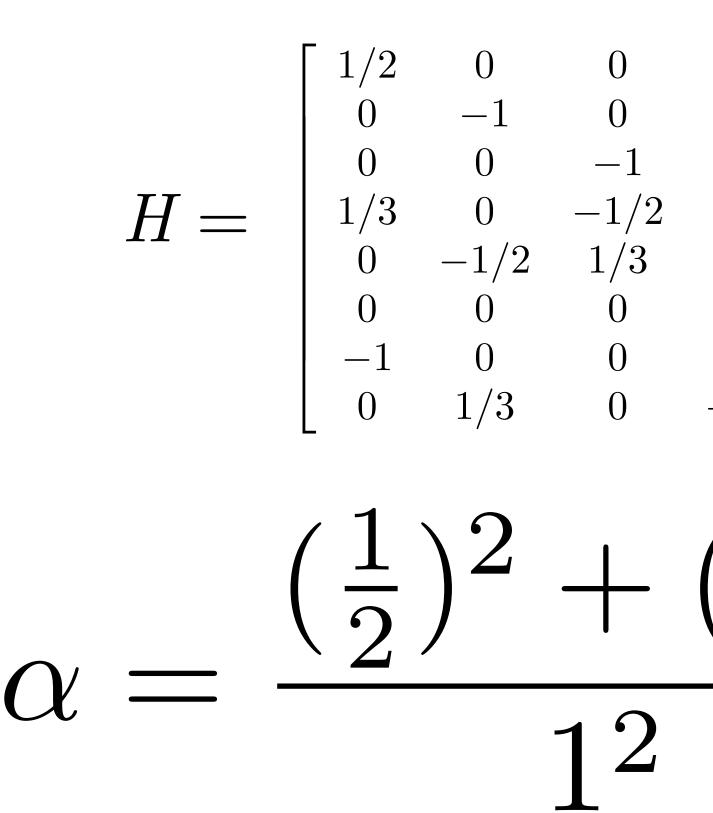


- elements from $\{1, 1/2, 1/3\}$



LDLC "Latin Square" Construction

Example: row/column weight 3



Brian Kurkoski, JAIST

- elements from $\{1, 1/2, 1/3\}$

0	1	0	0	-1/3]
0	0	1/3	1/2	0
1/3	0	-1/2	0	0
0	0	0	1	0
1	0	0	0	0
0	1/3	1	0	-1/2
0	1/2	0	1/3	0
-1/2	0	0	0	-1

 $\alpha = \frac{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2}{\frac{1}{2}} = \frac{11}{\frac{1}{2}} < \frac{1}{2}$

(1b) Encoding LDLC codes $\mathbf{x} = G\mathbf{b} \leftarrow \mathbf{m}$ don't want to compute H^{-1} $H\mathbf{x} = \mathbf{b}$ \leftarrow system of equations unknown \mathbf{x}

Encoding can be performed without G.

- Encoding using Jacobi method or Gauss-Seidel method.

A lattice point \mathbf{x} is transmitted over an AWGN channel

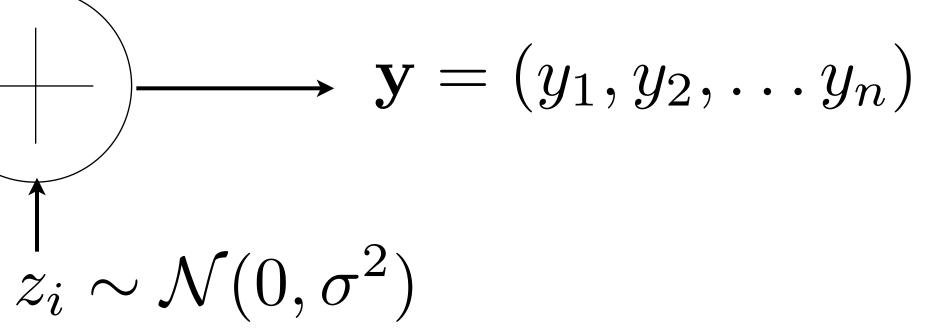
$$\mathbf{x} = (x_1, x_2, \dots x_n) \longrightarrow (-$$

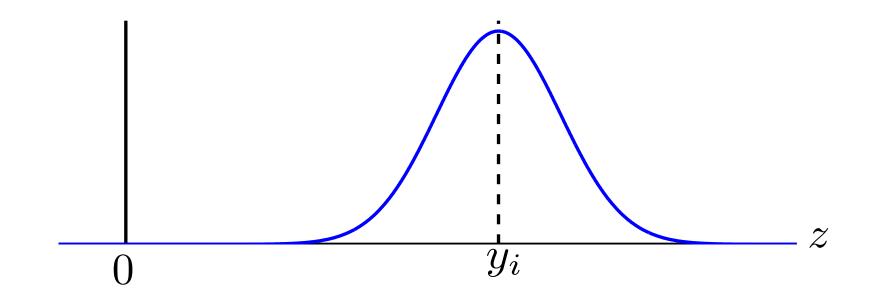
Channel message $Y_i(z)$ is Gaussian mean y_i , variance σ^2 :

$$Y_i(z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(z-y_i)^2/2\sigma^2}$$

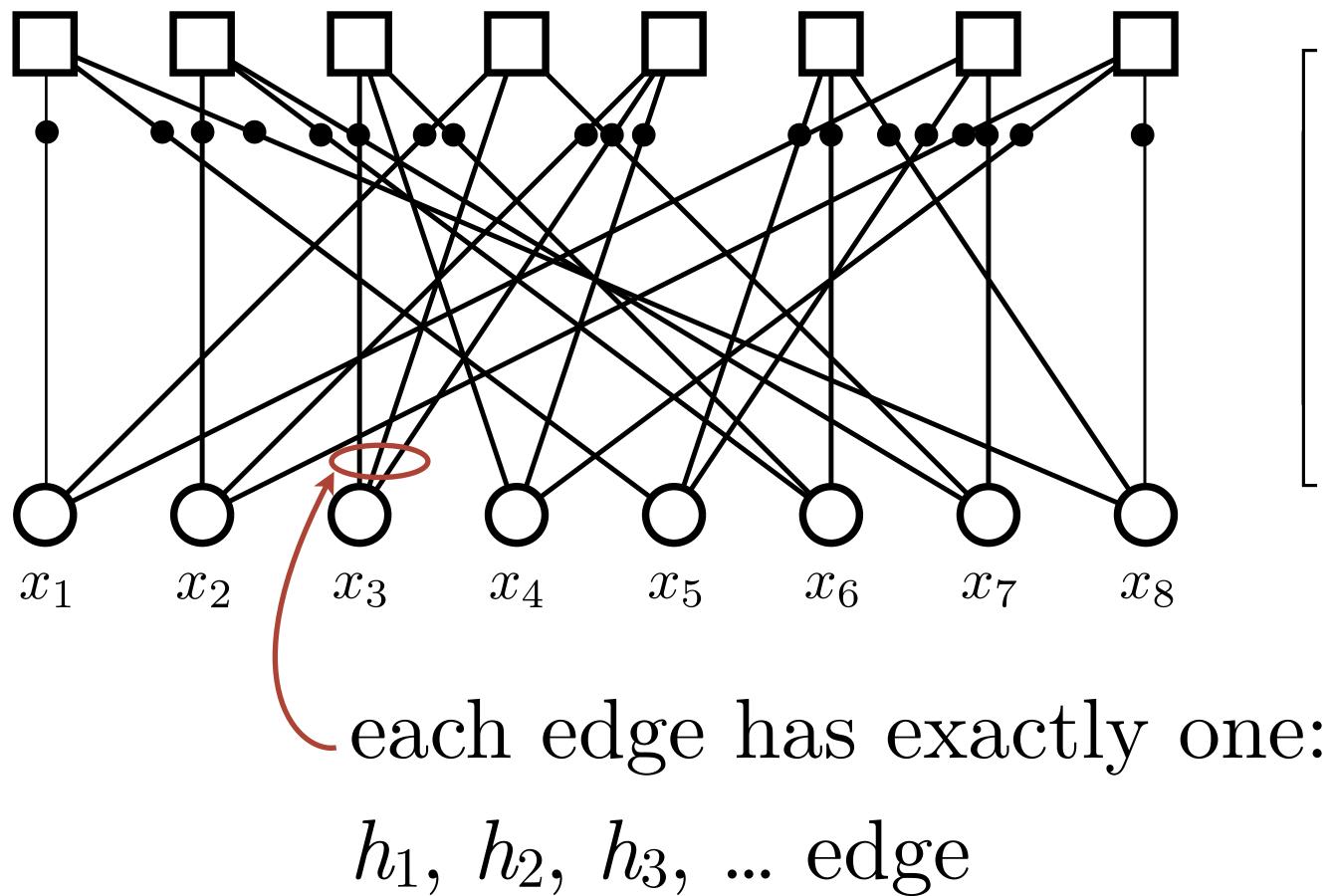
Brian Kurkoski, JAIST

Channel and Initial Message

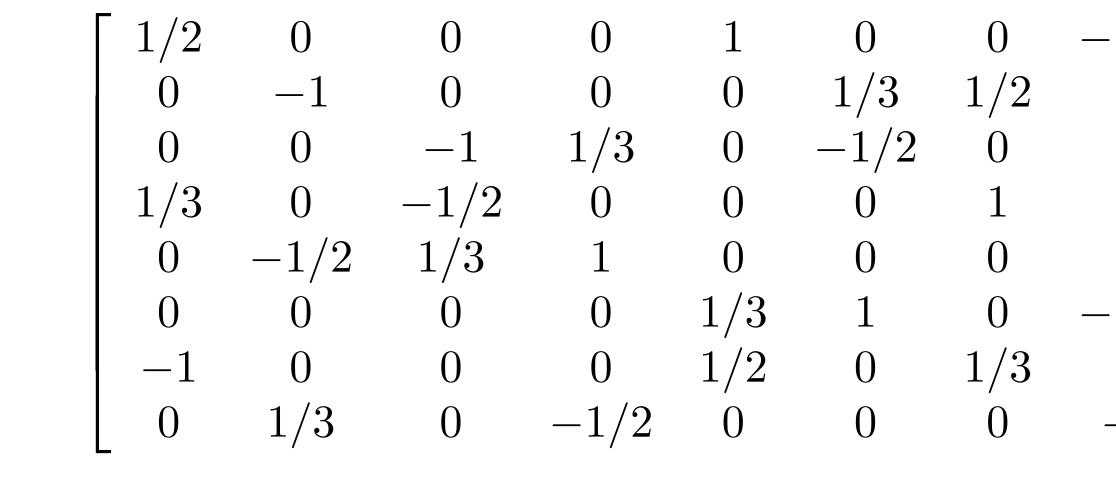


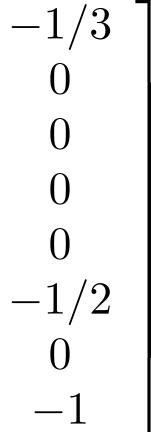


(1c) Decoding: Tanner Graph



Brian Kurkoski, JAIST



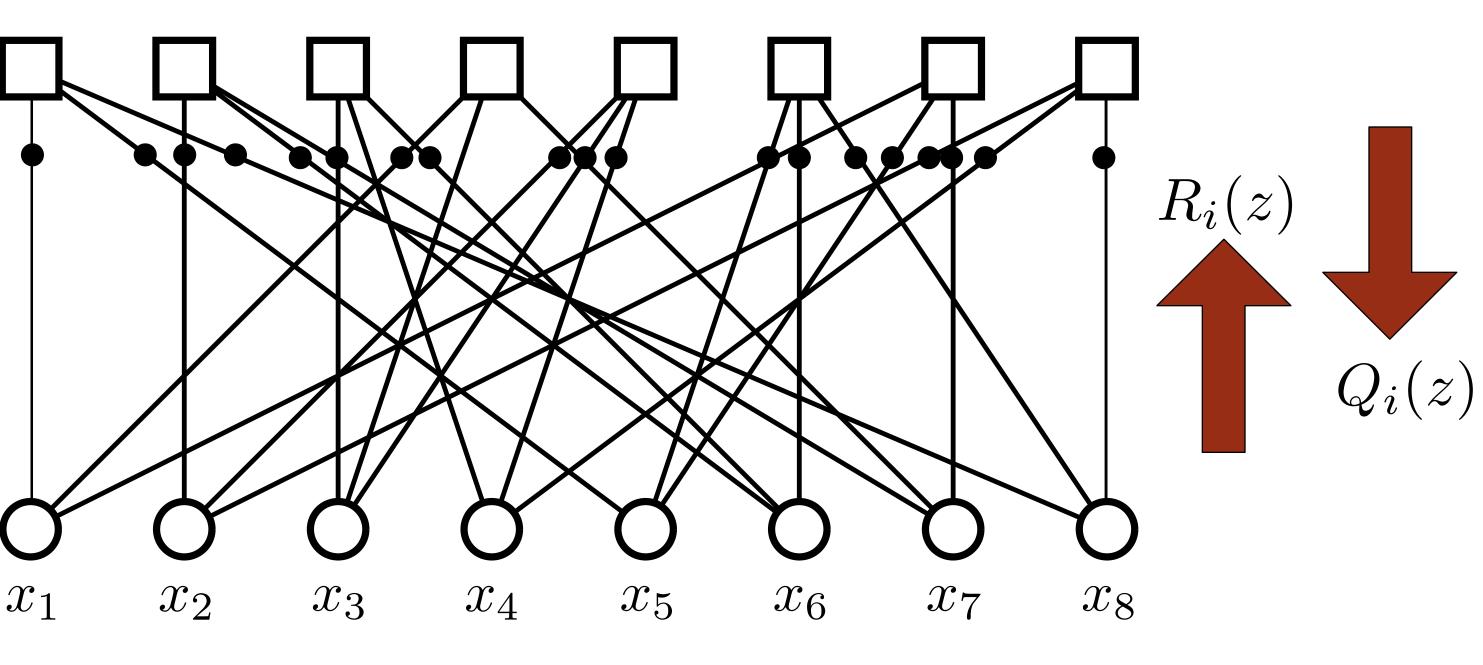


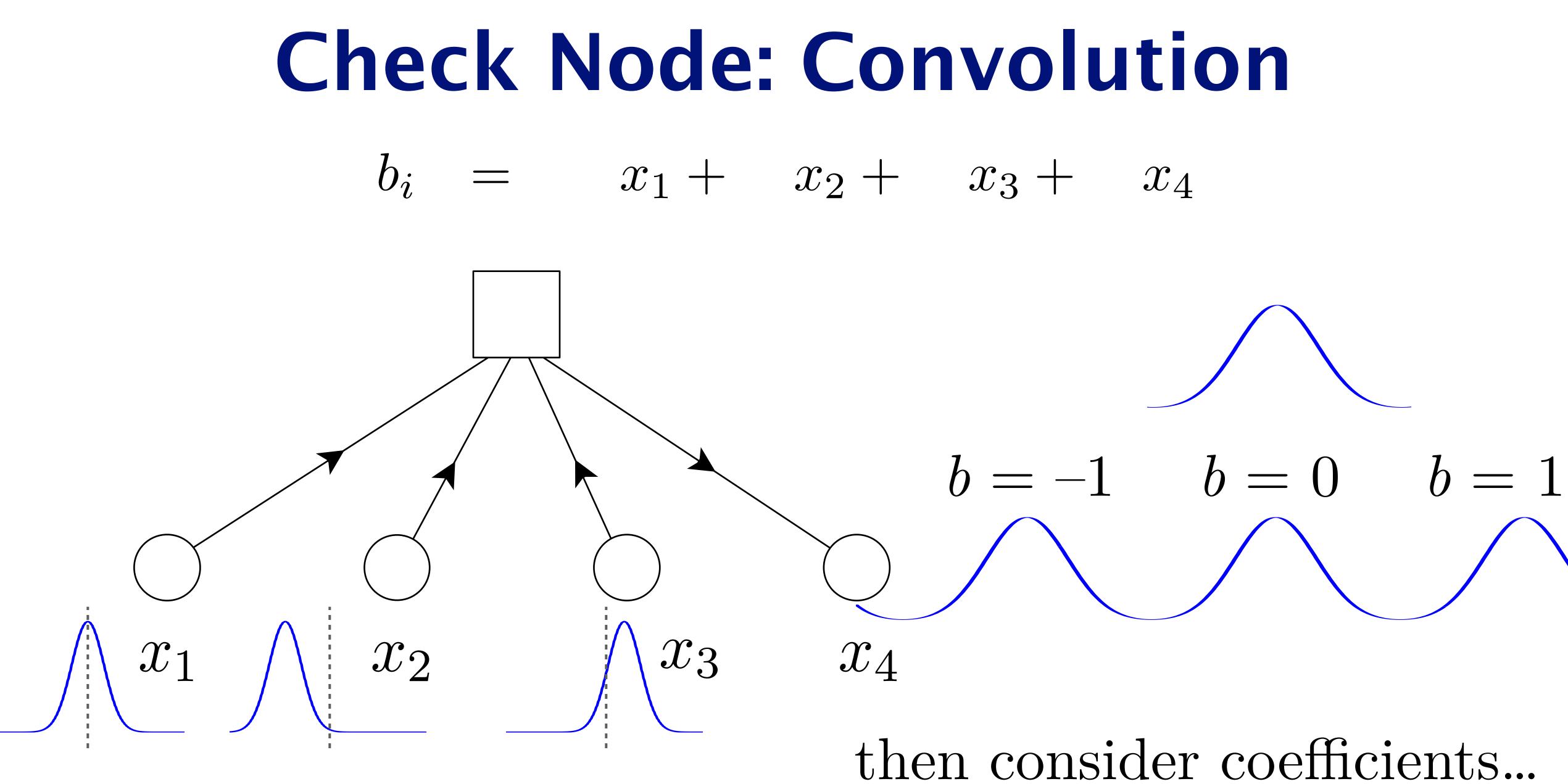
12/32

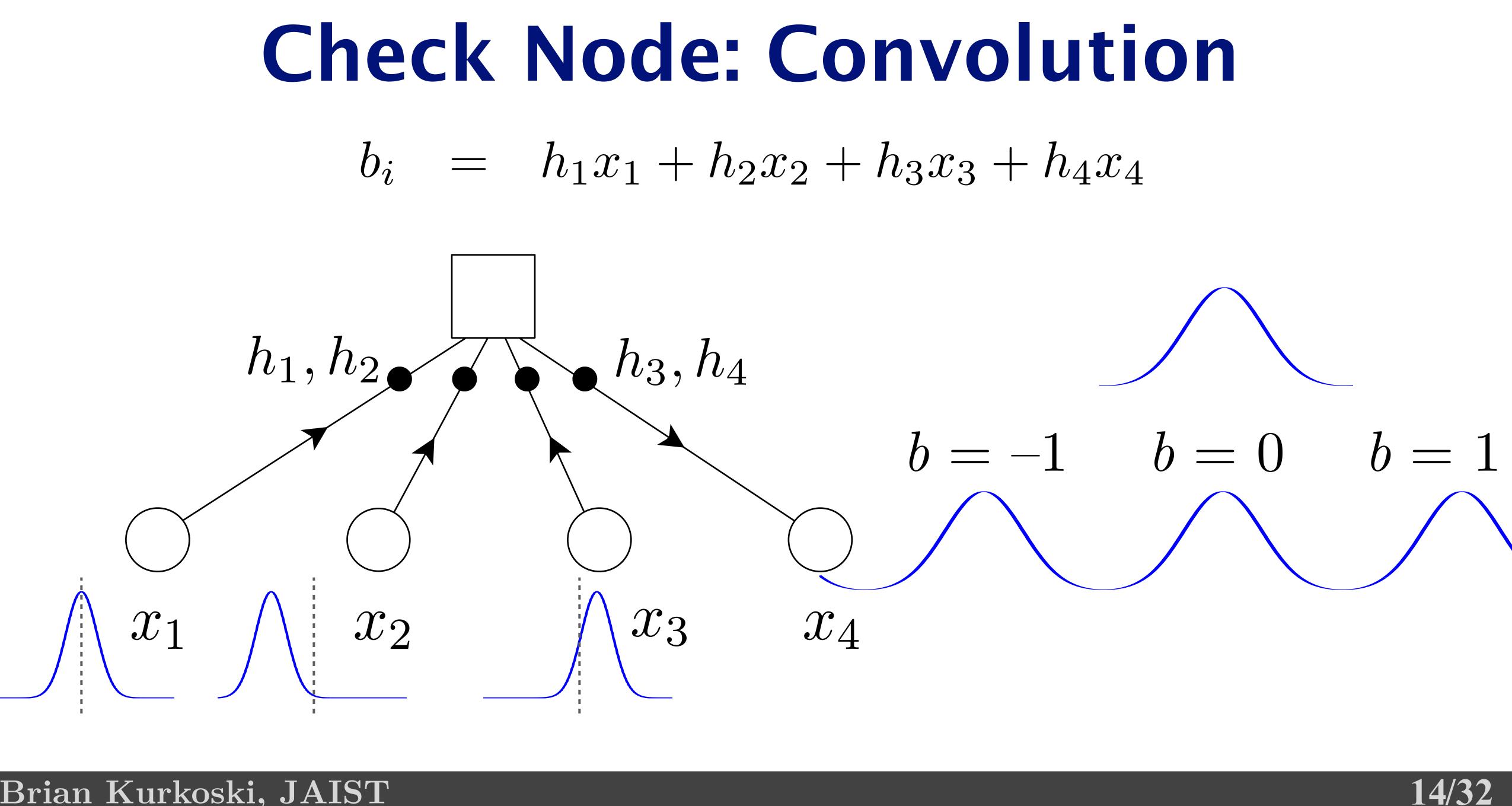
LDLC Iterative Decoding

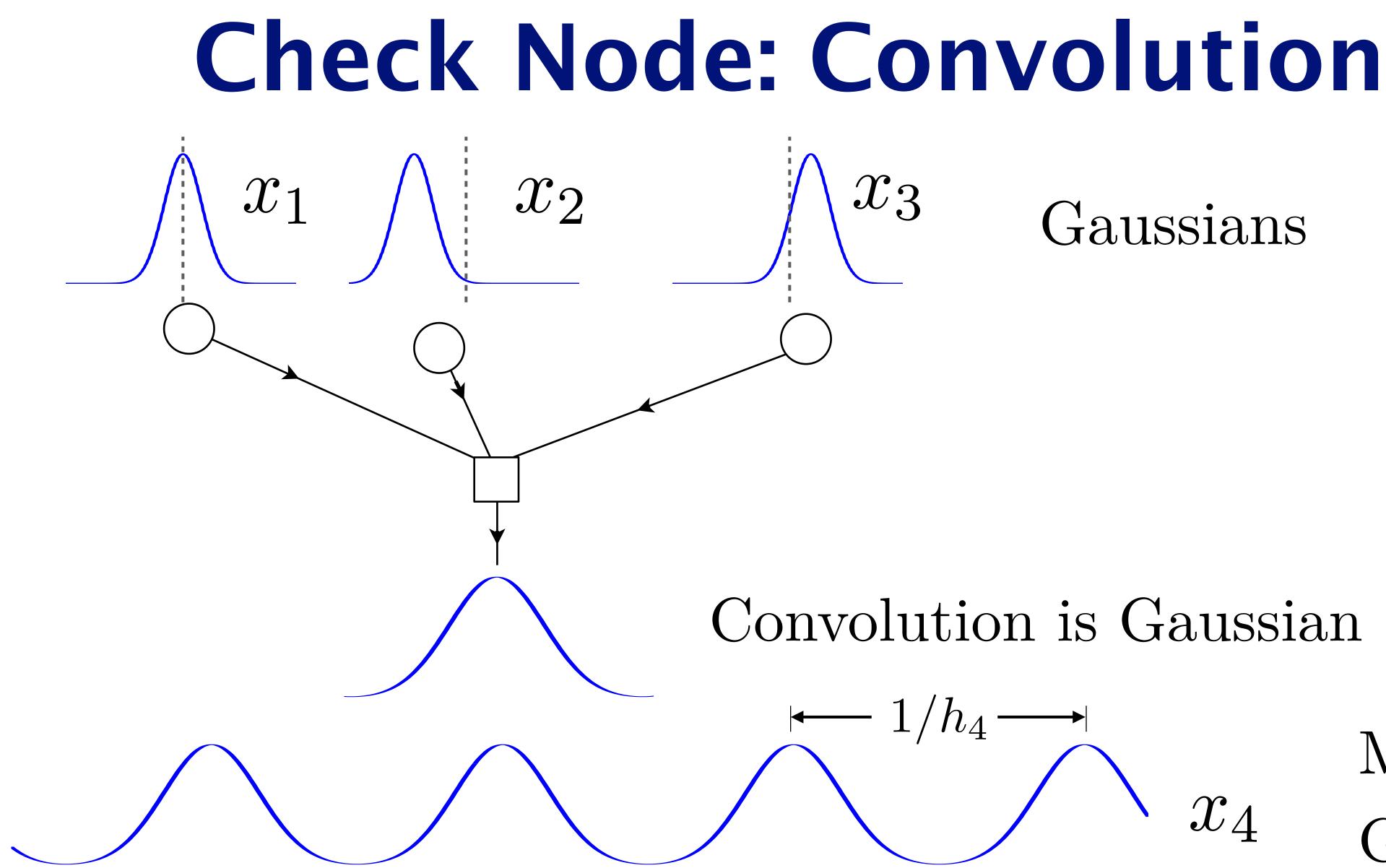
Variables are real numbers Messages R(z) is a function $R(z) = \Pr(x = z)$

"parity check" integer b $H\mathbf{x} = \mathbf{b}$ Check node: $x_1 + x_2 + x_3 = b$ (over real numbers)









Mixture of Gaussians

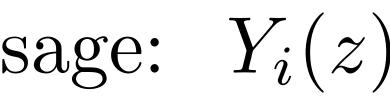
Variable Node: Combine Beliefs $Q(z) \propto Y(z)$ $R_i(z)$ $R_1(z)$ $R_2(z)$

Product of mixture of Gaussians is a mixture of Gaussian

Channel Message: $Y_i(z)$

Brian Kurkoski, JAIST

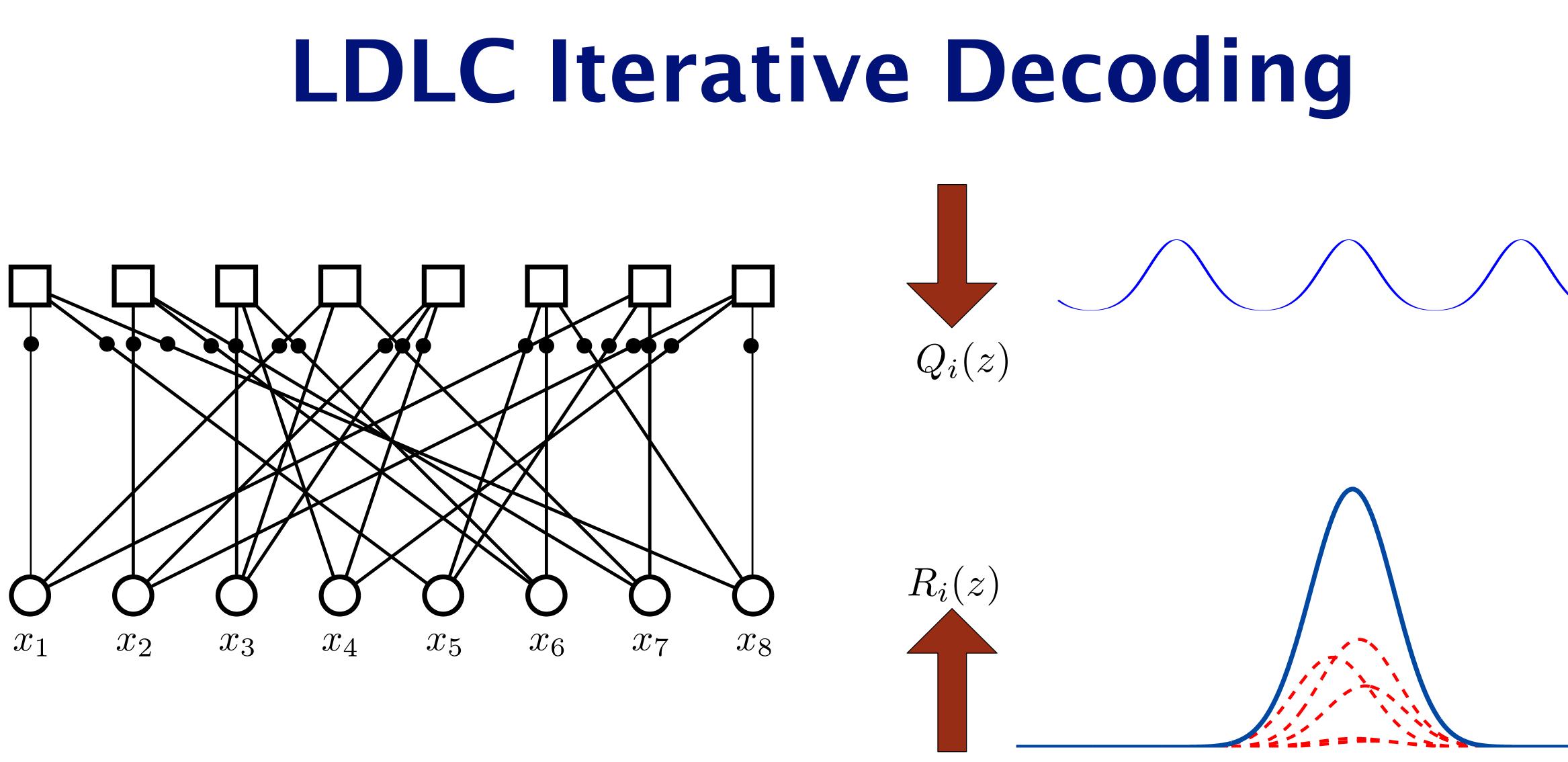
 $R_3(z)$

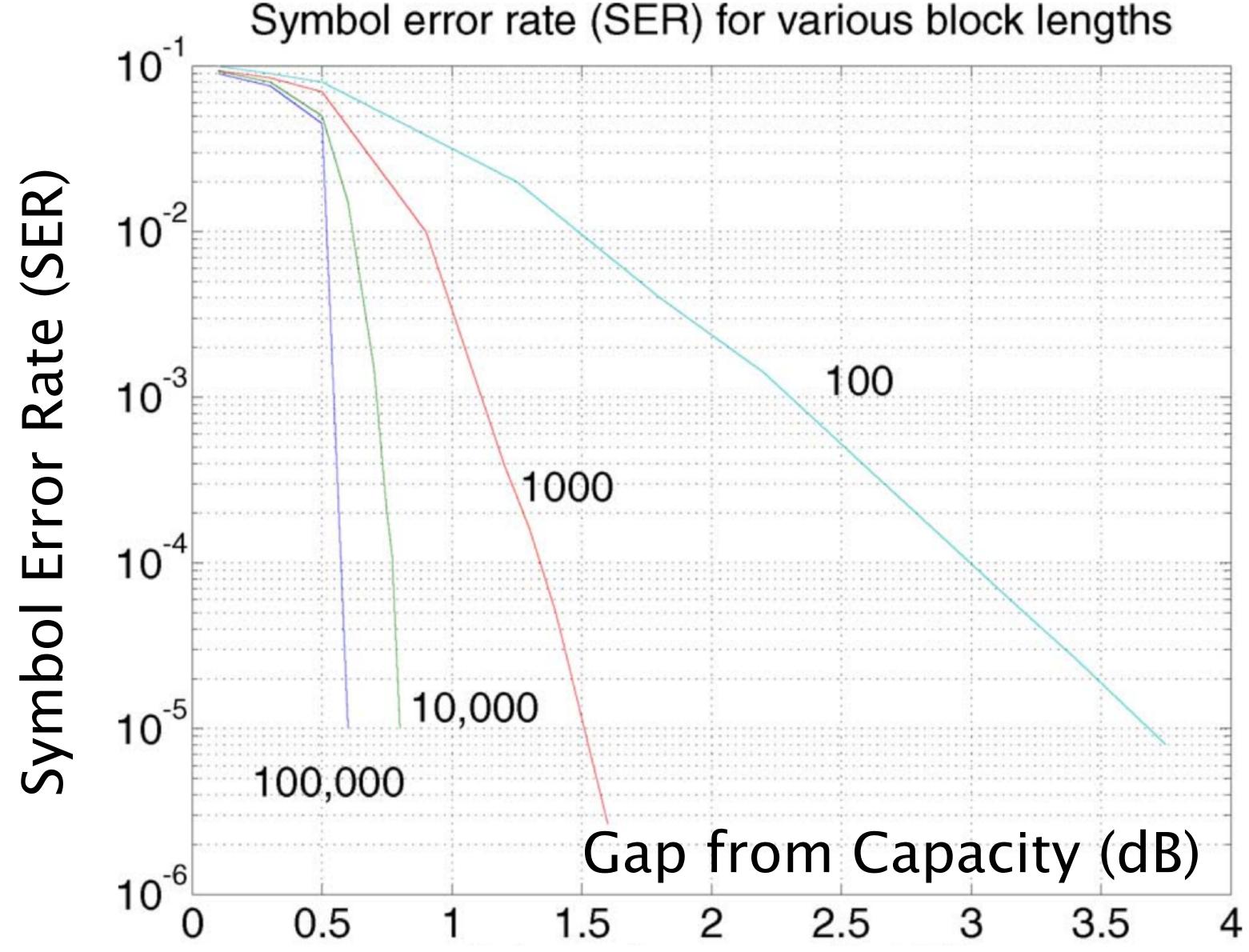


Y(z)



16/32





N. Sommer and M. Feder and O. Shalvi, "Low-Density Lattice Codes," IEEE Trans. Info. Theory, July 2008

(1d) Design of Latin Square LDLCs

Latin square: each row/column $\{h_1, h_2, \dots, h_d\}$ $h_1 \ge h_2 \ge \dots \ge h_d$

How to select d and h_i ?

Choose $h_1 = 1$ to normalize the power

Convergence condition: $\frac{\sum_{i=2}^{d} h_i^2}{h_1^2} \le 1$ (next section)

Empirical observations:

- Increasing degree d improves performance until d = 7

Brian Kurkoski, JAIST

• Choice of h_2 , h_3 , ... not so important. Practical benefit for $h_2 = h_3 = ...$

Gaussian Mixtures

2. Condition on convergence of variances

Brian Kurkoski, JAIST

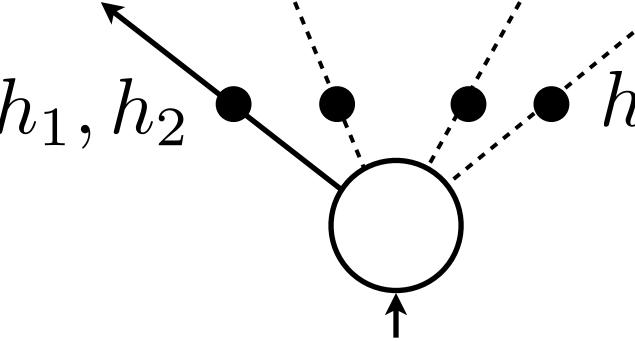
3. Gaussian BP Approximation of Gaussian mixture

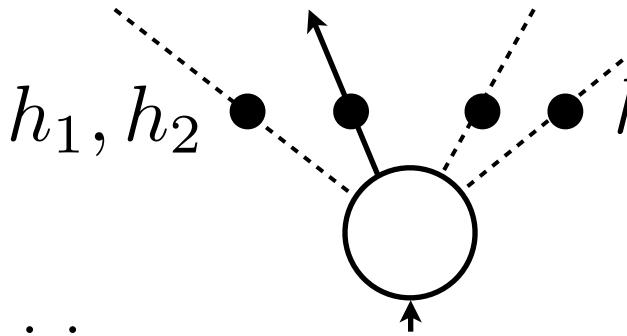
(2) Convergence Condition on Variances

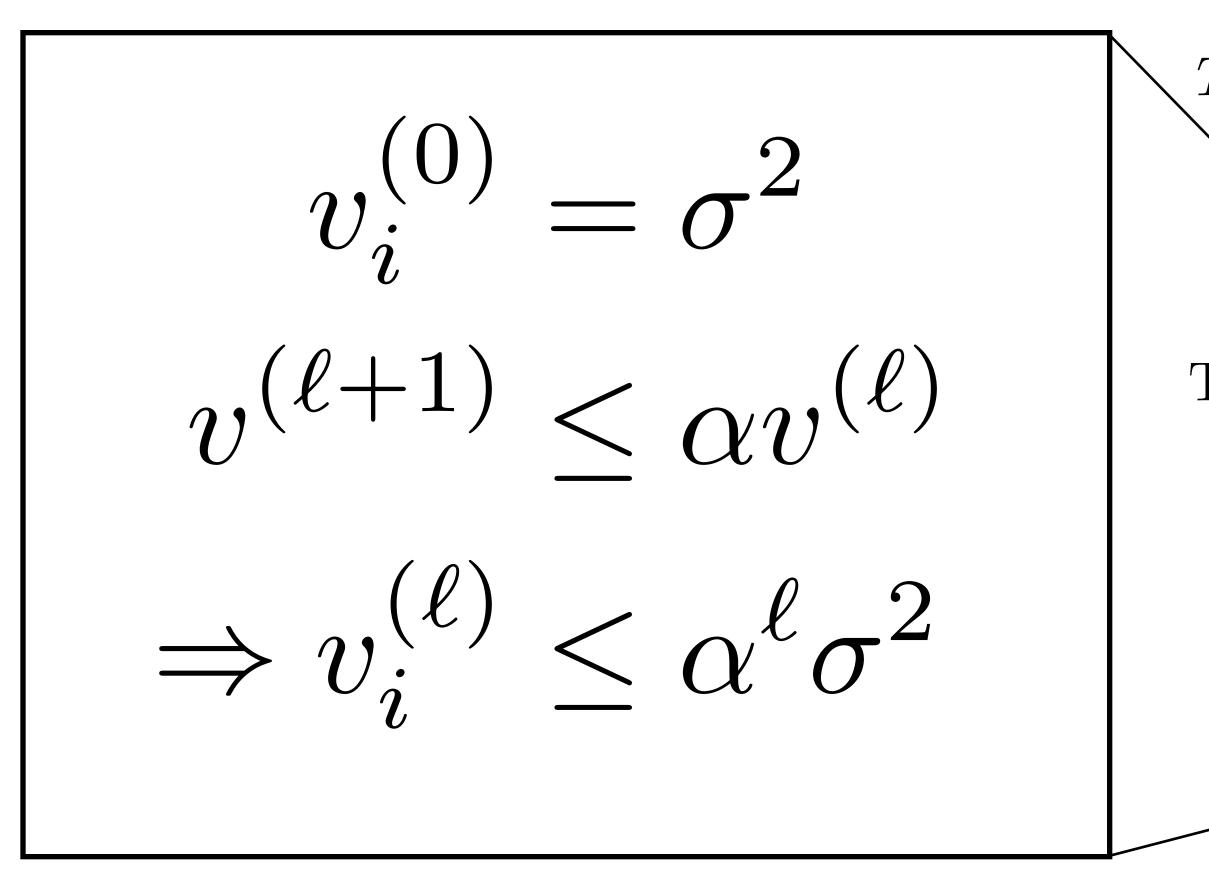
- All mixture components have the same variance At variable node, two types of outgoing messages: wide messages
 - outgoing message on edge h_1 outgoing
 - if alpha < 1, variance converges to a non-zero constant

narrow messages

- outgoing message on edge h_2 , h_3 ,...
- if alpha < 1, variance converges to 0— sufficient for convergence of variance in final decisions







N. Sommer and M. Feder and O. Shalvi, "Low–Density Lattice Codes," IEEE Trans. Info. Theory, July 2008

Brian Kurkoski, JAIST

Convergence of the variances

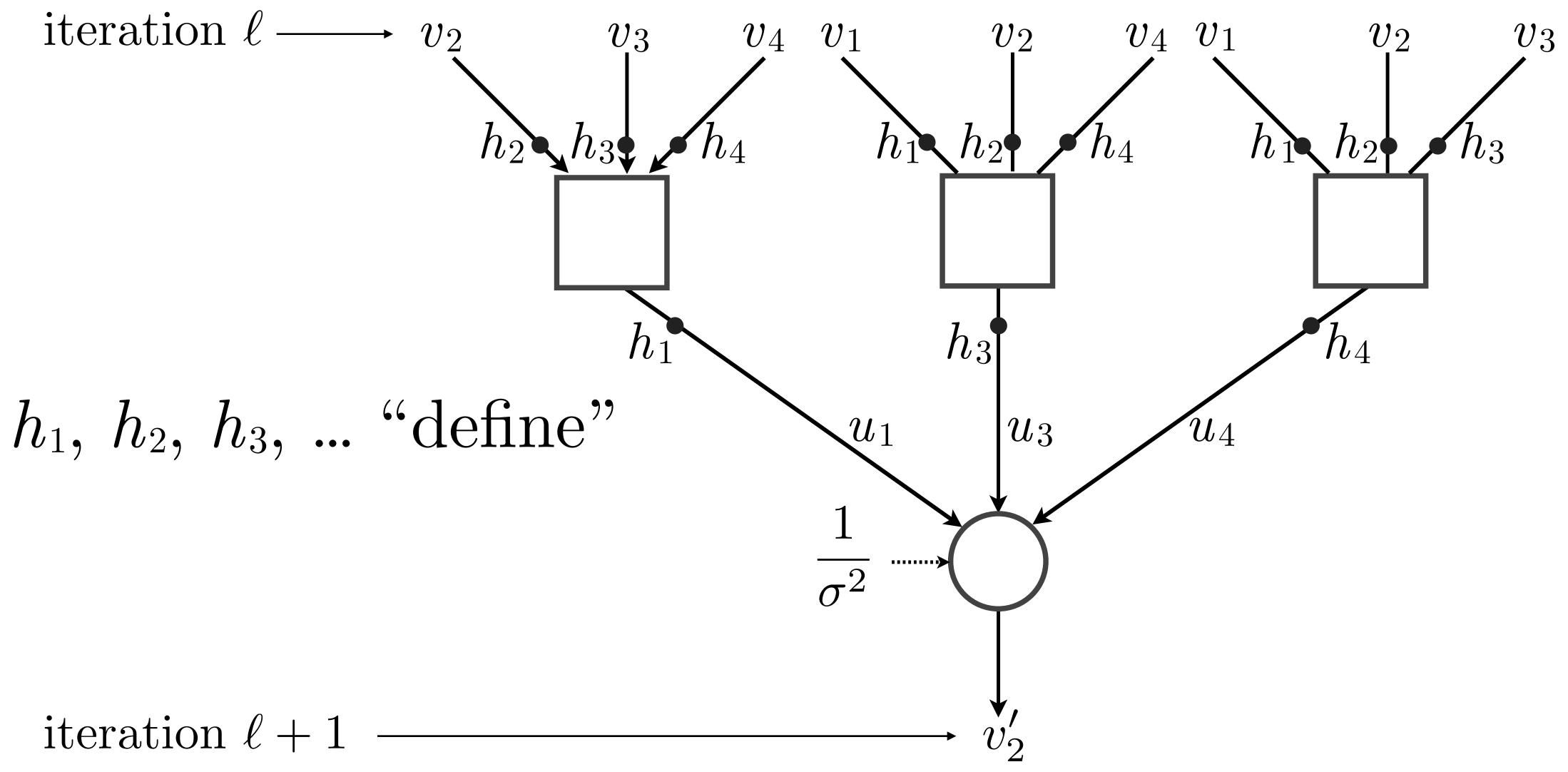
Theorem Define α as: $\alpha = \frac{\sum_{i=2}^{u} h_i^2}{h_1^2}.$ Then: 1. On iteration ℓ , the variances are upper bounded as: $v_{\cdot}^{(\ell)} \leq \alpha^{\ell} \sigma^2$ for $i = 2, \ldots, d$.

2. The asymptotic value of $v_1^{(\infty)} = \lim_{\ell \to \infty} v_1^{(\ell)}$, is:

 $v_1^{(\infty)} = (1 - \alpha)\sigma^2$

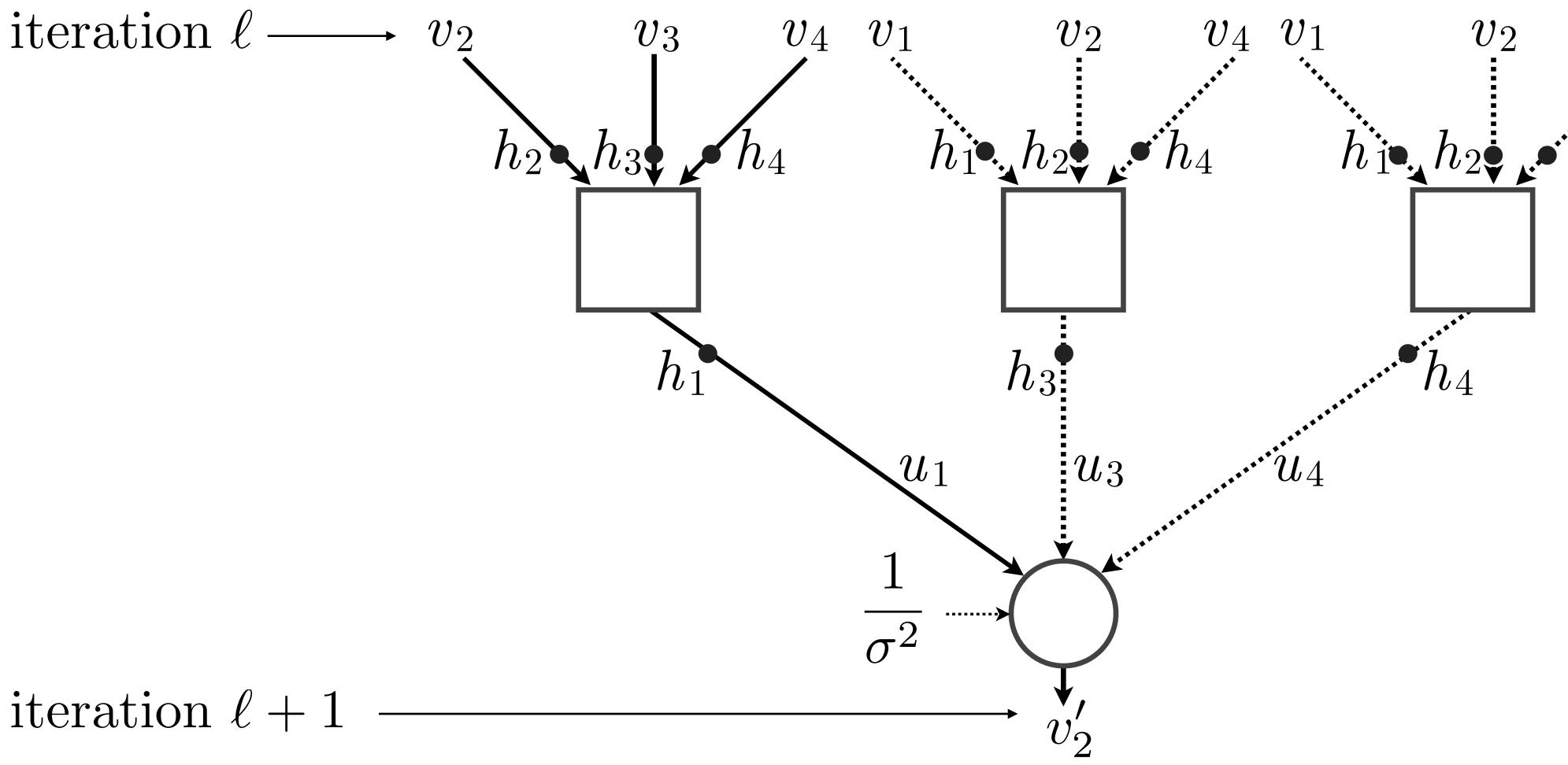
22/32

Recursion of "narrow" variances

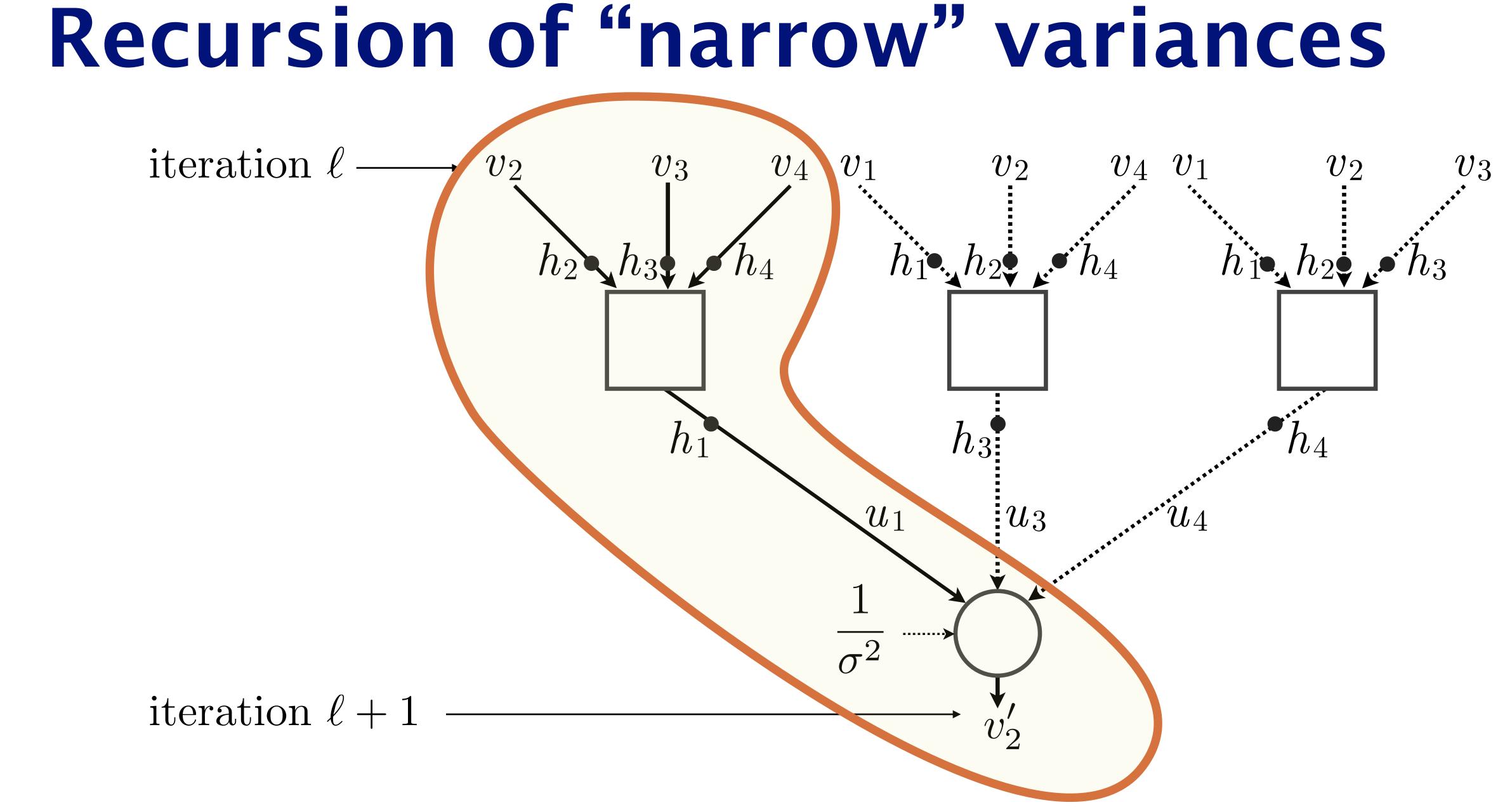


Which h_1 , h_2 , h_3 , ... "define" alpha?

Recursion of "narrow" variances



iteration $\ell + 1$



Generalization of Convergence to Non-Latin Square

- Multiply each row of H by c_i $\alpha = \frac{\sum_{i=2}^{d} c^2 h_i^2}{c^2 h_1^2} \to \frac{\sum_{i=2}^{d} h_i^2}{h_1^2} \le 1$
- Non-Latin square that satisfies a convergence condition
- Possibly changing $|\det H|$ • useful for triangular constructions where non-uniform coefficients are needed

(3) Decoding. Moment Matching: Replace Gaussian Mixture with A Single Gaussian Approx.

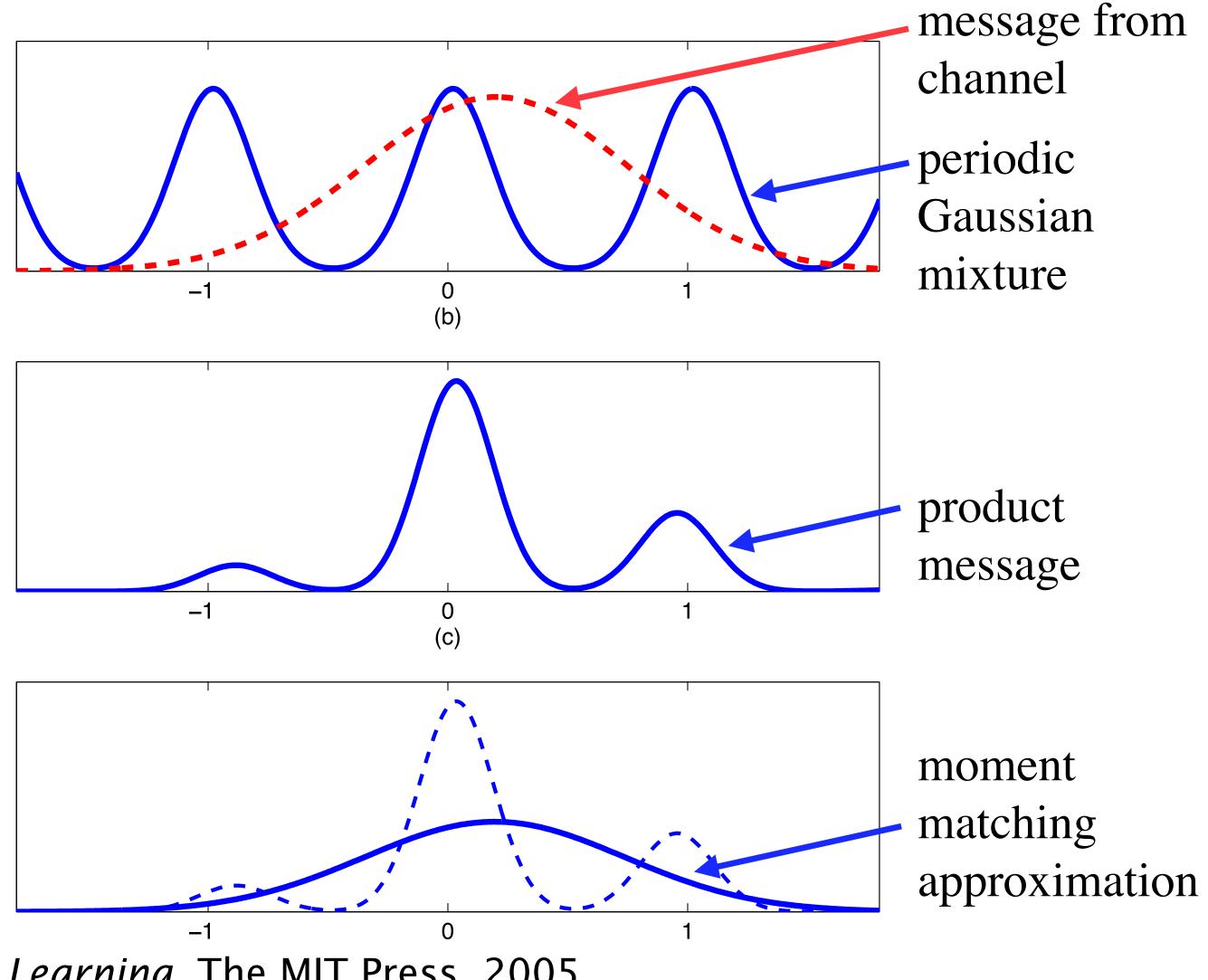
Moment matching Single Gaussian has same mean and variance of the Gaussian mixture:

$$E[Y] = c_1 m_1 + c_2 m_2$$

$$E[Y^2] = c_1 \cdot (v_1 + m_1^2) + c_2 \cdot (v_2 + m_2^2)$$

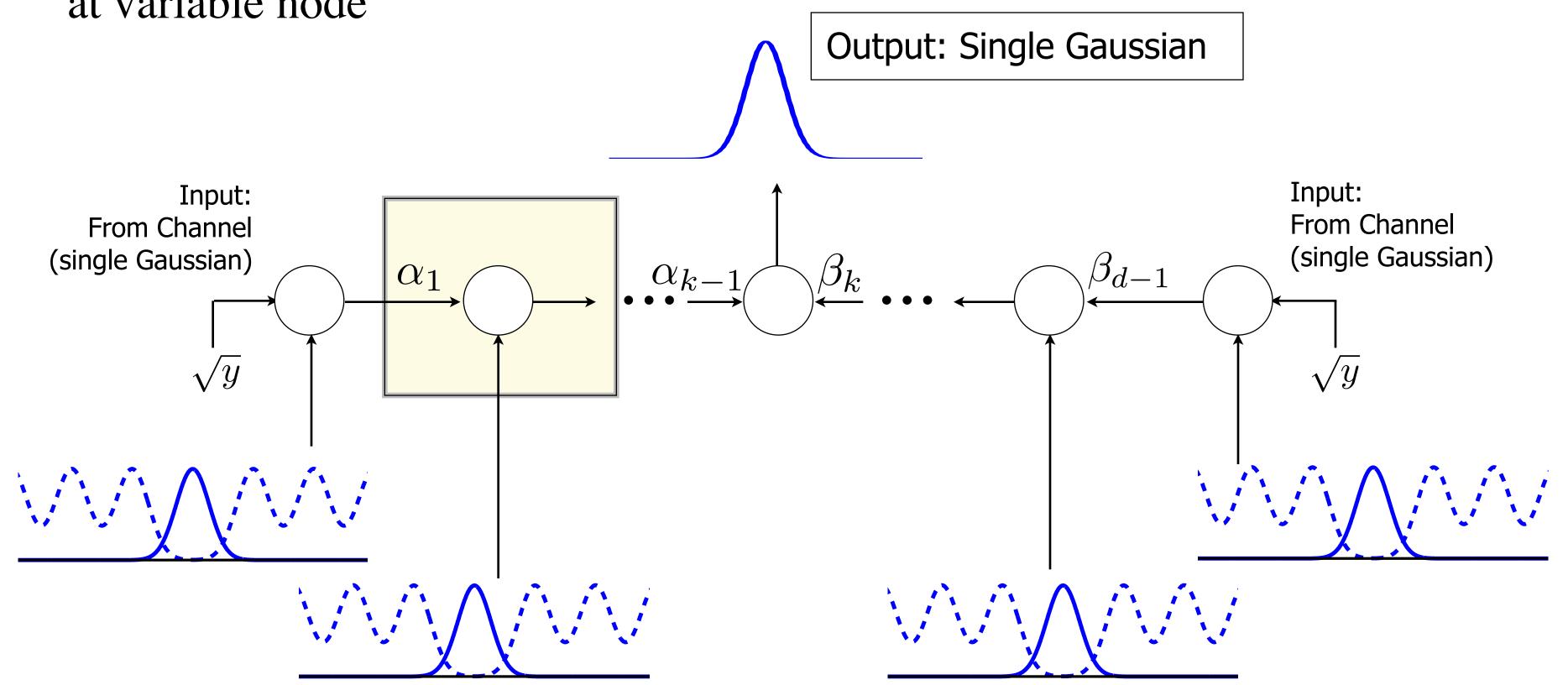
Very efficient! Moment matching results in minimizing the Kullback-Leiber divergence

Rasmussen and Williams, *Gaussian Processes for Machine Learning*. The MIT Press, 2005 Brian Kurkoski, JAIST



Single Gaussian Decoder: Variable Node

Forward-backward algorithm at variable node



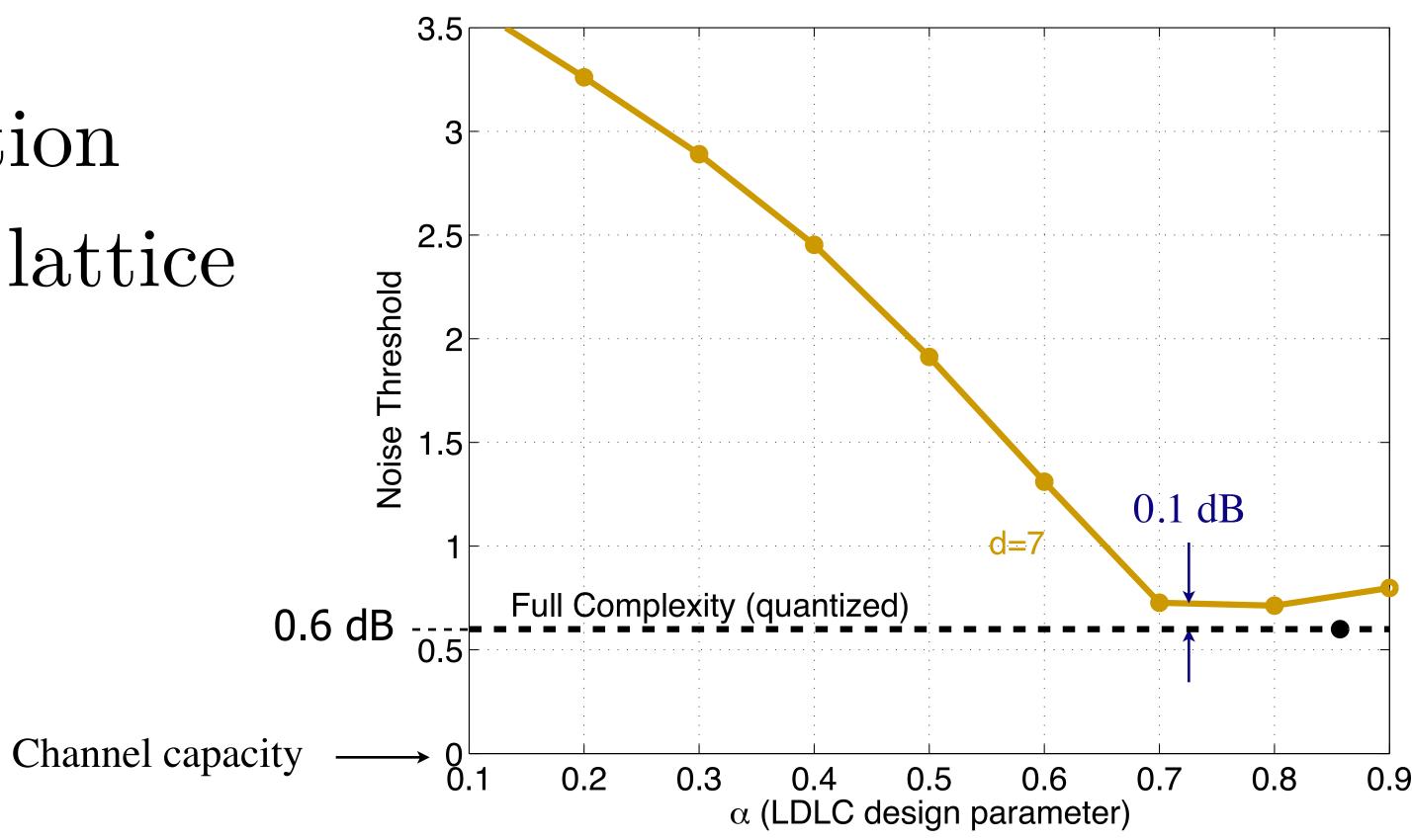
Brian Kurkoski, JAIST

27/32

Noise Thresholds under Single-Gaussian Approximation

Monte Carlo density evolution 0.1 dB gap to n = 100,000 lattice \rightarrow small quantization loss computationally simple row/column weight d = 7is good choice $\alpha \approx 0.7-0.8$ is good choice

"Single-gaussian messages and noise thresholds for decoding low-density lattice codes," ISIT, 2009.

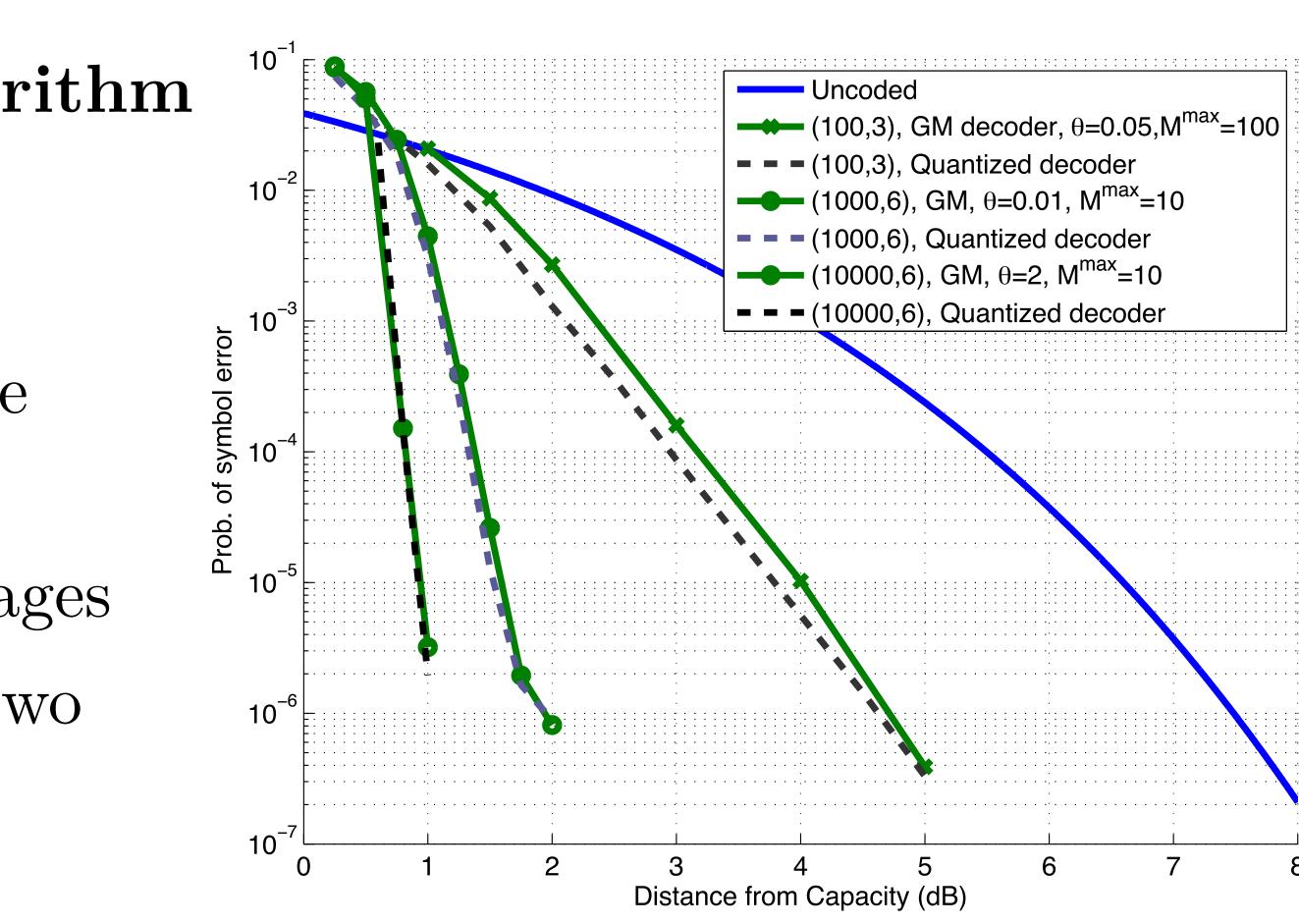


Single-Gaussian, Finite-Length LDLC

Gaussian Mixture Reduction Algorithm

- Gaussian mixture reduction algorithm allow 2 or more Gaussians in the approximation.
- Messages between check/var are single Gaussian \rightarrow low memory
- Same performance as quantized messages
- Algorithm is greedy combining with two parameters
- Would like some improvements

"Reduced-memory decoding of low-density lattice codes," IEEE Communications Letters, vol. 14, pp. 659-661, July 2010.



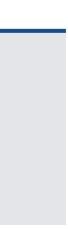
Summary of Gaussian Decoders

Single Gaussians Everywher

Gaussian mixtures internally at varia Single Gaussians between var/che

Brian Kurkoski, JAIST

	Density Evolution	Finite– dimension
re		
able node eck node		



31/32

(4) LDLCs vs. Construction A & D

- "Why not construct lattices from codes we already know?" p-ary LDPC + Construction A = Lattice
- generally $p \rightarrow$ infinity to achieve capacity
- decoding *p*-ary LDPCs requires more storage than Gaussian BP
- "Not every lattice can be described by Construction A"

Problems with termination

- Construction D Spatially-Coupled LDPCs [Vem et al., ISIT 2014] 0.106 from capacity (ignoring rate loss) 0.952 dB with rate loss • Turbo codes + Construction D have termination problems [Sakzad et al] • Triangular LDLCs have a slight rate loss [Sommer et al., ITW 2008]

Future Directions and Open Problems

Want practical lattices/decoder to achieve recent information-theoretic results Low-density lattice codes, Gaussian BP decoding, few tenths of dB to capacity

Near future

- Beyond Latin square: improving the design of LDLC lattices

Open problem

• Can LDLC lattices achieve capacity? Loeliger-like result for LDLCs

Brian Kurkoski, JAIST

• Gaussian BP decoder more elegant than "Mixture Reduction Algorithm" • Shaping for AWGN power constraint [Mo2C: Lattice Codes, 13:40 today]

33/32