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LDLC lattices were described by Sommer, Shalvi and Feder [IT 2008] 
• Inverse generator matrix H = G –1 is sparse 
• Decoding using Gaussian belief-propagation 
• high dimension, n = 100, 1000, 10000, 100000 
• come within 0.6 dB of unconstrained capacity 
• spatially-coupled LDLCs come with 0.35 dB of unconstrained capacity 

  Merits of LDLC constructions  
• High-dimension lattice design in the Euclidean space 
• Fits naturally with many aspects of lattice theory 
• Gaussian BP decoding is interesting

Low-Density Lattice Codes 

4
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Tour of LDLC Lattices
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1. Basics of LDLCs: 
       1a LDLC Latin Square construction  
       1b Encoding  
    1c Decoding       
    1d Design      
2. Convergence condition with a new perspective  
3. Gaussian belief-propagation decoding 
4. LDLC vs. LDPC-based Construction A lattices 
5. Open problems



/32Brian Kurkoski, JAIST

n is lattice dimension 
x is lattice point 
b is integer vector 

G is generator matrix 
 x = G b 

inverse generator matrix H = G –1 
H x = b

Definitions

6
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(1a) LDLC “Latin Square” Construction
H has constant row and column weight d.   
Latin square: each row/column {h1, h2,…,hd} with random ±, h1 ≥ h2 ≥ … ≥hd 
Necessary condition: 
!

!

• Choose h1 = 1  
   (forces |det H | to be = 1) 

• Non-zero elts pseudo-random loc. 
• Random sign changes 
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LDLC “Latin Square” Construction
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row/column weight 3  
elements from {1, 1/2, 1/3} 

H = 

Example:
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LDLC “Latin Square” Construction
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row/column weight 3  
elements from {1, 1/2, 1/3} 

H = 

Example:
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 Encoding using Jacobi method or Gauss-Seidel method. 
Encoding can be performed without G.   

(1b) Encoding LDLC codes

10

don’t want to compute H 
–1

system of equations unknown x
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A lattice point x is transmitted over an AWGN channel 

Channel and Initial Message

11

yi
z

0
Yi(z) =

1�
2�⇥2

e�(z�yi)
2/2�2
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(1c) Decoding: Tanner Graph
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x1 x2 x3 x4 x5 x6 x7 x8

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

1/2 0 0 0 1 0 0 �1/3
0 �1 0 0 0 1/3 1/2 0
0 0 �1 1/3 0 �1/2 0 0

1/3 0 �1/2 0 0 0 1 0
0 �1/2 1/3 1 0 0 0 0
0 0 0 0 1/3 1 0 �1/2
�1 0 0 0 1/2 0 1/3 0
0 1/3 0 �1/2 0 0 0 �1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

each edge has exactly one: 
h1, h2, h3, … edge 
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LDLC Iterative Decoding
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x1 x2 x3 x4 x5 x6 x7 x8

Qi(z) � Pr(xi = z)
Ri(z) � Pr(xi = z)

Qi(z) � Pr(xi = z)
Ri(z) � Pr(xi = z)

Variables are real numbers 
Messages R(z) is a function 

R(z) = Pr(x = z) 
!

“parity check” integer b 
H x = b 

Check node: 
x1 + x2 + x3 = b  
(over real numbers) 
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Check Node: Convolution 
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x1 x2 x3 x4

then consider coefficients…

b = 0 b = 1b = –1
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Check Node: Convolution 
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x1 x2 x3 x4

h1, h2 h3, h4

b = 0 b = 1b = –1
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Check Node: Convolution 

15

x1 x2 x3

x4

Gaussians

Convolution is Gaussian

Mixture of 
Gaussians
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Channel Message: Yi(z)

R1(z)

R2(z)

R3(z)

Y (z)

Variable Node: Combine Beliefs

16

Product of  
mixture of Gaussians 
is a mixture of Gaussian
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x1 x2 x3 x4 x5 x6 x7 x8

Qi(z) � Pr(xi = z)
Ri(z) � Pr(xi = z)

Qi(z) � Pr(xi = z)
Ri(z) � Pr(xi = z)

LDLC Iterative Decoding
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N. Sommer and M. Feder and O. Shalvi, “Low-Density Lattice Codes,” IEEE Trans. Info. Theory, July 2008
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Latin square: each row/column {h1, h2,…,hd} h1 ≥ h2 ≥ … ≥hd 
How to select d and hi ? 

Choose h1 = 1 to normalize the power 
!

Convergence condition:                      (next section) 
!

Empirical observations: 
• Increasing degree d improves performance until d = 7 

• Choice of h 2, h 3, … not so important.  Practical benefit for h 2 = h 3 = … 

(1d) Design of Latin Square LDLCs

19
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Gaussian Mixtures

20

2. Condition on convergence  
of variances

3. Gaussian BP 
Approximation of Gaussian 
mixture
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All mixture components have the same variance 
At variable node, two types of outgoing messages: 
wide messages  
 • outgoing message on edge h1 outgoing 
 • if alpha < 1, variance converges to a non-zero constant 
narrow messages  
 • outgoing message on edge h2, h3,…  
• if alpha < 1, variance converges to 0 
       — sufficient for convergence of variance in final decisions 
   

(2) Convergence Condition on 
Variances

21

h1, h2 h3, h4

h1, h2 h3, h4
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Convergence of the variances
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u 1 u 3 u 4

h 1 h 3 h 4

v 2 v 3 v 4 v 1 v 1 v 2 v 3v 2 v 4

h 2  h 4h 3 h 1  h 4h 2 h 1  h 3h 2

N. Sommer and M. Feder and O. Shalvi, “Low-Density Lattice 
Codes,” IEEE Trans. Info. Theory, July 2008
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u 1 u 3 u 4

h 1 h 3 h 4

v 2 v 3 v 4 v 1 v 1 v 2 v 3v 2 v 4

h 2  h 4h 3 h 1  h 4h 2 h 1  h 3h 2
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Recursion of “narrow” variances

Which h 1, h 2, h 3, … “define” 
alpha?
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Recursion of “narrow” variances

u 1 u 3 u 4

h 1 h 3 h 4

v 2 v 3 v 4 v 1 v 1 v 2 v 3v 2 v 4

h 2  h 4h 3 h 1  h 4h 2 h 1  h 3h 2
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Recursion of “narrow” variances

u 1 u 3 u 4

h 1 h 3 h 4

v 2 v 3 v 4 v 1 v 1 v 2 v 3v 2 v 4

h 2  h 4h 3 h 1  h 4h 2 h 1  h 3h 2
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•Multiply each row of H by ci 

!

!

•Non-Latin square that satisfies a convergence condition 
•Possibly changing | det H | 
•useful for triangular constructions where non-uniform 
coefficients are needed

Generalization of Convergence to 
Non-Latin Square

25
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−1 0 1
(a)

−1 0 1
(b)

−1 0 1
(c)

−1 0 1
(d)

moment  
matching 
approximation

periodic  
Gaussian	

mixture 

product 
message

Moment matching 
Single Gaussian has same mean and 
variance of the Gaussian mixture: 
!

!

!

Very efficient! 
Moment matching results in 
minimizing the Kullback-Leiber 
divergence

message from 
channel

(3) Decoding.   Moment Matching: Replace  
Gaussian Mixture with A Single Gaussian Approx.

E[Y ] = c1m1 + c2m2

E[Y 2] = c1 · (v1 + m2
1) + c2 · (v2 + m2

2)

Rasmussen and Williams, Gaussian Processes for Machine Learning. The MIT Press, 2005



/32Brian Kurkoski, JAIST

Single Gaussian Decoder: Variable Node
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�
y

�
y

�k�1 �k�1 �d�1

Forward-backward algorithm	

at variable node

Output: Single Gaussian

Input:  
From Channel  

(single Gaussian)

Input:  
From Channel  
(single Gaussian)
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Noise Thresholds under Single-Gaussian 
Approximation
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α (LDLC design parameter)

d=7

Full Complexity (quantized)

0.1 dB

Channel capacity

0.6 dB

“Single-gaussian messages and noise thresholds for decoding low-density lattice codes,” ISIT, 2009.

Monte Carlo density evolution 
0.1 dB gap to n = 100,000 lattice 
→ small quantization loss 
computationally simple 
row/column weight d = 7  
             is good choice 
     ≈ 0.7–0.8 is good choice
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Single-Gaussian, Finite-Length LDLC

29

❌
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Gaussian mixture reduction algorithm 
allow 2 or more Gaussians in the 
approximation. 

Messages between check/var are single 
Gaussian → low memory 

Same performance as quantized messages 
Algorithm is greedy combining with two 
parameters 

Would like some improvements 

Gaussian Mixture Reduction Algorithm

30
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Uncoded
(100,3), GM decoder, θ=0.05,Mmax=100
(100,3), Quantized decoder
(1000,6), GM, θ=0.01, Mmax=10
(1000,6), Quantized decoder
(10000,6), GM, θ=2, Mmax=10
(10000,6), Quantized decoder

“Reduced-memory decoding of low-density lattice codes,” IEEE Communications Letters, vol. 14, pp. 659-661, July 2010.
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Summary of Gaussian Decoders

31

Density 
Evolution

Finite-
dimension

Single Gaussians Everywhere ✅ ❌

Gaussian mixtures internally at variable node
Single Gaussians between var/check node ✅ ✅
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“Why not construct lattices from codes we already know?” 
p-ary LDPC + Construction A = Lattice 
• generally p → infinity to achieve capacity 
• decoding p-ary LDPCs requires more storage than Gaussian BP  
• “Not every lattice can be described by Construction A” 
Problems with termination 
• Construction D Spatially-Coupled LDPCs [Vem et al., ISIT 2014] 
     0.106 from capacity (ignoring rate loss) 0.952 dB with rate loss      
• Turbo codes + Construction D have termination problems [Sakzad et al] 
• Triangular LDLCs have a slight rate loss [Sommer et al., ITW 2008]

(4) LDLCs vs. Construction A & D

32
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Want practical lattices/decoder to achieve recent information-theoretic results 
Low-density lattice codes, Gaussian BP decoding, few tenths of dB to capacity 
!

Near future 
• Gaussian BP decoder more elegant than “Mixture Reduction Algorithm” 
• Beyond Latin square: improving the design of LDLC lattices 
• Shaping for AWGN power constraint [Mo2C: Lattice Codes, 13:40 today] 
!

Open problem 
• Can LDLC lattices achieve capacity?  Loeliger-like result for LDLCs

Future Directions and Open Problems
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