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Low-Density Lattice Codes

LDLC lattices were described by Sommer, Shalvi and Feder [IT 2008]

e Inverse generator matrix H = G ! is sparse

e Decoding using (Gaussian belietf-propagation
e high dimension, n = 100, 1000, 10000, 100000

Brian Kurkoski, JAIST



Low-Density Lattice Codes

LDLC lattices were described by Sommer, Shalvi and Feder [IT 2008]

e Inverse generator matrix H = G ! is sparse
e Decoding using (Gaussian belietf-propagation
e high dimension, n = 100, 1000, 10000, 100000
e come within 0.6 dB of unconstrained capacity

e spatially-coupled LDLCs come with 0.35 dB of unconstrained capacity

Merits of LDLC constructions
e High-dimension lattice design in the Euclidean space
e Fits naturally with many aspects of lattice theory

e Gaussian BP decoding is interesting
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Tour of LDLC Lattices

1. Basics of LDLCs:

la LDLC Latin Square construction

I1b Encoding

lc Decoding

1d Design
2. Convergence condition with a new perspective
3. Gaussian belief-propagation decoding

4. LDLC vs. LDPC-based Construction A lattices
5. Open problems
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Definitions

n is lattice dimension
X 1s lattice point
b is integer vector
(- is generator matrix

Xx=GDb

inverse generator matrix H = G !
Hx =Db
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(1a) LDLC “Latin Square” Construction

H has constant row and column weight d.

Latin square: each row/column {hi, hg,..,hq} with random =+, h1 = hy = ... =hy

Necessary condition:

S R2

a===21 <1 120 0 0 1 0 0 —1/3

h 0 -1 0 0 0 1/3 1/2 0

e Choose h1 =1 oo -1 13 0 -1/2 0 O

/3 0 -1/2 0 0 0 1 0

(forces |det H | to be = 1) 0 -1/2 1/3 1 0 0 0 0
o 0 0 0 1/3 1 0 -1)2

e Non-zero elts pseudo-random loc. 10 0 X :_?2 0 1/3 ()/
« Random sign changes o 3 0 =12 0 0 0 -1
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LDLC “Latin Square” Construction

Example: row/column weight 3
elements from {1, 1/2, 1/3}
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LDLC “Latin Square” Construction

Example: row/column weight 3
elements from {1, 1/2, 1/3}

- 1/2 0 0 0 0 0 —1/3

1

0 -1 0 0 0 1/3 1/2 0

o 0 -1 1/3 0 -1/2 0 0

H—= |13 o -12 0 0 0 1 0
0o -1/2 1/3 1 0 0 0 0

0 0 0 0 1/3 1 0 —1/2

-1 0 0 0 1/2 0 1/3 0

0 1/3 0 -1/2 0 0 0 -1
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(1b) Encoding LDLC codes

(;b <+«— don’t want to compute H -

X

Hx

b «—— system of equations unknown x

FEncoding using Jacobi method or Gauss-Seidel method.

Encoding can be performed without G.
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Channel and Initial Message

A lattice point x is transmitted over an AWGN channel

X:(ail,aig,...il?n) > >y:(ylyy27-“yn)

g NN(O,O'Q)

Channel message Y;(z) is Gaussian

mean vy;, variance o=: 5
L —Gu)?/20° 5
Yi(z) = € z : 2

V2702 0 Vi

Brian Kurkoski, JAIST



(1c) Decoding: Tanner Graph

- 1/2 0 0 0 1 0 0 —1/3
0 -1 0 0 0 1/3 1/2 0
0 0 -1 1/3 0 -1/2 0 0
1/3 0 —=1/2 0 0 0 1 0
0 -1/2 1/3 1 0 0 0 0
0 0 0 0 1/3 1 0 —1/2
-1 0 0 o 1/2 0 1/3 0
0 1/3 0 —-1/2 0 0 0o -1

cach edge has exactly one:

h1, hz, hg, edge
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LDLC Iterative Decoding

Variables are real numbers

Messages R(z) is a function [ [ [

R(z) = Pr(xz = 2) 0

N

s

“parity check” integer b ’
Hx =b //

Check node:

T+ ;2 + 13 = b
(over real numbers)
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Check Node: Convolution
b; = r1+ X2+ T3+ 24

@/g/\g\@ o
W

/\551/\2172 $3

then consider coefhicients...
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Check Node: Convolution
bi = hixi + hoxo + haxs + hyxy

\s
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Check Node: Convolution

/\ L1 /\ L2 N?’ (Gaussians

+

/\ Convolution is Gaussian

— 1/h >
ha Mixture of

4 (zaussians
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Variable Node: Combine Beliefs

Q(z) x Y(z | | R;(% JWWV
Product of

mixture of (Gaussians

i1s a mixture of Gaussian T Y (2)

T
Channel Message: Y;(z)
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LDLC Iterative Decoding
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Symbol error rate (SER) for various block lengths
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N. Sommer and M. Feder and O. Shalvi, “Low-Density Lattice Codes,” IEEE Trans. Info. Theory, July 2008
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(1d) Design of Latin Square LDLCs

Latin square: each row/column {hi, hg,..,ha} h1 = ha = .. =hg

How to select d and h; 7

Choose h1 = 1 to normalize the power

d 2
5 hs

Zz:2 L <1 (next section)
hi

Convergence condition:

Empirical observations:

e Increasing degree d improves performance until d = 7

e Choice of ho, h3, .. not so important. Practical benefit for ho = h3 = ..
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Gaussian Mixtures

7 ! \ \
¢ ! T
/ /,' \ \\\
-/ﬁ,:: = = = :: :\.E
2. Condition on convergence 3. Gaussian BP
oI variances Approximation of Gaussian

mixture
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(2) Convergence Condition on
Variances

All mixture components have the same variance

At variable node, two types of outgoing messages: hlv h2 ','"",.'"'}'ng h 4

wide messages
e Ooutgoing message on edge h; outgoing
e if alpha < 1, variance converges to a non-zero constant

Nnarrow 1messages

h 1, h2 '

e outgoing message on edge hg, hs,..

e if alpha < 1, variance converges to 0

— sufficient for convergence of variance in final decisions
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Convergence of the variances

Theorem Define o as:

Then:

1. On iteration ¢, the variances are upper bounded
as:

v,fg) < ato?

or ¢ =2,...,d.
(00) _

2. The asymptotic value of v,

(£) .

= limy_, o0 V7 7, 18S:

N. Sommer and M. Feder and O. Shalvi, “Low-Density Lattice (OO)

Codes,” IEEE Trans. Info. Theory, July 2008 = (1 — 04)02
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Recursion of “narrow” variances

iteration ¢ V4 V1 V4 V1 V9 V3

\%l h hi hzl ha hi hop & hs

h1 h3 h 4
Which h1, hz, hg, .. “define” Ui U3 U4
alpha? 1
5 ‘
iteration ¢ + 1 - Vs
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Recursion of “narrow” variances

iteration /

iteration £ + 1 . fué
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Recursion of “narrow” variances

iteration /

iteration £ + 1
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Generalization of Convergence to
Non-Latin Square

e Multiply each row of H by c;

d d
Zq;:z CthZ Zi:Q th <1

27,2
chy

(Y —

e« Non-Latin square that satisfies a convergence condition
e Possibly changing | det H |

e useful for triangular constructions where non-uniform

coelhicients are needed
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(3) Decoding. Moment Matching: Replace
Gaussian Mixture with A Single Gaussian Approx.

l l l message from
Moment matching / channel

Single Gaussian has same mean and «—Periodic
. . . . Gaussian
variance of the Gaussian mixture: i 6 11 J ixture
(b)
E[Y] = cimi+ cymo '
ElY?] = c1-(vi4+m3)+co- (va+m3)
— product
, 1 | | | message
Very efficient! - : 1
(c)
Moment matching results in ' T
minimizing the Kullback-Leiber s moment
di matching
IVEIZENCe approximation

= 5 ;
Rasmussen and Williams, Gaussian Processes for Machine Learning. The MIT Press, 2005
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Single Gaussian Decoder: Variable Node

Forward-backward algorithm
at variable node

Output: Single Gaussian

Input: Input:
From Channel From Channel
(single Gaussian) (single Gaussian)

I_,Q Oél,@_, . ikl &..._Q?d_l %
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Noise Thresholds under Single-Gaussian
Approximation

Monte Carlo density evolution N

O.]- dB gap tO n — 1007000 lattice %2_5 .........................................................................................................

, small quantization loss N

computationally sImple

row /column weight d = 7 0608 gy SHCTEEIIEED )i
is good choice  channel capacity —— g 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
o (LDLC design parameter)

a = (0.7-0.8 is good choice

“Single—-gaussian messages and noise thresholds for decoding low-density lattice codes,” ISIT, 20009.
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Single-Gaussian, Finite-Length LDLC
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Gaussian Mixture Reduction Algorithm

1

10

Gaussian mixture reduction algorithm
allow 2 or more (Gaussians in the

approximation. }

Messages between check/var are single é
(Gaussian — low memory E ;

Same performance as quantized messages S0

Algorithm is greedy combining with two 10
parameters =

Would like some improvements

............ .................

P\ :
:_.::::f':.:::fs.:. ::f.."':::f:::::::f:::
::Z:ZZZ..Z:.::Zﬁﬁs..'ﬁﬁZZ:Z.."ZZZZZ:ZT:ZZ:
SRREOEE S, CHEEE N UEEENS SRS
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____________________ R
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= Jncoded

=== (100,3), GM decoder, 6=0.05,M™**=100
(100,3), Quantized decoder

=@ (1000,6), GM, 6=0.01, M"**=10
(1000,6), Quantized decoder

(

(

=@ (10000,6), GM, 6=2, M"¥=10
10000,6), Quantized decoder

Distance from Capacity (dB)

“Reduced-memory decoding of low-density lattice codes,” IEEE Communications Letters, vol. 14, pp. 659-661, July 2010.

R1IRY/
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Summary of Gaussian Decoders

Density Finite-
Evolution dimension
Single Gaussians Everywhere X

Gaussian mixtures internally at variable node
Single Gaussians between var/check node
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(4) LDLCs vs. Construction A & D

“Why not construct lattices from codes we already know?”

p-ary LDPC + Construction A = Lattice

e generally p — infinity to achieve capacity

e decoding p-ary LDPCs requires more storage than Gaussian BP
e “Not every lattice can be described by Construction A”
Problems with termination

o Construction D Spatially-Coupled LDPCs [Vem et al., ISIT 2014]
0.106 from capacity (ignoring rate loss) 0.952 dB with rate loss

e Turbo codes + Construction D have termination problems [Sakzad et al]
e Triangular LDLCs have a slight rate loss [Sommer et al., ITW 2008]
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Future Directions and Open Problems

Want practical lattices/decoder to achieve recent information-theoretic results

Low-density lattice codes, Gaussian BP decoding, few tenths of dB to capacity

Near future

e Gaussian BP decoder more elegant than “Mixture Reduction Algorithm”
« Beyond Latin square: improving the design of LDLC lattices
e Shaping for AWGN power constraint [Mo2C: Lattice Codes, 13:40 today]

Open problem
e Can LDLC lattices achieve capacity? Loeliger-like result for LDLCs
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