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Summary    This poster proposes using lattices to encode data 
in flash memories:   
• For error correction, lattices combined with Reed-Solomon 
codes form a coded-modulation system that have about 1.7 to 1.9 
dB lower SNR than existing BCH code systems.   
• For rewriting flash memories, rewriting codes can be 
constructed from lattices at high rates.

Coded Modulation for Memories

Merits of Lattices for Flash Memories

Complexity of E8 Lattice Decoding

University of Electro-Communications
Tokyo, Japan

In 2000, Lou and Sundberg suggested using trellis-coded modulation for 
memories.   But for flash memories, convolutional codes do not outperform 
BCH codes [Sun et al., 2007].
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H.-L. Lou and C.-E. Sundberg, "Increasing storage capacity in multilevel memory cells by means 
of communications and signal processing techniques," IEE Proceedings Circuits, Devices and 
Systems, vol. 147, pp. 229–236, August 2000.

Flash cells store charge, a continuous
quantity.   

• Assume signal between 0 and V.
• (other systems quantize to q levels)

Rewriting codes using lattices
• Code over real numbers has a natural 
ordering, important for rewriting codes
• Lattices can correct errors (many existing rewriting constructions do 
not correct errors)

No synchronization problems
• Carrier-based systems use QAM, QPSK constellations for 
synchronization
• Memories are always synchronized

Multilevel
• Magnetic recording systems are binary, cannot use lattices
• Flash memories are multi-level

Demerits

• Soft-input lattice decoding is not easy with current flash 
architectures (but see “Soft-Input Architecture” on this poster).
• Existing LDPC-coded modulation has excellent coding gains

Lattices
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• In n-dimensions, a lattice with generator G is subgroup of Rn:

x = G · b,

where b is a vector of integers

• Lattices are codes over real numbers

• Codebook C is the lattice points inside side length-M cube

flash cell

Storing Lattice Values in Flash
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The values of an n-dimensional lattice are stored in n flash cells:

• Assume signal between 0 and V (i.e. do not quantize to q levels)

• Codebook C is the lattice points inside side length-M cube

• If G is lower triangular, then mapping B = {0, 1, . . . ,M − 1}n −→ C is
efficient

x1 x2

{0, 1, 2, 3, 4}2 −→

Coded Modulation with Lattices
and Reed-Solomon Codes

• Each GF(2n) symbol corresponds to one group of flash cells.
• Only encode mod 2 data values (increases the rate) — lattice Euclidean 
distance is important.
• Lattice decoding errors are bursty, so Reed-Solomon codes are well suited.
• For flash memories, Reed-Solomon codes  have lower decoding complexity 

than BCH codes [Chen et al., 2008].

· · · · · ·

Group of n cells, 
one GF(2n) symbol

︸ ︷︷ ︸
K systematic symbols

︸ ︷︷ ︸
N−K parity symbols

Reed-Solomon codeword
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1. Perform lattice-by-lattice decoding.
2. Perform Reed-Solomon decoding.
3. Using correct RS symbol, correct lattice
decoding errors.

Correction of lattice decoding errors
• Assume that the Reed-Solomon decoder 
provides the correct symbol. 
• Therefore, correct value mod 2 known.
• When a lattice error occurs, with high 
probability, a transmitted point (blue) 
will be decoded as a neighboring point (red).

To distinguish the two true error patterns,
compute the Euclidean distance between
the received signal and each candidate.
Shortest distance wins.

For the E8 lattice, a GF(28) symbol is 
sufficient to distinguish the 240 neighbors, 
except for a sign change. 
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Numerical Results

• Evaluation using an AWGN system, compared with a Gray-coded pulse-
amplitude (PAM) system using BCH codes.
• The E8 lattice has about 1.8 dB gain over PAM lattice.   Comparing Reed-
Solomon and BCH codes of the same rate, this gain is preserved.
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Decoding

Rewriting codes allow writing flash memories 
two or more times without erasing.  Lattices 
can be used to construct rewriting codes.

The main idea is to create a one-to-many 
mapping from information to lattice points.

Rewriting Codes Using Lattices

1 color
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Shaping region B is a side length-M cube with corner at 0
• All codewords have positive values.
• Entire space can be covered with translations of B.
• “mod B ” is well-defined and easy to compute.
• Codebook is intersection of B and lattice.

Dirty paper (DPC) encoding:

Let u be a codeword in 
    base codebook. 

Known interference s, 
    is current state of memory. 

“Transmitted” codeword is 
          u – s mod B
which is positive-valued.

The value in memory is 
     x  =  u – s mod B  +  s

Decoding in absence of noise: 
     u  =  x  mod B

“Dirty Paper Coding” for Rewriting Flash

Codebook mapping

• Choose parameter M ≤ V ,

• Information is encoded in U bits, U = {0, 1, . . . , 2U − 1}

• “Coset Select” is encoded in C bits, CS = {0, 1, . . . , 2C − 1}

– if C = 0, then mapping is one-to-one

• The following encoding mapping is needed:

Φ : U × CS −→ B
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Numerical Results

DPC system with E8 lattice:
• Base code only: V = M
• DPC: V = 2M

Interested in high-rate codes suitable 
for applications.

Base code (“non-DPC”) can achieve 
highest rates.  At slightly lower rate:
• Has similar average number of writes
• Has much lower complexity
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Propose coded-modulation system using lattices and a systematic
(N,K) Reed-Solomon code over GF(2n)

Example: n=2 cells

Soft-Input Architecture

Conventional flash memory architecture:
• hard decisions made internally, ECC performed externally

Hard 
decisions/

Gray Coding
Flash Memory Arrayto PC

Soft values

Controller 
with BCH code

Hard values

Soft-Input Architecture Model

Lattice 
encoding and 

decoding
Flash Memory Arrayto PC

Soft values

Controller 
with RS code
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Conventional Architecture Model

On-chip soft-input decoding (e.g. LDPC) is difficult to perform on chip.
Lattice decoding is a “half-way” approach:

• Soft-input lattice decoding is more powerful than simple hard decisions,
• Lattice decoding is less complex than LDPC; can be performed on-chip,
• External ECC can operate on hard decision values values.

As dimension n increases, packing density, coding gain, etc. improves

n Lattice Gain (dB)
2 A2 0.84
4 D4 1.9
8 E8 3.7
12 K12 4.5
16 Λ16 5.5
24 Λ24 7.1

...

H. Conway and N. Sloane, Sphere packings, lattices
and groups. Springer-Verlag, 3rd ed., 1999. p. 74.

2-dimensional lattice 2 flash cells

Brian M. Kurkoski 
kurkoski@ice.uec.ac.jp

A hex lattice point has 6 neighbors.

Above work is based upon “The E8 Lattice and Error Correction in Multi-Level Flash Memory,” to appear in Proceedings 
of ICC 2011 (Kyoto, Japan), June 2011. 

Related work is “Rewriting codes for flash memories based upon lattices, and an example using the E8 lattice,” 
GLOBECOM Workshops (GC Workshops), 2010 IEEE, pp.1861-1865, 6-10 Dec. 2010.
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Two algorithms exist to find the E8 lattice point closest to x ∈ R8.

Coset Decoding (about 104 steps) f(x) is x rounded to nearest integer. g(x)
has least reliable position rounded “wrong way.”

y1 =

{
f(x) if

∑
f(x) is even

g(x) otherwise
y2 =

{
f(x+ 1

2 ) if
∑

f(x+ 1
2 ) is even

g(x+ 1
2 ) otherwise

If ||x− y1||2 < ||x− y2||2 then output y1. Otherwise, output y2.

“Construction A” Decoding (about 72 steps)

1. Find y and z ∈ Z8 such that x = y − 4z and −1 ≤ yi < 3.

2. S denotes the set of i for which 1 < yi < 3. For i ∈ S, replace yi by 2−yi.

3. Decode y as a first-order Reed-Muller code of length 8. Output c.

4. For i ∈ S, change ci to 2− ci. Output c+ 4z.

base codebook


