Asymptotic Rates for Lattice-Based WOM Codes

Brian M. Kurkoski kurkoski@ice.uec.ac.jp

University of Electro-Communications Tokyo, Japan

3rd Annual Non-Volatile Memories Workshop 2012 University of California, San Diego March 5, 2012

Sphere Packing is an arrangement of non-overlapping spheres in space

image © JJ Harrison found on Wikipedia

Sphere Packings and Lattices Can Correct Errors

Lattices:

- Have a rich theory
- Can correct errors, achieve capacity What about the WOM properties of lattices?

Notes:
• <i>n</i> -dimensional
lattice encoded in n
flash cells
• pictures are <i>n</i> =2, but
arbitrary <i>n</i> is possible

Lattice (linear)

Overview of this talk

- >WOM (write-once memory) codes are a coding-theoretic approach to extend the life of flash memories
- Consider WOM codes based on lattices
 - Most multilevel WOM codes are based on the integer lattice \mathbf{Z}^n
 - $\blacksquare \mathbf{Z}^n$ is a special case of this work
- ≻ Restrict our attention to 2-write WOM codes. Maximize rates.
 - Invoke Forney's continuous approximation for AWGN channels
 - Normalized coding rate
 - rate penalty separates "shaping penalty" and "coding penalty"
 - Idealized shaping region is a hyperbola in n dimensions
- \succ If the rate for the two writes are equal:
 - The asymptotic shaping penalty is $\frac{2}{e \ln 2}$
 - Show an asymptotic gain of 0.4693 bit/dimension over "cubic construction"

Existing Construction: "Cubic Scheme"

Partition the lattice into four codes: Code 0,1,2,3(Each code is one-to-one with information)

Previous work

- concentrated on average number of writes
- The minimum number of writes is 2.
- But clearly there are unused lattice points in Code 2 and Code 3.

This work:

maximize the rate, when the minimum number of writes is two

A Higher Rate Construction — Guarantee 2 Writes

Restrict to two writes > Shaping regions $\mathcal{R}_0, \mathcal{R}_1$ \succ separated by boundary *B* The total codebook is CForm two codebooks $\mathcal{R}_0\cap\mathcal{C}$ $\mathcal{C}_1 = \mathcal{R}_1 \cap \mathcal{C}$ Higher rate than cubic scheme

- > minimum two writes
- \succ maximize the rate

Τ

Definition of Normalized Rate

Rates for 1st write:

Conventional Rate:
$$R_0 = \frac{1}{n} \log_2 |\mathcal{C}_0|; \quad 0 \le R_0 \le \log_2 q$$

Normalized Rate:
$$\widetilde{R}_0 = \frac{\log_2 |\mathcal{C}_0|}{\log_2 |\mathcal{C}|}; \quad 0 \le \widetilde{R}_0 \le 1$$

Since cell values only increase $\Rightarrow S(x)$ is a box
Rates for 2nd write:
Define a region $S(x)$, the space "reached" from x
 $S(x)$ is a box in n dimensions
 $S_1 = \min_{x \in \mathcal{C}_0} |S(x) \cap \Lambda|$
 $R_1 = \frac{1}{n} \log_2 |S_1|; \quad 0 \le R_1 \le \log_2 q$
 $\widetilde{R}_1 = \frac{\log_2 |S_1|}{\log_2 |\mathcal{C}|}; \quad 0 \le \widetilde{R}_1 \le 1$
 \mathcal{R}_0

Continuous Approximation — AWGN Channels

> Assumption that code points are **uniformly** distributed over the shaping region

Separate lattice Λ and shaping region B contribution to signal power:

Shaping Gain

Brian Kurkoski, University of Electro-Communications

Continuous Approximation — WOM Codes

Continuous Approximation:

number of codewords $|\mathcal{C}| \approx \frac{1}{1}$

Define volumes:

- Entire space: 1
- \mathcal{R}_0 Volume = V_0
- S_1 Volume = V_1

Continuous Approximation:

$$|\mathcal{C}_i| ~~pprox ~~ rac{V_i}{V(\Lambda)}$$

Normalized rate:

$$\widetilde{R}_i = 1 - \frac{\log_2 V_i}{\log_2 V(\Lambda)}$$

Separation of "Coding Penalty" and "Shaping Penalty"

Normalized rate:

$$\widetilde{R}_i = 1 - \underbrace{\frac{\log_2 V_i}{\log_2 V(\Lambda)}}_{\text{penalty } \gamma}$$

Penalty "gap from ideal:"

$$\gamma = \frac{2}{n} \log_2 V_i \cdot \frac{1}{\log_2 V(\Lambda)^{2/n}}$$
$$\gamma = \gamma_{\text{shape}} \cdot \gamma_{\text{code}}$$

The rate penalty γ :

- $\gamma_{\text{shape}}: V_i$ is a volume depends on the "shaping" region
- $\gamma_{\text{code}}: V(\Lambda)$ is the Voronoi cell volume depends on lattice/code

Can separate the rate penalty into a "shaping penalty" and "coding penalty"

Maximizing the Rate: B is a Hyperbola

Brian Kurkoski, University of Electro-Communications

 $V_1(x)$: volume of space from x

Hypothesis For any $x \in B$, selecting V(x) equal to a constant will maximize the rate.

For any point on B, the volume V_1 should be constant:

$$V_1 = (1 - t_1)(1 - t_2)$$

and in n dimensions:

$$V_1 = \prod_{i=1}^n (1-t_i)$$

So, *B* is a **hyperbola**. We have a **hy-perbolic shaping region**.

Maximizing the Rate: B is a Hyperbola

Brian Kurkoski, University of Electro-Communications

 $V_1(x)$: volume of space from x

Hypothesis For any $x \in B$, selecting V(x) equal to a constant will maximize the rate.

For any point on B, the volume V_1 should be constant:

$$V_1 = (1 - t_1)(1 - t_2)$$

and in n dimensions:

$$V_1 = \prod_{i=1}^n (1-t_i)$$

So, *B* is a hyperbola. We have a hyperbolic shaping region.

Computation of Volume V0

We can calculate the volume (and thus the rate).

For n = 2:

$$V_0 = 1 - (1 - \alpha) + (1 - \alpha) \log(1 - \alpha)$$

For arbitrary *n*:

$$V_0 = 1 - e^{-z} \sum_{m=0}^{n-1} \frac{z^m}{m!},$$

where $z = -\log(1 - \alpha)$

Brian Kurkoski, University of Electro-Communications

Equal Rates Upper bound on shaping penalty

Assume equal rates for first and second writes:

$$V_0 = V_1$$

1 - e^{-z} $\sum_{m=0}^{n} \frac{z^m}{m!} = e^z - 1$

The solution z^* can only be found numerically. But can upper bound:

$$z^* \leq (n!)^{\frac{1}{n}}$$

And apply a Stirling-like bound:

$$z^* \leq (ne)^{\frac{1}{n}} \frac{n}{e}$$

Highly preliminary! Recall:
 $\widetilde{R}_i = 1 - \gamma_{\text{shape}} \cdot \gamma_{\text{code}}$
 $\gamma_{\text{shape}} = \frac{2}{n} \log_2 V_1 \leq \frac{2}{e \ln 2} (ne)^{\frac{1}{n}}$
 $\lim_{n \to \infty} \gamma_{\text{shape}} \leq \frac{2}{e \ln 2} \approx 1.0615$

Conclusion

Considered lattice-based construction of WOM codes for flash memories

- ≻ Used a "continuous approximation" similar to coding for AWGN channel
- \succ converted a discrete problem into a continuous problem

As a result:

- Separation of the "shaping penalty" and "coding penalty"
- \succ For two writes, shaping region is a **hyperbola** in *n* dimensions
- > asymptotic shaping penalty is $\frac{2}{e \ln 2}$
- > asymptotic gain of 0.4693 bit/dimension (for equal rates)

Discussion

Did not show the existence of a specific mapping

≻ Mapping from information to Code 1 must satisfy conditions