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Sphere Packing is an arrangement of
non-overlapping spheres in space
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Sphere Packings and Lattices

Can Correct Errors
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2 cells with g = 16

10 11 12 13 14 15

A lattice i1s a linear sphere packing
Lattices:

- Have a rich theory

« Can correct errors, achieve capacity

Gray mapping &
(8,4) Extended Hamming ¥

dmin = 4

What about the WOM properties of lattices?

Brian Kurkoski, University of Electro-Communications
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Overview of this talk

> WOM (write-once memory) codes are a coding-theoretic approach to extend
the life of flash memories

» Consider WOM codes based on lattices
¥ Most multilevel WOM codes are based on the integer lattice Z"

W 7Z"1s a special case of this work
» Restrict our attention to 2-write WOM codes. Maximize rates.
® Invoke Forney’s continuous approximation for AWGN channels

® Normalized coding rate
- rate penalty separates “shaping penalty” and “coding penalty”
B Jdealized shaping region is a hyperbola in n dimensions

» If the rate for the two writes are equal:
2

eln?2
® Show an asymptotic gain of 0.4693 bit/dimension over “cubic construction”

® The asymptotic shaping penalty 1s
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Existing Construction: “Cubic Scheme”

Brian Kurkoski, University of Electro-Communications

Partition the lattice into
four codes: Code 0,1,2,3

(Each code 1s one-to-one
with information)

Previous work

» concentrated on average
number of writes

> The minimum number of
writes 1s 2.

» But clearly there are
unused lattice points in

Code 2 and Code 3.
This work:

» maximize the rate,
when the minimum
number of writes 1s two
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A Higher Rate Construction — Guarantee 2 Writes

Restrict to two writes
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Definition of Normalized Rate

Rates for 1st write:

1
—log, [Col; 0 < Ry <log,q
n

Conventional Rate: Ry

= log, ‘CO ‘ 5

Normalized Rate: Ry = log, |C ; 0< Ro<1 Since cell values only
2 Increase = S(x) 1s a box
X

Rates for 2nd write:

Define a region S(x), the space “reached” from x
S(x) 1s a box 1n n dimensions

S, = in|S(x)NA
! xrrélcr(l)\ (z) N A
1
Ry = —log,|S1]; 0< Ry <logyq
n
=~ log, |Sl, 5
: log,[C] 7~~~ Ro
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Continuous Approximation — AWGN Channels

» Assumption that code points are uniformly distributed over the shaping region

Separate lattice A and shaping region B contribution to signal power:

x||?dx
Average Power =~ J | H2 M"™V (A)
nV(B)n ™1
Depends only on shape of B — GZB) Dep.ends OI}IY
(normalized second moment) on coding lattice A
Shaping Gain
BEnnE 18
°°°°°° 1 , G (cube) e
..... lim —
°°°°°° y n—oo (F(n-sphere) 6
lim G(n-sphere) = — !
im G(n-sphere) = — _
am p — G (cube) T
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Continuous Approximation — WOM Codes

Continuous Approximation:

1
number of codewords [C| =~ VA
N——
volume of Voronoi cell
1
Code 1
Code 0
Ro
volume V0
0 ) 1

Brian Kurkoski, University of Electro-Communications

Define volumes:
e Entire space: 1
e Ry Volume = Vj
e S; Volume = Vj

Continuous Approximation:

v
Ci ~ -
Normalized rate:
-~ ].0g2 ‘/;
R, = 1-—
log, V(A)
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Separation of
“Coding Penalty” and “Shaping Penalty”

Normalized rate:

R, = 1- &b
logy V(A)
N— ——
penalty ~y
Penalty “gap from ideal:”
2 1
= —log, V; -
K noo? logy V(A)2/m
Y = “Yshape . Ycode

The rate penalty v :
® “Yshape : Vi 1s a volume — depends on the “shaping” region
® Yeode : V(A) is the Voronoi cell volume — depends on lattice/code

Can separate the rate penalty into a “shaping penalty” and “coding penalty”
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Maximizing the Rate:

B is a Hyperbola

second write

Code 1

A O TN :

Boundéry B

0 l1

Brian Kurkoski, University of Electro-Communications

Vi(x): volume of space from x

Hypothesis  For any x € B, selecting
V(x) equal to a constant will maximize
the rate.

For any point on B, the volume V; should
be constant:

Vi = (1—t1)(1—t9)

and in n dimensions:

n

o= JJa-u)

1=1

So, B is a hyperbola. We have a hy-
perbolic shaping region.
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Maximizing the Rate:

B is a Hyperbola

second write

Code 1

tz .................................

Code 0

Boundéry B

0 l1
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Vi(x): volume of space from x

Hypothesis  For any x € B, selecting
V(x) equal to a constant will maximize
the rate.

For any point on B, the volume V; should
be constant:
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and in n dimensions:

n

o= JJa-u)
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So, B is a hyperbola. We have a hy-
perbolic shaping region.
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Computation of Volume VO

We can calculate the volume (and
thus the rate).

1 For n = 2:

Vo=1—-(1—a)+ (1 —a)log(l — «)

For arbitrary n:

where z = —log(1 — «)

volume Vp

0

t Q 1
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Equal Rates
Upper bound on shaping penalty )
Assume equal rates for first and second writes:
Vo = W
v om a
1—6_'22% = -1 2 = —log(1 — a)

The solution z* can only be found numerically. But can upper bound:
z* < (n!)%

And apply a Stirling-like bound:

Highly preliminary! Recall:

Now, the “shaping rate penalty” Ysnape: | Bi = 1 —"shape " Ycode

“Yshape

lim “Yshape <
n— 00
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Comparison with Cubic Scheme Code 2 | Code 1
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And in the case n — oc:

1
lim Gain > 1-—
n—00 e log 2

0.25

~ 0.4693

0.2
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Conclusion

Considered lattice-based construction of WOM codes for flash memories
» Used a “continuous approximation” similar to coding for AWGN channel
» converted a discrete problem into a continuous problem
As a result:
» Separation of the “shaping penalty” and “coding penalty”
» For two writes, shaping region 1s a hyperbola in n dimensions

. : : :
asymptotic shaping penalty 1s 0o

» asymptotic gain of 0.4693 bit/dimension (for equal rates)

Discussion

Did not show the existence of a specific mapping
> Mapping from information to Code 1 must satisfy conditions

Brian Kurkoski, University of Electro-Communications
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