Generalized Voronoi Constellations

November 26, 2015 Symposium on Information Theory and Its Applications (SITA2015) Kurashiki, Okayama, Japan

Brian M. Kurkoski Japan Advanced Institute of Science and Technology

Usefulness of Lattice Codes

User 1

- Lattices for relay channel e.g. [Song-Devroye '13]
- Two-way (Bidirectional) relay channel e.g. [Wilson et al.]

• Compute-forward relaying [Nazer-Gastpar '11] "Physical layer network coding"

How to construct practical, capacity-approaching lattices?

Brian Kurkoski, JAIST

Relay User 2

- Lattice codes can achieve the capacity of AWGN channel [Erez and Zamir '04]
- Information theoretic results and physical layer network coding using lattices:

Brian Kurkoski, JAIST

Given a basis $\mathbf{g}_1, \mathbf{g}_2, \ldots, \mathbf{g}_n$, the lattice consists of all points

Voronoi Constellations or Nested Lattice Codes

Conway and Sloane [IT 83] described Voronoi constellations

- A is a lattice
- $M\Lambda$ is scaled by M.
- $\Lambda/M\Lambda$ is a quotient group
- coset leaders Euclidean-space code

Also called *nested lattice codes*

Physical Layer Network Coding: Signals Add Over the Air

User 1

has w₁

Brian Kurkoski, JAIST

Relay

User 2

wants

 $w_1 + w_2$

has w_2

Two Users Transmit to Relay

Background Summary

Lattices are codes over the real numbers.

Network coding for wireless networks: signals add over the air: **physical layer** network coding

Voronoi constellations (nested lattice codes) have three properties:

- 1. Coding lattice Λ good for error correction
- 2. Shaping lattice $M\Lambda$
 - As $n \to \infty$ Voronoi region is sphere like
 - A sphere achieves optimal AWGN input distribution (and Shannon capacity). Optimal 1.53 dB shaping gain
- 3. Forms a quotient group required for physical layer network coding

Brian Kurkoski, JAIST

Good for theoretical results, difficult to construct capacity-achieving codes

Contributions

• Shaping lattice is not a scaled coding lattice:

is high dimension, capacity-approaching

- Give necessary and sufficient condition so Λ_c/Λ_s is a group
- Encoding for triangular coding matrices: easy
- Encoding for general coding matrices: not so easy

- Generalized Voronoi Constellations Practical lattice codes
 - coding lattice $\rightarrow \Lambda_{\rm C}/\Lambda_{\rm S} \leftarrow$ shaping lattice high shaping gain efficient shaping algorithm

How to Design a Coding Lattice

- Approach unconstrained lattice capacity, lattice dimension n should be large **Construction A and Construction D**
- Construction D using LDPC codes [Sadeghi et al IT 2006]
- Construction A using non-binary LDPC codes [Huang et al ISIT 2014]
- Construction D using polar codes [Yan et al ITW 2012] Derive generator matrix G, and check matrix $H = G^{-1}$ from the design Low-Density Lattice Codes (LDLC lattices)
- [Sommer et al, 2008]
- Spatially-coupled LDLCs [Uchikawa et al, ISIT 2012] Design the H matrix to be sparse and other easy conditions.

How to Design a Shaping Lattice

(dB)

Gain

Shaping

1. Lattices based on convolutional codes (Viterbi-based decoding) 2. Low-dimension lattices, E8, BW16, etc.

Shaping lattice is concatenation of low-dimension lattices:

 $\Lambda_{\rm s} \times \Lambda_{\rm s} \times \cdots \times \Lambda_{\rm s}$

dimension n

- Ideally, want a shaping lattice with efficient maximum-likelihood decoding:

Shaping Gain for Well-Known Lattices

Basic Group Theory

If G is a group, and $H \subseteq G$ is a subgroup then G/H is a quotient group.

If
$$\Lambda_s \subseteq \Lambda_c \Rightarrow \Lambda_c / \Lambda_s$$
 is a quotient g

Conway and Sloane: $\Lambda/M\Lambda$ is a quotient group.

Brian Kurkoski, JAIST

group.

OSEPH A. GALLIAN

CONTEMPORARY ABSTRACT

Joseph A. Gallian, Contemporary Abstract Algebra, 2012

The Subgroup Condition

- Shaping lattice Λ_s has generator matrix G_s .
- Coding lattice $\Lambda_{\rm c}$ has check matrix $H_{\rm c}$.

 $H_{\rm c}G_{\rm s}$ is a matrix of integers.

- Simple test for $\Lambda_{s} \subseteq \Lambda_{c}$.
- layer network coding.

Brian Kurkoski, JAIST

Lemma Let Λ_s have an all-integer generator matrix G_s . $\Lambda_s \subseteq \Lambda_c$ if and only if

• If $\Lambda_s \subseteq \Lambda_c \Rightarrow$ quotient group Λ_c/Λ_s exists, and is a candidate for physical

The Subgroup Condition: Example

- dimension n = 8 coding lattice Λ_c is LDLC-style
- shaping lattice Λ_s on D_4

- Condition is satisfied. Thus Λ_c/Λ_s is a quotient group.
- Brian Kurkoski, JAIST

- *Encoding* is mapping information to lattice points $\Lambda_{\rm c}/\Lambda_{\rm s}$. For Conway and Sloane, indexing $\Lambda/M\Lambda$ is easy: $\{0, 1, \cdots, M-1\}^n \to \Lambda/M\Lambda$
- For Λ_c/Λ_s satisfying the subgroup condition
 - 1. If coding check matrix H_c is triangular, then indexing is also easy
 - 2. If H_c is full, then indexing is harder.

Encoding $\Lambda_{\rm C}/\Lambda_{\rm S}$

1. Encoding When Hc is Triangular

and encoding info to $\Lambda_{\rm c}/\Lambda_{\rm s}$ is straightforward.

coding H_c

Brian Kurkoski, JAIST

- g_{ii} are diagonal elements of G_s , h_{ii} are diagonal elements of H_c , then: information is $\{0, 1, \cdots, g_{ii}h_{ii}\}$

shaping $G_{\rm s}$

Encoding Lattice Codes, Conway and Sloane Style

Easy when $\Lambda_s = M \Lambda_c$ (Conway and Sloane 1983). Example:

$$G_{\rm s} = \begin{bmatrix} 4 & 0 \\ 4 & 8 \end{bmatrix} (\Lambda_{\rm s})$$
$$G_{\rm c} = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} (\Lambda_{\rm c})$$

 $\Lambda_{\rm s} = 4\Lambda_{\rm c}$ nested lattice code

Encoding Lattice Codes, Conway and Sloane Style

Easy when $\Lambda_s = M \Lambda_c$ (Conway and Sloane 1983). Example:

$$G_{\rm s} = \begin{bmatrix} 4 & 0 \\ 4 & 8 \end{bmatrix} (\Lambda_{\rm s})$$
$$G_{\rm c} = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} (\Lambda_{\rm c})$$

 $\Lambda_{\rm s} = 4\Lambda_{\rm c}$ nested lattice code

Information is $b_i \in \{0, 1, 2, 3\}$, Indexing Step 1:

$$G\mathbf{b} = \begin{bmatrix} 1 & 0\\ 1 & 2 \end{bmatrix}$$

(clearly these points form coset representatives)

Encoding Lattice Codes, Conway and Sloane Style

Codebook is coset representatives inside Voronoi region for Λ_s around 0: Indexing Step 2:

 $x = G\mathbf{b} - Q_{\Lambda_{\mathrm{s}}}(G\mathbf{b})$

2. Encoding When *Hc* **is Full Matrix**

Weakness of Hc triangular:

- Hc may not be available in triangular form • triangular form reducing coding gain or rate.

If *Hc* full:

- Give conditions under which encoding is possible • requires solving a diophantine equation

Encoding Lattice Codes, Generalized Voronoi Constellations

What if the lattices are not nested? Recall we want to use distinct lattices for coding and shaping.

Example:

$$G_{\rm s} = \begin{bmatrix} 4 & 0 \\ 4 & 8 \end{bmatrix} (\Lambda_{\rm s})$$
$$G_{\rm c} = \begin{bmatrix} 8/9 & 2/9 \\ -4/9 & 8/9 \end{bmatrix} (\Lambda_{\rm c})$$
$$\left(G_{\rm c}^{-1} = \begin{bmatrix} 1 & -1/4 \\ 1/2 & 1 \end{bmatrix}\right)$$

Not a nested lattice code!

Encoding Lattice Codes, Generalized Voronoi Constellations

Number of codewords:

$$\frac{\det(G_{\rm s})}{\det(G_{\rm c})} = 36$$

Natural candidate:

 $b_1 \in \{0, 1, 2, 3, 4, 5\}$ $b_2 \in \{0, 1, 2, 3, 4, 5\}$

Indexing Step 1:

$$G\mathbf{b} = \begin{bmatrix} 1 & 0\\ 1 & 2 \end{bmatrix}$$

Do these points form coset representatives?

Brian Kurkoski, JAIST

 \bigcirc

Encoding Lattice Codes, Generalized Voronoi Constellations

Indexing Step 2:

$$x = G\mathbf{b} - Q_{\Lambda_{\mathrm{s}}}(G\mathbf{b})$$

No! Coset representatives not formed.

Brian Kurkoski, JAIST

Encoding Lattice Codes, Generalized Voronoi Constellation Another candidate: $b_1 \in \{0, 1, 2\}$ $b_2 \in \{0, 1, 2, 3, \dots, 11\}$ Still, no coset representatives found What about a change of basis for G_c ? 31

Finding a Basis Suitable for Encoding

Basis transformation:

where W is has integer entire New basis is:

 $G'_{\rm c} = \left[\frac{\mathbf{g}_1}{M_1} \right]$

where \mathbf{q} is some vector to be found.

Brian Kurkoski, JAIST

Transform the basis of Λ_c from G_c to G'_c should "align" with Λ_s .

$$G'_{c} = G_{c}W$$
 g_i from shaping lattice
s and det $W = 1$.
 $\frac{\mathbf{g}_{2}}{M_{2}} \cdots \frac{\mathbf{g}_{n-1}}{M_{n-1}} \mathbf{q}$

Finding a Basis Suitable for Encoding

Find basis transformation W:

 $G'_{\rm c} = G_{\rm c} \cdot W$ $(G_{\rm c})^{-1} \cdot G'_{\rm c} = W$

Then det W = 1 is a linear diophantine equation in z_1, z_2, \ldots, z_n .

Example

$G_{\rm c}^{-1} \cdot G_{\rm c}' = W$ $W = \begin{bmatrix} 1 & -1/4 \\ 1/2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4/3 & q_1 \\ 4/3 & q_2 \end{bmatrix} = \begin{bmatrix} 1 & z_1 \\ 2 & z_2 \end{bmatrix}$ $\det W = 1$ $1z_2 - 2z_1 = 1$ $\{z_1, z_2\} = \{0, 1\}$

Brian Kurkoski, JAIST

\leftarrow diophantine equation \leftarrow one of many solutions

Encoding Non-Nested Lattice Codes Using a Suitable Basis

$$\begin{bmatrix} 1 & -1/4 \\ 1/2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4/3 & q_1 \\ 4/3 & q_2 \end{bmatrix} = \begin{bmatrix} 1 & z_1 \\ 2 & z_2 \end{bmatrix}$$

det $W = 1 \Rightarrow 1z_2 - 2z_1 = 1$ has numerous solutions.

Discussion

Shaping gain means designing the codebook to have a sphere-like shape, to approximate the Gaussian input distribution of the AWGN channel

For coding lattice (LDLC, Construction A LDPC, etc) triangular matrix:

- No shaping/cubic is easy but no shaping gain.
- Shaping using E8, BW16, etc. is also easy. Gain 0.65 to 0.86 dB
- A little bit of effort gives a big gain!
- But, triangular matrix lattices may not perform as well

For a general (non-triangular) matrices

- Shaping if we can solve a linear diophantine equation,

Brian Kurkoski, JAIST

• Currently those coefficients get large quickly in n, practical solutions still needed

LDLCs: 0.65 dB Gain Over Hypercube

Brian Kurkoski, JAIST

Hypercube shaping Self-Similar shaping

0.15 dB better than self-similar shaping (using M-algorithm) and much lower complexity

