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Usefulness of Lattice Codes
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Lattice codes can achieve the capacity of AWGN channel |[Erez and Zamir '04
Information theoretic results and physical layer network coding using lattices:
o Lattices for relay channel e.g. [Song-Devroye 13|
o Two-way (Bidirectional) relay channel e.g. [Wilson et al.]
o Compute-forward relaying [Nazer-Gastpar '11]
“Physical layer network coding”

How to construct practical, capacity-approaching lattices?
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© A lattice A is a linear additive subgroup of R™. °
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Voronoi Constellations or .
Nested Lattice Codes ¥

Conway and Sloane |IT 83| described Voronos ) o /

constellations ® °
°

o A is a lattice ® ¢

- o A o

o MA is scaled by M. o 0 o
e A/MA is a quotient group ®

° o

e coset leaders Fuclidean-space code

Also called nested lattice codes
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Physical Layer Network Coding:
Signals Add Over the Air

User | Relay User 2
wants

has wi has w9
W1 —+ W2

Brian Kurkoski, JAIST



Two Users Transmit to Rela

X = enc(w1

X2< enc(; / |
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Background Summary

Lattices are codes over the real numbers.

Network coding for wireless networks: signals add over the air: physical layer
network coding

Voronoi constellations (nested lattice codes) have three properties:
1. Coding lattice A — good for error correction

2. Shaping lattice M A —

e As n — oo Voronoi region is sphere like

e A sphere achieves optimal AWGN input distribution (and Shannon
capacity). Optimal 1.53 dB shaping gain

3. Forms a quotient group required for physical layer network coding

Good for theoretical results, difficult to construct capacity-achieving codes
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Contributions

(zeneralized Voronoi Constellations — Practical lattice codes

e Shaping lattice is not a scaled coding lattice:

coding lattice—> AC / AS +— shaping lattice
is high dimension, high shaping gain
capacity-approaching eflicient shaping algorithm

e (Give necessary and suflicient condition so A./Ag is a group
e Encoding for triangular coding matrices: easy

e Encoding for general coding matrices: not so easy

Brian Kurkoski, JAIST



How to Design a Coding Lattice

Approach unconstrained lattice capacity, lattice dimension n should be large

Construction A and Construction D

o Construction D using LDPC codes [Sadeghi et al I'T 2006

o Construction A using non-binary LDPC codes |[Huang et al ISI'T 2014
o Construction D using polar codes [Yan et al ITW 2012]

Derive generator matrix G, and check matrix H = G ! from the design
Low-Density Lattice Codes (LDLC lattices)

e [Sommer et al, 2008

o Spatially-coupled LDLCs |Uchikawa et al, ISIT 2012

Design the H matrix to be sparse and other easy conditions.
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How to Design a Shaping Lattice

Ideally, want a shaping lattice with eflicient maximum-likelihood decoding:

1. Lattices based on convolutional codes (Viterbi-based decoding)

2. Low-dimension lattices, ES, BW16, etc.

1.5329 =

Shaping lattice is concatenation

of low-dimension lattices: 1278

0.8640 |-

0.6541 |-
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Shaping Gain for Well-Known Lattices
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Increasing
complexity

1.0278 |-
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Shaping Gain (dB)
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1 | [attice dimension n
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Basic Group Theory

JOSEPH A. GALLIAN

CONTEMPORARY ABSTRACT

If G is a group, and H C G is a subgroup then ALGEBRA
GG/ H is a quotient group. R

If A C Ac. = A./Ag is a quotient group.

Conway and Sloane: A/M A is a quotient group.

Joseph A. Gallian, Contemporary Abstract Algebra, 2012
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The Subgroup Condition

e Shaping lattice Ag has generator matrix Gs.

e Coding lattice A. has check matrix H..

Lemma Let Ay have an all-integer generator matrix Gg. Ay € A, if and only if
H.Gg 1s a matrix of integers.

e Simple test for Ay C A..

o If A; C A. = quotient group A./Ag exists, and is a candidate for physical
layer network coding.
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The Subgroup Condition: Example

e dimension n = 8 coding lattice A, is LDLC-style

e shaping lattice A on Dy

1 0o 0 s O O -3 O]l [4 O 0 O O O 0 O

1 00 0 O O -2 |-4 4 0 0 0 0 0 O

0 = 1 0 0 0 0 = 0 -4 4 0 0 0 0 O .
o 0 X1 0 o -2 ofl o 0o —48 0 0 o of
L 000 1 -1 0 o0 0 0 0 0 4 0 0 0] of

o0 0 <z + 0 1 0 O 0 0 0 0 —4 4 0 O integers
0 -z 00 5 0 1 O 0 0 0 0 0 -4 4 0

o 0 00 - < O 1f |0 O O O O 0 -4 8

—# #
coding: LDLC H. shaping 4D4xX4D4

e Condition is satisfied. Thus A./Ag is a quotient group.
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Encoding Ac/As

Encoding is mapping information to lattice points A./As.

For Conway and Sloane, indexing A/MA is easy:
{0,1,--- M —1}" — A/MA
For A./Ag satisfying the subgroup condition

1. If coding check matrix H. is triangular, then indexing is also
easy

2. It H. is full, then indexing is harder.
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1. Encoding When Hc is Triangular

g;; are diagonal elements of Gg, h;; are diagonal elements of H., then:
information is {0, 1, -, g;;hi; }

and encoding info to A./Ag is straightforward.

1 0 00 O OOO [4 O 0 0 0 0 0 O
o 1 00 O O OO |-4 4 0 0 0 0 0 0
0 z 1 0 0 0 0 O 0 -4 4 0 0 0 0 O
o 0 01 0 O0O0OO |O O —-48 0 0 0 0
>0 00 1 00O |0 O O O 4 0 0 O
0 0 2 % 0 1 0 0 0 0 0 0 -4 4 0 O
0 - 00 <2 010 [0 0 0 0 0 -4 4 0

0o 0 00 -3 £ 01 |]O O O O O 0 -4 8

coding H. shaping Gy
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Encoding Lattice Codes, Conway and Sloane Style
AN * N
/ N / N\
/ N / N\
/ N / N\
/ N / N\
/ N / N
Fasy when Ay = M A, (Conway and N N / N\
Sloane 1983). Example: . ® /\ ® /\
i ) AN // \ /
4 0 N\ N\ /
- - N\ / N\ /
1 0 N\ / N\ /
G. = 9 (Ac) \ // N/
i \/
/\\ ¢ N\
/ / N\
As = 4\, nested lattice code / N / \
/ N / N\
/ N / N\
/ N / N\
/ N / AN

‘ AN
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Encoding Lattice Codes, Conway and Sloane Style
X . X
/ N\ / N
/ N / N\
/ AN / N\
/ N\ / N\
/ N\ / \ |
Easy when A;, = MA. (Conway and 7 N/ N\
' o/ \
Sloane 1983). Example: . ® Pl ® P,
N\ / \ /
4 0 N\ / N\ /
Gy = A g (Ag) \ / \ /
] _ \ / AN /
1 0 N\ / \ /
G. = (Ae) N\ 7/ N/
_1 2 o ® \./
VA 7\
/ N\ / N\
Ay = 4A. nested lattice code J/ \ J/ \
/ AN / N\
/ N\ / N\
/ N\ / \
/ N\ / N\
® o/ ® \
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Information is b; € {0,1, 2,3},

Indexing Step 1:

1
Gb = i

,
2_

(clearly these points form coset rep-
resentatives)
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Encoding Lattice Codes, Conway and Sloane Style
\/
/7 \
N\
N\
N\
N\
N
N\
PY N
Codebook is coset representatives in- /
side Voronoi region for A around O: , /
Indexing Step 2: , /
/
= Gb — Q. (Gb) /
N/
7\
N\
AN
AN
AN
AN
N\
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2. Encoding When Hc is Full Matrix

Weakness of Hc triangular:
e Hc may not be available in triangular form

e triangular form reducing coding gain or rate.

It He full:

e (Give conditions under which encoding is possible

e requires solving a diophantine equation
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Encoding Lattice Codes, Generalized Voronoi Constellations

What if the lattices are not nested?
Recall we want to use distinct lattices
for coding and shaping.

Example:
0o
GS — _4 8_ (AS)
G — 8/9 2/9

_4/9 g/9| A

4. |1 =1/4
(GC 121 )

Not a nested lattice code!
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Encoding Lattice Codes, Generalized Voronoi Constellations

Number of codewords:

det(Gy)

det(G.) =90

Natural candidate:

b1 € {0,1,2,3,4,5}
bo € {0,1,2,3,4,5}

Indexing Step 1:

Gb =

—_—
_1 2_

Do these points form coset represen-
tatives?

Brian Kurkoski, JAIST



Encoding Lattice Codes, Generalized Voronoi Constellations
@

Indexing Step 2: ¢
= Gb — Q,(Gb)
No! Coset representatives not formed.
@ @
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Encoding Lattice Codes, Generalized Voronoi Constellatior
O O R

Another candidate:

by € {0,1,2}
by € {0,1,2,3,...,11}

Still, no coset representatives found

What about a change of basis for G
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Finding a Basis Suitable for Encoding

Transform the basis of A. from G, to G- should “align” with As.

Basis transformation:

G = G W g, from shaping lattice

where W 1is has integer entires and det W =

New basis 1s:

where q is some vector to be found.
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Finding a Basis Suitable for Encoding

Find basis transtormation W':

Gé —G.- W linearly dependent
—1
(GC) ‘ Gé =W
<1
<2
“n
Then det W =1 is a linear diophantine equation in 2z, 29, ..., 2,.
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Example

G '-G. =W
1 —1/4] [4/3 @] |1 2
W — . p—
1/2 1 | 14/3 q2 2 29
det W =1
lzg — 221 = 1 < diophantine equation
{21,290} = {0,1} < one of many solutions
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Encoding Non-Nested / - — _
Lattice Codes

Using a Suitable Basis o

1 —1/4] [4/3 @ _ |1 =
1/2 1 | |4/3 q| |2 2

det W =1 = 129 — 227 = 1 has nu- -
merous solutions.
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Discussion

Shaping gain means designing the codebook to have a sphere-like shape, to approximate
the Gaussian input distribution of the AWGN channel

For coding lattice (LDLC, Constuction A LDPC, etc) triangular matrix:
e No shaping/cubic is easy but no shaping gain.
e Shaping using E8, BW16, etc. is also easy. Gain 0.65 to 0.86 dB
o A little bit of effort gives a big gain!
e But, triangular matrix lattices may not perform as well

For a general (non-triangular) matrices
e Shaping if we can solve a linear diophantine equation,

o Currently those coeflicients get large quickly in n, practical solutions still needed
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------ | —g— Hypercube shaping [7]

...... | o Necdicemmme |1\ \O€ITRIMIAr shaping

10°E....| | —%— Proposed shaping | .} ........ Y N N i

e B Uniforminputcapacity ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁgﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ.ﬁﬁﬁﬁﬁgﬁﬁﬁﬁﬁﬁﬁﬁ A 0.15 dB better than
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o O et e L 3 (using M-algorithm)
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