Robust Image Hashing Using Image Normalization and SVD Decomposition

Ricardo Antonio Parrao Hernandez¹ Brian M. Kurkoski² Mariko Nakano Miyatake¹

¹National Polytechnic Institute, Mexico ²University of Electro Communications, Tokyo, Japan

Importance of Image Authentication

- Digital images are all around us
 - Very easy to manipulate images
- Digital images are used as an evidence:
 - legal proceedings, medical cases, political scandals
- Digital images widely used in social networks
 - In Mexico 20% of divorce refer to Facebook pictures

Two Approaches: Watermarking and Hashes

Goal: certify that an image was not modified in transit

Watermarking:

- embed authentication information into the image
- information should be difficult to remove
- requires modifying the image

Image Hashing

- Create a numeric signature from the image
- "Content-based hash functions"
- does not require modifying an image
- requires transmitting the signature separately
 - User applies content-based hash function to image
 - If signature is the same, image is authentic

Hash Functions

- A procedure or mathematical function which
 - converts a large, variable-sized amount of data into a small data

Many applications

- Finding items in a databases
- Speed up table lookup
- Detecting duplicated or similar records in a large file
- Authentication
- Cryptographic hash functions are widely used
 - verify integrity of files
 - password verification
 - typical algorithms: MD5, SHA1

Cryptographic Hash Functions

- Input: long, variable-length message
- Output: a short, a fixed-length value

- Cryptographic hashes are bit-sensitive:
 - $\circ~$ change of one input bit \rightarrow output hash value is completely different
 - useful for protecting passwords, etc.
 - not useful for image hashing

Content-Based Hash Functions

Image Hashing:

Visually similar content produces similar hash value

image with the SAME CONTENT

Existing Methods

Various signal-processing methods generate hash value

- Using interest point detectors (Harris)
- Using invariant transforms (FFT, DCT)
- Using invariant matrices (SVD decomposition)
- Kozat et al gave an SVD-based image hashing algorithm
 - Kozat, Venkatesan and Mihcak "Robust perceptual image hashing via matrix invariants," ICIP 2004
 - SVD decomposition two times,
 - first to subimages of the original image,
 - second to the resulting singular vectors
 - Generally attractive algorithm
 - Tolerates to small changes on rotation until 10°

In This Talk....

- Apply image normalization to the Kozat et al algorithm to increase the robustness against geometric modifications.
 - Rotated, scaled, etc. images produce the same hash value

Outline

Proposed algorithm

- overview (compared to Kozat et al)
- image normalization
- Random partition algorithm
- SVD decomposition
- Numerical evaluation average Hamming distance
 - rotation

Conclusions

Proposed Algorithm (versus Kozat et al)

red indicates steps we have added to Kozat's algorithm

SVD-based hashing

- 1. image normalization
- 2. extract sub-images
- 3. first SVD decomposition
 - 3. second SVD decomposition
- 4. intermediate hash
- 5. quantize and compress

will explain

1. Image Normalization

Operations invariant under translation, scaling, orientation

- Applied to watermarking, Alghoniemy and Tewfix, 2004
- Uses central moments of the image, independent of origin
 - moments are widely used in pattern recognition

1. Image Normalization

The image normalization algorithm has three steps

1) Translation Invariance

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$d_1 = \frac{m_{10}}{m_{00}}, d_2 = \frac{m_{01}}{m_{00}}$$

 m_{pq} Geometric moments

 μ_{pq}

Central moments

2) Shearing in the x direction $A = \begin{bmatrix} 1 & \beta \\ 0 & 1 \end{bmatrix}$ $\mu_{30} + 3\beta\mu_{21} + 3\beta^2\mu_{12} + \beta^3\mu_{03} = 0$

3) Shearing in the y direction $A = \begin{bmatrix} 1 & 0 \\ \gamma & 1 \end{bmatrix} \qquad \gamma = -\frac{\mu_{11}}{\mu_{20}}$

2. Extraction of Sub-images

- Using random partitioning, extract square sub-images
- A secret key is used to pseudo-randomly select sub-images

3. SVD: Singular-Value Decomposition

- The SVD decomposition of a matrix A is: $A = USV^T$
 - columns of U and V are the singular vectors (content information)
 - diagonal matrix S are singular values (brightness information)
- Image decomposition: $A = \sum_{i=1}^{r} U_i S_i V_i^T$ r is the rank of A
- The quality of the reconstruction depends on rank r:

Rank 512

Rank 20

Rank 50

Rank 150

- For image hashing, we take the rank 1 singular vectors
- The second SVD is applied to a matrix of U1 and V1

Numerical Evaluation

Average Hamming distance between hashes

$$d_h(h_1, h_2) = \frac{1}{L} \sum_{k=1}^{L} ||h_1(k) - h_2(k)||$$

For the evaluation we use:

- Graysacle images of size 512-by-512
- Generate 15 sub-images of size 100-by-100
- The length of the resulting hash is 760 bits

Image normalization improves the Hamming distance under rotation modification

Generally better performance than Kozat et al

• Under 45% the size of sub-images is almost the size of the image.

We reduce the distance to JPEG Compression.

Conclusions

Image hashing:

- visually similar images should produce similar hash value
- Problem we addressed: increasing the "similarity" of the hash value
- Kozat et al image hashing based on SVD decomposition

We improved the robustness of this algorithm

- applied image normalization
- significant reduction in average Hamming distance
- against rotation, scaling and JPEG modifications
 - likely other affine transforms as well