An Improved Analytic Expression for Write Amplification in Flash Memory

Loujie Xiang University of Electronic Science and Technology of China

Brian M. Kurkoski

University of Electro-Communications Tokyo, Japan kurkoski@ice.uec.ac.jp

> ICNC 2012 Lahaina, Hawaii, USA February 1, 2012

Flash Memory is Quickly Becoming Ubiquitous

Loujie Xiang and Brian Kurkoski

Background

Write amplification is a problem in flash memory systems:

- > More physical writes than logical writes, due to flash memory block-erase
 - Unneeded write operations is a system-level problem
 - Excessive writes cause failure of flash memory device

Overprovisioning mitigates this problem

increase the physical memory without increasing logical memory

Numerous empirical studies

Agarwal and Marrow [Globecom 2010]

- \succ an analytical expression for write amplification
 - analysis of a system using "greedy garbage collection"

Contribution

- \succ A new analytic expression for write amplification
- ≻ More precise than previous expression

Outline

- 1. Flash memory system
- 2. Agarwal & Marrow analysis
- 3. Improved analytic expression

Organization of flash memory

- Flash is a re-writable semiconductor memory
- Organization of flash memory
 - Contains thousands of blocks
 - A block contains typically 64 pages
 - A page is typically 4 KB, smallest unit
- Operations on flash memory
 - Page-level write operations
 - Can write only to empty blocks
 - Block-level erase operations

http://www.linux-mag.com/id/7590/

Block

Flash memory: Write Amplification

- To change one page, must copy-erase-write
- "Write amplification" Changing one page requires 64 page writes!
- -Undesirable:
 - reduces system performance
 - -reduces flash memory device longevity

System Write Amplification and Overprovisioning

• **Problem:** Write Amplification

Write Amplification $A = \frac{\text{Number of Physical Writes}}{\text{Number of Logical Writes}}$

- Solution: Overprovisioning
 - -More physical memory than logical memory
 - (some physical memory the user cannot see)

Logical Space: (12 pages)

Physical Space: (16 pages in 4 blocks)

Valid	Invalid	Valid	Valid
Invalid	Valid	Valid	Valid
Valid	Valid	Invalid	Valid
Valid	Invalid	Valid	Valid

Time to erase

Greedy Garbage collection:

Block with most invalid pages

Only two writes needed

Invalid		
Valid		
Valid		
Invalid		

Logical Space: (12 pages)

Physical Space: (16 pages in 4 blocks)

Valid	Valid	Valid
Invalid	Valid	Valid
Valid	Invalid	Valid
Valid	Valid	Valid

← "Block queue": Older blocks/more invalid pages

Logical Space: (12 pages)

Physical Space: (16 pages in 4 blocks)

Valid	Valid	Valid
Invalid	Valid	Valid
Valid	Invalid	Valid
Valid	Valid	Valid

← "Block queue": Older blocks/more invalid pages

Logical Space: (12 pages)

Physical Space: (16 pages in 4 blocks)

Valid	Valid	Valid
Invalid	Valid	Valid
Valid	Invalid	Valid
Valid	Valid	Valid

← "Block queue": Older blocks/more invalid pages

Logical Space: (12 pages)

Physical Space: (16 pages in 4 blocks)

Valid	Valid	Valid
Invalid	Valid	Valid
Valid	Invalid	Valid
Valid	Valid	Valid

← "Block queue": Older blocks/more invalid pages

Temporary Storage Valid Valid

Logical Space: (12 pages)

Physical Space: (16 pages in 4 blocks)

Valid	Valid	Valid	
Invalid	Valid	Valid	Valid
Valid	Invalid	Valid	Valid
Valid	Valid	Valid	

Time to erase

Greedy Garbage collection:

Block with most invalid pages
Only two writes needed

Analysis Agarwal & Marrow Approach

The number of valid pages **in a block** (over all blocks)

Assumed uniform distribution

The number of valid pages **per block** (over one block)

Assumed binomial distribution

Two different ways to find the **expected number of valid blocks**

 \geq set them equal

➢ found an analytic expression for write amplification A:

$$A = \frac{1+\rho}{2\rho}$$

> Simple expression

Over provisioning factor ρ

Analysis Weakness in Previous Work

Technique: Solve for the an "average block"

Expected number of valid pages in a block = Expected number of valid pages in a block

Mean of the uniform distribution =

mean of a binomial distribution

$$\frac{N_{\rm p} + x}{2} = pN_{\rm p}$$

Weaknesses:

- \succ the binomial probability is not p = U/T
- > The binomial distribution is not truly binomial
- The uniform distribution is not truly uniform

Analysis Our Approach

Technique: Solve for the block selected for garbage collection

 \succ Each garage collection, *x* invalid blocks are freed

A "new" block only has valid pages

Consider a block that journeys from "new" to "old"

➢ For each logical write: a page has some small probability of being hit For an "old" block ready for garbage collection

> There were Tx writes (Tx chances to become invalid)

># of invalid pages = # blocks per page × probability of being invalid

$$x = N \times \left(1 - (1 - p)\right)^{Tx}$$

... Main Result — Obtain write amplification:

$$A = \frac{1+\rho}{1+\rho+W(-(1+\rho)e^{-(1+\rho)})}$$

W(.) is the Lambert W function. The solution to $c = xe^x$ is *W*(*c*). Let the number of pages $\rightarrow \infty$. Reasonable, since flash memories are huge.

Improved Prediction of Write Amplification

Discussion & Conclusion

Write amplification is a problem in flash memory systems:

- > More physical writes than logical writes, due to flash memory block-erase
 - Unneeded write operations is a system-level problem
 - Excessive writes cause failure of flash memory device

Overprovisioning mitigates this problem

Contribution: Gave an improved analytic description of write amplification

$$A = \frac{1+\rho}{2\rho} \qquad A = \frac{1+\rho}{1+\rho+W(-(1+\rho)e^{-(1+\rho)})}$$

Agarwal & Marrow

- Simple
- Used "loose" assumptions
- Analyzed an average block
- Not always accurate

Our improved expression

- Closed form (with W func.)
- Used tighter assumptions
- Analyzed garbage collected block
- Much more accurate