An Improved Analytic Expression for Write
Amplification in Flash Memory

Loujie Xiang
University of Electronic Science and Technology of China

Brian M. Kurkoski

University of Electro-Communications
Tokyo, Japan
kurkoski@ice.uec.ac.jp

ICNC 2012
Lahaina, Hawaii, USA
February 1, 2012

Flash Memory is Quickly Becoming Ubiquitous

Annual Red Im porlod

Fire Ant Conference

SSD

s /

\\\\,4
Embedded USB memory

mobile devices

Loujie Xiang and Brian Kurkoski | 2/13

Background

Write amplification is a problem in flash memory systems:
» More physical writes than logical writes, due to flash memory block-erase
® Unneeded write operations is a system-level problem
B Excessive writes cause failure of flash memory device
Overprovisioning mitigates this problem
» increase the physical memory without increasing logical memory
Numerous empirical studies
Agarwal and Marrow [Globecom 2010]
» an analytical expression for write amplification

B analysis of a system using “greedy garbage collection”

Contribution

» A new analytic expression for write amplification

» More precise than previous expression

Outline

1. Flash memory system
2. Agarwal & Marrow analysis

3. Improved analytic expression

Loujie Xiang and Brian Kurkoski 3/13

Organization of flash memory

 Flash 1s a re-writable semiconductor

memory

* Organization of flash memory
— Contains thousands of blocks
— A block contains typically 64 pages
— A page 1s typically 4 KB, smallest

unit

* Operations on flash memory
— Page-level write operations
— Can write only to empty blocks
— Block-level erase operations

Block

4KB
Page

Page

Page

Page

Page

Loujie Xiang and Brian Kurkoski

1 Block = 128 pages = 512KB

http://www.linux-mag.com/1d/7590/

4/13

http://www.linux-mag.com/id/7590/
http://www.linux-mag.com/id/7590/

Flash memory: Write Amplification

— To change one page, must copy-erase-write

— “Write amplification” Changing one page requires 64 page writes!

— Undesirable:

—reduces system performance

—reduces flash memory device longevity

Ox3A

0x89

0x20

0x3B

COopy

Loujie Xiang and Brian Kurkoski

—_

—_

0x3A

0x89

0x20

erase

0x3B

temporary storage

Ox3A

OxAO

0x20

0x3B

write

5/13

System

Write Amplification and Overprovisioning

* Problem: Write Amplification

Write Amplification A =

* Solution: Overprovisioning

Number of Physical Writes

— More physical memory than logical memory
— (some physical memory the user cannot see)

Physical Blocks T
/—/\q

~—————
Logical Blocks U

Overprovisioning factor p =

Loujie Xiang and Brian Kurkoski

T-U
U

Number of Logical Writes

4

3.5f

Write Amplification, A
\®)
4

0.2 0.4 0.6 0.8 1
Overprovisioning, p

6/13

System
Example of Writing Flash Memory

Logical Space:
(12pages) | | | | | | | | | | 1 1 |

' (mapping table)

Physical Space:
(16 pages 1n 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory 1s always full (worst case)

Loujie Xiang and Brian Kurkoski 7 /13

System
Example of Writing Flash Memory

Logical Space:
(12pages) | | | [| | | | | | | | |

' (mapping table)

Physical Space:
(16 pages 1n 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory 1s always full (worst case)

Loujie Xiang and Brian Kurkoski 7 /13

System
Example of Writing Flash Memory

Logical Space:
(12pages) | | | [| | | | | | | | |

' (mapping table)

Physical Space: :
(16 pages 1n 4 blocks) Valid

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory 1s always full (worst case)

Loujie Xiang and Brian Kurkoski 7 /13

System
Example of Writing Flash Memory

Logical Space:
(12pages) | | | || | | | | | |] |

' (mapping table)

Physical Space: :
(16 pages 1n 4 blocks) Valid

Valid

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory 1s always full (worst case)

Loujie Xiang and Brian Kurkoski 7 /13

System
Example of Writing Flash Memory

Logical Space: J
(12pages) | & | | || | |¥] | | |4 |

' (mapping table)

Physical Space: :
(16 pages 1n 4 blocks) Valid

Valid
Valid
Valid

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory 1s always full (worst case)

Loujie Xiang and Brian Kurkoski 7 /13

System
Example of Writing Flash Memory

Logical Space: 3
(12pages) (& | | [¥ | | ¥ | | 1%
t (mapping table)
Physical Space: . :
(16 pages in 4 blocks) | Y2 Valid
Invalid
Valid
Valid

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory 1s always full (worst case)

Loujie Xiang and Brian Kurkoski 7 /13

System
Example of Writing Flash Memory

Logical Space: t
(12pages) (& | | |[¥ | | ¥ [$] | ¥
t (mapping table)
Physical Space: . :

(16 pages in 4 blocks) | Y2 Valid
Invalid Valid
Valid Valid
Valid

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory 1s always full (worst case)

Loujie Xiang and Brian Kurkoski 7 /13

System
Example of Writing Flash Memory

Logical Space: i
(12pages) | | | |[$]| | ||+ |$¥]| | ¥]| |
t (mapping table)
Physical Space: i :
(16 pages in 4 blocks) Valid Invalid
Invalid Valid
Valid Valid
Valid Valid

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory 1s always full (worst case)

Loujie Xiang and Brian Kurkoski 7 /13

System

Example of Writing Flash Memory

Logical Space:

Physical Space:
(16 pages 1n 4 blocks)

4
4
J 4
(12pages) | | | [$ | $ [d [$ | $ | $ | 4|4 | &]
t (mapping table)
Valid Invalid Valid Valid
Invalid Valid Valid Valid
Valid Valid Invalid Valid
Valid Invalid Valid Valid

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory 1s always full (worst case)

Loujie Xiang and Brian Kurkoski

System
Garbage Collection

J
J
Logical Space: J J
6 paz}elsy?ﬁlbslgsﬁ; Valid Invalid Valid Valid
Invalid Valid Valid Valid
Valid Valid Invalid Valid
Valid Invalid Valid Valid

Time to erase
Greedy Garbage collection:

» Block with most invalid pages
Only two writes needed

Loujie Xiang and Brian Kurkoski 8 /13

System
Garbage Collection

4
4
Logical Space: J J
(12 pages) EEEIEBE IR SR AR SR BE BE ZE BE 3
Physical Space: . . .
(16 pages in 4 blocks) Valld. Valid Valid
Invalid Valid Valid
Valid Invalid Valid
Valid Valid Valid
Invalid
Valid
Valid
Invalid

Loujie Xiang and Brian Kurkoski 8 /13

System
Garbage Collection

J
J
Logical Space: J J
(12pages) [[|d [$ | d|d [d & [[d]|d ||
Physical Space: . . .
(16 pages 1n 4 blocks) Vahd. Valid Valid
Invalid Valid Valid
Valid Invalid Valid
Valid Valid Valid

< “Block queue”: Older blocks/more invalid pages

Invalid

Valid

Valid
Invalid

Loujie Xiang and Brian Kurkoski 8 /13

System
Garbage Collection

J
J
Logical Space: J J
(12pages) [[|d [$ | d|d [d & [[d]|d ||
Physical Space: . . .
(16 pages 1n 4 blocks) Vahd. Valid Valid
Invalid Valid Valid
Valid Invalid Valid
Valid Valid Valid

< “Block queue”: Older blocks/more invalid pages

Invalid

Temporary | valid
Storage Valid

Invalid

Loujie Xiang and Brian Kurkoski 8 /13

System
Garbage Collection

<
<
Logical Space: J J
(12pages) [[|d [$ | d|d [d & [[d]|d ||
Physical Space: . . .
(16 pages 1n 4 blocks) Vahd. Valid Valid
Invalid Valid Valid
Valid Invalid Valid
Valid Valid Valid

< “Block queue”: Older blocks/more invalid pages

Temporary | valid
Storage Valid

Loujie Xiang and Brian Kurkoski 8 /13

System
Garbage Collection

<
<
Logical Space: J J
(12pages) [[|d [$ | d|d [d & [[d]|d ||
Physical Space: . . .
(16 pages 1n 4 blocks) Vahd. Valid Valid
Invalid Valid Valid
Valid Invalid Valid
Valid Valid Valid

< “Block queue”: Older blocks/more invalid pages

Temporary | valid
Storage Valid

Loujie Xiang and Brian Kurkoski 8 /13

System
Garbage Collection

4
4
Logical Space: J J
(12pages) L 1 |d [$ | $|d | d|d [d[d]|d ||
Physical Space: . . .
(16 pages 1n 4 blocks) Vahd. Valid Valid
Invalid Valid Valid Valid
Valid Invalid Valid Valid
Valid Valid Valid

Time to erase
Greedy Garbage collection:

» Block with most invalid pages
Only two writes needed

Temporary
Storage

Loujie Xiang and Brian Kurkoski 8 /13

Analysis
Agarwal & Marrow Approach

. 40+ Uniform Approximation
The number of valid pages in a block
20|
(over all blocks)
0 | | | |
> AS Sumed unif()rm dlStleuthn - i 53 (Number1(;)1£)VaIid Paégg in a blocf((;o =

The number of valid pages per block (over one block)
» Assumed binomial distribution

Two different ways to find the expected number of valid blocks
> set them equal
» found an analytic expression for write amplification A:

L+p
2p

A =

» Simple expression

Overprovisioning factor p

Loujie Xiang and Brian Kurkoski 9/13

Analysis
Weakness in Previous Work

Technique: Solve for the an “average block”

Expected number of valid pages in a block = Expected number of valid pages in a block
Mean of the uniform distribution = mean of a binomial distribution

N _|_ T N _ Ditibuton of vl pages ina lock befor 15160 _

p2 — pr ol 7

Weaknesses:

» the binomial probability i1s not p = U/T
» The binomial distribution 1s not truly binomaial

» The uniform distribution is not truly uniform

Loujie Xiang and Brian Kurkoski 10/13

Analysis

Our Approach

Technique: Solve for the block selected for garbage collection

» Each garage collection, x invalid blocks are freed
A “new” block only has valid pages

» Consider a block that journeys from “new” to “old”

> For each logical write: a page has some small probability of being hit
For an “old” block ready for garbage collection

» There were Tx writes (Tx chances to become invalid)

»# of invalid pages = # blocks per page X probability of being invalid

T
r = Nx(1-(1-p) "
... Main Result — Obtain write amplification:

1+p
1+ p+W(—(1+p)e(+r)

W(.) 1s the Lambert W function. The solution to ¢ = xe* 1s W(c).

A =

Let the number of pages —«. Reasonable, since flash memories are huge.

Loujie Xiang and Brian Kurkoski

11/13

Improved Prediction of Write Amplification

45
4+ @ U=1024 logical blocks
i i i i 256 pages/block
35 Our 1mpr0ved eXpr68810n

w

Write Amplification
N
o1

N

excellent

agreement
1.5

1 |

i i | — «—ncorrectly
0 0.2 0.4 . 06 0.8 1 predicts
Overprovisioning A—1

Loujie Xiang and Brian Kurkoski 12/13

Discussion & Conclusion

Write amplification is a problem in flash memory systems:
» More physical writes than logical writes, due to flash memory block-erase

® Unneeded write operations is a system-level problem
B Excessive writes cause failure of flash memory device

Overprovisioning mitigates this problem

Contribution: Gave an improved analytic description of write amplification

| \
A +p a4 - 1+p

2p 1+ p+W(—(1+p)e(+r)
Agarwal & Marrow Our 1mproved expression
* Simple * Closed form (with W func.)
* Used “loose” assumptions * Used tighter assumptions
- Analyzed an average block - Analyzed garbage collected block
- Not always accurate * Much more accurate

Loujie Xiang and Brian Kurkoski 13/13

