
ICNC 2012
Lahaina, Hawaii, USA

February 1, 2012

An Improved Analytic Expression for Write
Amplification in Flash Memory

Loujie Xiang
University of Electronic Science and Technology of China

Brian M. Kurkoski
University of Electro-Communications

Tokyo, Japan
kurkoski@ice.uec.ac.jp

/13Loujie Xiang and Brian Kurkoski

Flash Memory is Quickly Becoming Ubiquitous

mobile devices

Embedded

SSD

USB memory

2

/13Loujie Xiang and Brian Kurkoski

Write amplification is a problem in flash memory systems:
 More physical writes than logical writes, due to flash memory block-erase

 Unneeded write operations is a system-level problem
 Excessive writes cause failure of flash memory device

Overprovisioning mitigates this problem
 increase the physical memory without increasing logical memory

Numerous empirical studies
Agarwal and Marrow [Globecom 2010]
 an analytical expression for write amplification

 analysis of a system using “greedy garbage collection”

Contribution
 A new analytic expression for write amplification
 More precise than previous expression

Outline
1. Flash memory system

2. Agarwal & Marrow analysis
3. Improved analytic expression

Background

3

/13Loujie Xiang and Brian Kurkoski

Organization of flash memory

• Flash is a re-writable semiconductor
memory

• Organization of flash memory
– Contains thousands of blocks
– A block contains typically 64 pages
– A page is typically 4 KB, smallest

unit
• Operations on flash memory

– Page-level write operations
– Can write only to empty blocks
– Block-level erase operations

4

http://www.linux-mag.com/id/7590/

Page

Page

Page

Page

Block

...

http://www.linux-mag.com/id/7590/
http://www.linux-mag.com/id/7590/

/13Loujie Xiang and Brian Kurkoski

– To change one page, must copy-erase-write
– “Write amplification” Changing one page requires 64 page writes!
– Undesirable:

– reduces system performance
– reduces flash memory device longevity

Flash memory: Write Amplification

5

0x3A

0x89

0x20

0x3B

copy erase

0x3A

0xA0

0x20

0x3B

write

0x3A

0x89

0x20

0x3B temporary storage

/13Loujie Xiang and Brian Kurkoski

• Problem: Write Amplification

• Solution: Overprovisioning
– More physical memory than logical memory
– (some physical memory the user cannot see)

System
Write Amplification and Overprovisioning

6

Physical Blocks T

Logical Blocks U

0 0.2 0.4 0.6 0.8 11

1.5

2

2.5

3

3.5

4

Overprovisioning, ρ

W
rit

e
Am

pl
ifi

ca
tio

n,
 A

/13Loujie Xiang and Brian Kurkoski

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/13Loujie Xiang and Brian Kurkoski

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/13Loujie Xiang and Brian Kurkoski

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/13Loujie Xiang and Brian Kurkoski

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/13Loujie Xiang and Brian Kurkoski

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/13Loujie Xiang and Brian Kurkoski

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/13Loujie Xiang and Brian Kurkoski

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/13Loujie Xiang and Brian Kurkoski

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/13Loujie Xiang and Brian Kurkoski

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/13Loujie Xiang and Brian Kurkoski

Time to erase
Greedy Garbage collection:
Block with most invalid pages

Only two writes needed

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

8

/13Loujie Xiang and Brian Kurkoski

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

8

/13Loujie Xiang and Brian Kurkoski

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

← “Block queue”: Older blocks/more invalid pages

8

/13Loujie Xiang and Brian Kurkoski

Temporary
Storage

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

← “Block queue”: Older blocks/more invalid pages

8

/13Loujie Xiang and Brian Kurkoski

Temporary
Storage

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

← “Block queue”: Older blocks/more invalid pages

8

/13Loujie Xiang and Brian Kurkoski

Temporary
Storage

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

← “Block queue”: Older blocks/more invalid pages

8

/13Loujie Xiang and Brian Kurkoski

Time to erase
Greedy Garbage collection:
Block with most invalid pages

Only two writes needed
Temporary

Storage

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

8

/13Loujie Xiang and Brian Kurkoski

The number of valid pages in a block
(over all blocks)
Assumed uniform distribution

The number of valid pages per block (over one block)
Assumed binomial distribution

Two different ways to find the expected number of valid blocks
 set them equal
 found an analytic expression for write amplification A:

Simple expression

Analysis
Agarwal & Marrow Approach

9

−50 0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

v (Number of Valid Pages in a block)

N
um

be
r o

f b
lo

ck
s

w
ith

 v
 v

al
id

 p
ag

es

Histogram of valid pages

Uniform Approximation

Fig. 1. Histogram of valid pages.

However, if in steady state f(v) becomes the uniform
distribution i.e. v ∼ Unif[x, Np],

E[v] =
Np + x

2
=

1

1 + ρ
Np = pNp (4)

Hence,

W =
Np

Np − (2pNp − Np)

W =
1

2

(

1 + ρ

ρ

)

(5)

which is seen to be independent of the number of pages
per block. As a sanity check for the derived expression,
when over-provisioning ρ is 0 (minimum value), W is infinity
(maximum value). Similarly, when ρ is 1 (maximum value),
W is 1 (minimum value). Hence, both these extreme values
are correct. Write amplification, in general, depends on the
number of pages in a block. For example, in the extreme
case, if Np = 1, then W = 1 regardless of over-provisioning
ρ. However, as shown via simulation results in the next
section, for reasonable values of Np (64 and higher), write-
amplification W is seen to be independent of Np, supporting
the result in this section.

V. MONTE-CARLO SIMULATIONS
This section performs Monte-Carlo simulations to com-

pare the derived analytical expression with actual write-
amplification values observed for the case under study.
Figure 2 shows write-amplification over time using Monte-

Carlo simulations for a fixed drive size U = 1024. The
write-amplification converges to a value 2.67 fairly quickly
regardless of the number of pages in a block. This value is
close to the theoretically derived approximate value of 2.5
when ρ = 0.25. Figure 3 shows write-amplification over time
using Monte-Carlo simulations for a fixed number of pages
per block Np = 256. Both the over-provisioning and drive size
U are varied. Figure 3 shows that write-amplification depends
only on ρ regardless of the value of drive size U . Furthermore,
the steady-state value of write-amplification from Monte-Carlo

simulations is seen to be 2.67, 3.18 and 3.96, which is fairly
close to the corresponding analytical approximation of 2.5, 3
and 3.83, when over-provisioning ρ is 25%, 20% and 15%
respectively.

0 100 200 300 400 500 600 700 800 900 1000
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Block Writes over time

W
rit

e
Am

pl
ifi

ca
tio

n

Np = 512
Np = 256
Np = 64

Fig. 2. Write-Amplification over time for 25% over-provisioning with fixed
T = 1024.

0 500 1000 1500 2000 2500 3000
2

2.5

3

3.5

4

4.5

5

5.5

6

Block Writes over time

W
rit

e
Am

pl
ifi

ca
tio

n

Write Amplification for different U and OP values

U=4096, OP=0.25
U=2048, OP=0.25
U=1024, OP=0.25
U=4096, OP=0.20
U=2048, OP=0.20
U=1024, OP=0.20
U=4096, OP=0.15
U=2048, OP=0.15
U=1024, OP=0.15

Fig. 3. Write-Amplification over time for {25%, 20%, 15%} over-
provisioning with fixed Np = 256.

Finally, figure 4 shows the effect of a delay in updating
the sorted list of number of valid pages in a block for the
whole drive. The delay is measured in terms of the number of
host block rewrite requests. Figure 4 shows that this delay
translates to an increase in the write-amplification value,
hence effectively reducing the over-provisioning. The system
designer can trade-off these two design parameters - over-
provisioning (decreases effective storage space) and delaying
the sort (reduces CPU cycles spent in book-keeping). An
expression for the fit of this curve as a function of number
of blocks U (in the figure denoted as NBlock) and delay D
is also provided.

VI. SUMMARY AND DISCUSSION
This paper studied write-amplification arising from garbage-

collection in a NAND Flash. A simple closed-form expression

1911

/13Loujie Xiang and Brian Kurkoski

Analysis
Weakness in Previous Work

Technique: Solve for the an “average block”

Weaknesses:
 the binomial probability is not p = U/T
 The binomial distribution is not truly binomial
 The uniform distribution is not truly uniform

10

−50 0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

v (Number of Valid Pages in a block)

N
um

be
r o

f b
lo

ck
s

w
ith

 v
 v

al
id

 p
ag

es

Histogram of valid pages

Uniform Approximation

Fig. 1. Histogram of valid pages.

However, if in steady state f(v) becomes the uniform
distribution i.e. v ∼ Unif[x, Np],

E[v] =
Np + x

2
=

1

1 + ρ
Np = pNp (4)

Hence,

W =
Np

Np − (2pNp − Np)

W =
1

2

(

1 + ρ

ρ

)

(5)

which is seen to be independent of the number of pages
per block. As a sanity check for the derived expression,
when over-provisioning ρ is 0 (minimum value), W is infinity
(maximum value). Similarly, when ρ is 1 (maximum value),
W is 1 (minimum value). Hence, both these extreme values
are correct. Write amplification, in general, depends on the
number of pages in a block. For example, in the extreme
case, if Np = 1, then W = 1 regardless of over-provisioning
ρ. However, as shown via simulation results in the next
section, for reasonable values of Np (64 and higher), write-
amplification W is seen to be independent of Np, supporting
the result in this section.

V. MONTE-CARLO SIMULATIONS
This section performs Monte-Carlo simulations to com-

pare the derived analytical expression with actual write-
amplification values observed for the case under study.
Figure 2 shows write-amplification over time using Monte-

Carlo simulations for a fixed drive size U = 1024. The
write-amplification converges to a value 2.67 fairly quickly
regardless of the number of pages in a block. This value is
close to the theoretically derived approximate value of 2.5
when ρ = 0.25. Figure 3 shows write-amplification over time
using Monte-Carlo simulations for a fixed number of pages
per block Np = 256. Both the over-provisioning and drive size
U are varied. Figure 3 shows that write-amplification depends
only on ρ regardless of the value of drive size U . Furthermore,
the steady-state value of write-amplification from Monte-Carlo

simulations is seen to be 2.67, 3.18 and 3.96, which is fairly
close to the corresponding analytical approximation of 2.5, 3
and 3.83, when over-provisioning ρ is 25%, 20% and 15%
respectively.

0 100 200 300 400 500 600 700 800 900 1000
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Block Writes over time

W
rit

e
Am

pl
ifi

ca
tio

n

Np = 512
Np = 256
Np = 64

Fig. 2. Write-Amplification over time for 25% over-provisioning with fixed
T = 1024.

0 500 1000 1500 2000 2500 3000
2

2.5

3

3.5

4

4.5

5

5.5

6

Block Writes over time

W
rit

e
Am

pl
ifi

ca
tio

n

Write Amplification for different U and OP values

U=4096, OP=0.25
U=2048, OP=0.25
U=1024, OP=0.25
U=4096, OP=0.20
U=2048, OP=0.20
U=1024, OP=0.20
U=4096, OP=0.15
U=2048, OP=0.15
U=1024, OP=0.15

Fig. 3. Write-Amplification over time for {25%, 20%, 15%} over-
provisioning with fixed Np = 256.

Finally, figure 4 shows the effect of a delay in updating
the sorted list of number of valid pages in a block for the
whole drive. The delay is measured in terms of the number of
host block rewrite requests. Figure 4 shows that this delay
translates to an increase in the write-amplification value,
hence effectively reducing the over-provisioning. The system
designer can trade-off these two design parameters - over-
provisioning (decreases effective storage space) and delaying
the sort (reduces CPU cycles spent in book-keeping). An
expression for the fit of this curve as a function of number
of blocks U (in the figure denoted as NBlock) and delay D
is also provided.

VI. SUMMARY AND DISCUSSION
This paper studied write-amplification arising from garbage-

collection in a NAND Flash. A simple closed-form expression

1911

x Np

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

50

x

N
um

be
r o

f b
lo

ck
s

Distribution of invalid pages in a block before first GC

ρ=1

/13Loujie Xiang and Brian Kurkoski

Analysis
Our Approach

Technique: Solve for the block selected for garbage collection
Each garage collection, x invalid blocks are freed

A “new” block only has valid pages
Consider a block that journeys from “new” to “old”
For each logical write: a page has some small probability of being hit

For an “old” block ready for garbage collection
There were Tx writes (Tx chances to become invalid)
of invalid pages = # blocks per page × probability of being invalid

... Main Result — Obtain write amplification:

W(.) is the Lambert W function. The solution to c = xex is W(c).
Let the number of pages →∞. Reasonable, since flash memories are huge.

11

/13Loujie Xiang and Brian Kurkoski

Improved Prediction of Write Amplification

12

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

Overprovisioning

W
rit

e
Am

pl
ifi

ca
tio

n

Agarwal & Marrow

Our improved expression

 simulation

U=1024 logical blocks
256 pages/block

incorrectly
predicts
A → 1

excellent
agreement

/13Loujie Xiang and Brian Kurkoski

Write amplification is a problem in flash memory systems:
More physical writes than logical writes, due to flash memory block-erase

 Unneeded write operations is a system-level problem
 Excessive writes cause failure of flash memory device

Overprovisioning mitigates this problem

Contribution: Gave an improved analytic description of write amplification

Discussion & Conclusion

13

Agarwal & Marrow
• Simple
• Used “loose” assumptions
• Analyzed an average block
• Not always accurate

Our improved expression
• Closed form (with W func.)
• Used tighter assumptions
• Analyzed garbage collected block
• Much more accurate

