
Write Amplification and WOM Codes
in Flash Memories

Luojie Xiang
Purdue University

West Lafayette, IN, USA
xiang7@purdue.edu

Brian M. Kurkoski
Japan Advanced Institute of Science and Technology

Nomi, Japan

Eitan Yaakobi
California Institute of Technology

Pasadena, CA, USA

Non-Volatile Memories Workshop, 2013
University of California San Diego

mailto:xiang7@purdue.edu
mailto:xiang7@purdue.edu

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Background

Write amplification
Flash memories unique problem:
Unneeded writes are due to:
block erase,
page write

architecture of flash memories.

Mitigated by overprovisioning ρ
allocating more physical memory than logical memory

WOM Codes
WOM codes allow rewriting flash memories without erasing.
Extend the lifetime of flash memories

We show that WOM codes can also reduce write amplification

2

0 0.2 0.4 0.6 0.8 11

1.5

2

2.5

3

3.5

4

Overprovisioning, ρ

W
rit

e
Am

pl
ific

at
io

n,
 A

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Overview
Agarwal & Marrow [Globe2010] gave an analytic expression for write amplification
We give

• an improved-accuracy expression write amplification
• analytic expression for write amplification when using WOM codes
• conditions when WOM codes reduce write amplification

See also Desnoyers et al.

Caveats
• The memory system model is idealized

– random writes on the user space
– logical memory (user memory) is always full

• Explain write amplification as a coding theorist understands it

3

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Organization of flash memory

• Organization of flash memory
– Contains thousands of blocks
– A block contains typically 64 pages
– A page is typically 4 KB, smallest

unit
• Operations on flash memory

– Page-level write operations
– Can write only to empty blocks
– Block-level erase operations

4

http://www.linux-mag.com/id/7590/

Page

Page

Page

Page

Block

...

http://www.linux-mag.com/id/7590/
http://www.linux-mag.com/id/7590/

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Flash memory: Write Amplification

0x3A

0x89

0x20

0x3B

copy erase

0x3A

0xA0

0x20

0x3B

write

0x3A

0x89

0x20

0x3B
temporary storage

– Flash memories are page write, block erase
– To change one page, must copy-erase-write
– “Write amplification” Changing one page requires 64 page writes!
– Undesirable, system performance and memory longevity

5

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

• Problem: Write Amplification

• Solution: Overprovisioning
– More physical memory than logical memory
– (some physical memory the user cannot see)

System
Write Amplification and Overprovisioning

6

Physical Blocks T

Logical Blocks U

0 0.2 0.4 0.6 0.8 11

1.5

2

2.5

3

3.5

4

Overprovisioning, ρ

W
rit

e
Am

pl
ific

at
io

n,
 A

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Time to erase
Greedy Garbage collection:
Block with most invalid pages

Only two writes needed

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

← “Block queue”: Older blocks/more invalid pages

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Temporary
Storage

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

← “Block queue”: Older blocks/more invalid pages

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Temporary
Storage

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

← “Block queue”: Older blocks/more invalid pages

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Temporary
Storage

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

← “Block queue”: Older blocks/more invalid pages

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Time to erase
Greedy Garbage collection:
Block with most invalid pages

Only two writes needed
Temporary

Storage

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Block Queue Model

9

Old blocks/
Many invalid

pages

Newer blocks/
Fewer invalid

pages

Valid page

Invalid page

Free page

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Garbage Collection Animation
No WOM Codes

10

Free page

Valid page

Invalid page

Animation of garbage collection:
http://bit.ly/ZPdMn0

http://bit.ly/ZPdMn0
http://bit.ly/ZPdMn0

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Garbage Collection Animation
With WOM Codes

11

Animation of garbage collection:
http://bit.ly/ZPdMn0

Free page (2 writes remain)

Valid page (1 write remains)

Valid page (0 writes remain)

Invalid page

http://bit.ly/ZPdMn0
http://bit.ly/ZPdMn0

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

The number of valid pages in a block
(over all blocks)
Assumed uniform distribution
Easy to compute the expected value

The number of valid pages per block (over one block)
random distribution of writes gives binomial distribution
Easy to compute the expected value

Equate two ways to find the expected number of valid blocks
Simple analytic expression for write amplification A:

The uniform distribution assumption valid under some conditions.

Analysis “Technique A” [Agarwal & Marrow]

12

−50 0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

v (Number of Valid Pages in a block)

Nu
m

be
r o

f b
lo

ck
s

wi
th

 v
 v

al
id

 p
ag

es

Histogram of valid pages

Uniform Approximation

Fig. 1. Histogram of valid pages.

However, if in steady state f(v) becomes the uniform
distribution i.e. v ∼ Unif[x, Np],

E[v] =
Np + x

2
=

1

1 + ρ
Np = pNp (4)

Hence,

W =
Np

Np − (2pNp − Np)

W =
1

2

(

1 + ρ

ρ

)

(5)

which is seen to be independent of the number of pages
per block. As a sanity check for the derived expression,
when over-provisioning ρ is 0 (minimum value), W is infinity
(maximum value). Similarly, when ρ is 1 (maximum value),
W is 1 (minimum value). Hence, both these extreme values
are correct. Write amplification, in general, depends on the
number of pages in a block. For example, in the extreme
case, if Np = 1, then W = 1 regardless of over-provisioning
ρ. However, as shown via simulation results in the next
section, for reasonable values of Np (64 and higher), write-
amplification W is seen to be independent of Np, supporting
the result in this section.

V. MONTE-CARLO SIMULATIONS
This section performs Monte-Carlo simulations to com-

pare the derived analytical expression with actual write-
amplification values observed for the case under study.
Figure 2 shows write-amplification over time using Monte-

Carlo simulations for a fixed drive size U = 1024. The
write-amplification converges to a value 2.67 fairly quickly
regardless of the number of pages in a block. This value is
close to the theoretically derived approximate value of 2.5
when ρ = 0.25. Figure 3 shows write-amplification over time
using Monte-Carlo simulations for a fixed number of pages
per block Np = 256. Both the over-provisioning and drive size
U are varied. Figure 3 shows that write-amplification depends
only on ρ regardless of the value of drive size U . Furthermore,
the steady-state value of write-amplification from Monte-Carlo

simulations is seen to be 2.67, 3.18 and 3.96, which is fairly
close to the corresponding analytical approximation of 2.5, 3
and 3.83, when over-provisioning ρ is 25%, 20% and 15%
respectively.

0 100 200 300 400 500 600 700 800 900 1000
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Block Writes over time

W
rit

e
Am

pl
ific

at
io

n

Np = 512
Np = 256
Np = 64

Fig. 2. Write-Amplification over time for 25% over-provisioning with fixed
T = 1024.

0 500 1000 1500 2000 2500 3000
2

2.5

3

3.5

4

4.5

5

5.5

6

Block Writes over time

W
rit

e
Am

pl
ific

at
io

n

Write Amplification for different U and OP values

U=4096, OP=0.25
U=2048, OP=0.25
U=1024, OP=0.25
U=4096, OP=0.20
U=2048, OP=0.20
U=1024, OP=0.20
U=4096, OP=0.15
U=2048, OP=0.15
U=1024, OP=0.15

Fig. 3. Write-Amplification over time for {25%, 20%, 15%} over-
provisioning with fixed Np = 256.

Finally, figure 4 shows the effect of a delay in updating
the sorted list of number of valid pages in a block for the
whole drive. The delay is measured in terms of the number of
host block rewrite requests. Figure 4 shows that this delay
translates to an increase in the write-amplification value,
hence effectively reducing the over-provisioning. The system
designer can trade-off these two design parameters - over-
provisioning (decreases effective storage space) and delaying
the sort (reduces CPU cycles spent in book-keeping). An
expression for the fit of this curve as a function of number
of blocks U (in the figure denoted as NBlock) and delay D
is also provided.

VI. SUMMARY AND DISCUSSION
This paper studied write-amplification arising from garbage-

collection in a NAND Flash. A simple closed-form expression

1911

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Analysis: Technique B
Our Approach

Technique A works with number invalid pages over the entire memory
Technique B works with the number invalid pages in the block selected for

garbages collection
Each garage collection, x invalid blocks are freed
of invalid pages = # blocks per page × probability of being invalid

... Contribution — Obtain write amplification:

W(.) is the Lambert W function. The solution to c = xex is W(c).
Let the number of pages →∞. Reasonable, since flash memories are huge.

13

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Improved Prediction of Write Amplification

14

0 0.2 0.4 0.6 0.8 11

1.5

2

2.5

3

3.5

4

4.5

Overprovisioning

W
rit

e
Am

pl
ific

at
io

n

Agarwal & Marrow

Our improved expression

 simulation

U = 1024 logical blocks
256 pages/block

excellent
agreement

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

WOM Codes: Codes for Write-Once Memories

WOM codes:
 re-write flash memory without erasing
Write flash memory t times
Decrease the code rate R for increasing t
For a q-level flash [Fu and Han Vinck 1999]:

Flash memories have log2 q bits/cell
SLC (1 bit), MLC (2 bits), TLC (3 bits), QLC (4 bits)

We assume the existence of WOM codes that achieve capacity

15

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

WOM Memory Controller

Controller tracks the state of the WOM code. For each page:
Free → t – 1 writes remain → ... → 1 writes → 0 writes → Invalid

Consider the “total provisioning” ρtotal

 Traditional overprovisioning ρ
 WOM code rate/write R, and t writes

16

“Valid” states

Physical Blocks T

Logical Blocks U

WOM code
rate penalty

�total = (� + 1)
log2 q

tR
� 1

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Analysis: Write Amplification with WOM Codes

Technique B does not allow a closed-form solution

Use Technique A. Obtain an expression for write amplification:

WOM code shifts the distribution of valid pages in a block,
� Uniform distribution appears accurate

no WOM t=1 WOM t > 1

Technique A some agreement
Agarwal & Marrow

accurate

Technique B accurate not possible

Comparison of conditions used

17

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Write Amplification for t=2 WOM Codes

18

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

ρto ta l

W
rit

e
Am

pl
ifi

ca
tio

n

q = 2

q = 4q = 8

q = 16

q = 32

q = 128

q = 1024

q=2
48

1024

Write amplification
decreases for
increasing q

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Write Amplification for q=16 (QLC) flash

19

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

ρto ta l

W
rit

e
Am

pl
ifi

ca
tio

n

t = 4

t = 2

t = 6

t = 8

t=2
writes

t=4
t=6 t=8

Write Amplification
is lowest for
t = 2

t=1 no WOM

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Discussion & Conclusion

20

Write amplification is are excess writes in flash memory systems:
 conventionally mitigated by overprovisioning

WOM Codes: promise to extend the life of flash memories
hot topic among coding theorists

Contribution: WOM Codes can also reduce write amplification
as q increases, WOM codes are more effective at reducing WA
 t = 2 write WOM codes have lower WA than no WOM/t ≥ 3 WOM (q = 16)

