
Write Amplification and WOM Codes
in Flash Memories

Luojie Xiang
Purdue University

West Lafayette, IN, USA
xiang7@purdue.edu

Brian M. Kurkoski
Japan Advanced Institute of Science and Technology

Nomi, Japan

Eitan Yaakobi
California Institute of Technology

Pasadena, CA, USA

Non-Volatile Memories Workshop, 2013
University of California San Diego

mailto:xiang7@purdue.edu
mailto:xiang7@purdue.edu

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Background

Write amplification
Flash memories unique problem:
Unneeded writes are due to:
block erase,
page write

architecture of flash memories.

Mitigated by overprovisioning ρ
allocating more physical memory than logical memory

WOM Codes
WOM codes allow rewriting flash memories without erasing.
Extend the lifetime of flash memories

We show that WOM codes can also reduce write amplification

2

0 0.2 0.4 0.6 0.8 11

1.5

2

2.5

3

3.5

4

Overprovisioning, ρ

W
rit

e
Am

pl
ific

at
io

n,
 A

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Overview
Agarwal & Marrow [Globe2010] gave an analytic expression for write amplification
We give

• an improved-accuracy expression write amplification
• analytic expression for write amplification when using WOM codes
• conditions when WOM codes reduce write amplification

See also Desnoyers et al.

Caveats
• The memory system model is idealized

– random writes on the user space
– logical memory (user memory) is always full

• Explain write amplification as a coding theorist understands it

3

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Organization of flash memory

• Organization of flash memory
– Contains thousands of blocks
– A block contains typically 64 pages
– A page is typically 4 KB, smallest

unit
• Operations on flash memory

– Page-level write operations
– Can write only to empty blocks
– Block-level erase operations

4

http://www.linux-mag.com/id/7590/

Page

Page

Page

Page

Block

...

http://www.linux-mag.com/id/7590/
http://www.linux-mag.com/id/7590/

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Flash memory: Write Amplification

0x3A

0x89

0x20

0x3B

copy erase

0x3A

0xA0

0x20

0x3B

write

0x3A

0x89

0x20

0x3B
temporary storage

– Flash memories are page write, block erase
– To change one page, must copy-erase-write
– “Write amplification” Changing one page requires 64 page writes!
– Undesirable, system performance and memory longevity

5

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

• Problem: Write Amplification

• Solution: Overprovisioning
– More physical memory than logical memory
– (some physical memory the user cannot see)

System
Write Amplification and Overprovisioning

6

Physical Blocks T

Logical Blocks U

0 0.2 0.4 0.6 0.8 11

1.5

2

2.5

3

3.5

4

Overprovisioning, ρ

W
rit

e
Am

pl
ific

at
io

n,
 A

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

Initial condition: Start with an empty memory
User writes uniformly and randomly distributed on user space
stationary condition: Logical memory is always full (worst case)

System
Example of Writing Flash Memory

(mapping table)

7

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Time to erase
Greedy Garbage collection:
Block with most invalid pages

Only two writes needed

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

← “Block queue”: Older blocks/more invalid pages

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Temporary
Storage

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

← “Block queue”: Older blocks/more invalid pages

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Temporary
Storage

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

← “Block queue”: Older blocks/more invalid pages

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Temporary
Storage

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

← “Block queue”: Older blocks/more invalid pages

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Time to erase
Greedy Garbage collection:
Block with most invalid pages

Only two writes needed
Temporary

Storage

Logical Space:
(12 pages)

Physical Space:
(16 pages in 4 blocks)

System
Garbage Collection

8

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Block Queue Model

9

Old blocks/
Many invalid

pages

Newer blocks/
Fewer invalid

pages

Valid page

Invalid page

Free page

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Garbage Collection Animation
No WOM Codes

10

Free page

Valid page

Invalid page

Animation of garbage collection:
http://bit.ly/ZPdMn0

http://bit.ly/ZPdMn0
http://bit.ly/ZPdMn0

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Garbage Collection Animation
With WOM Codes

11

Animation of garbage collection:
http://bit.ly/ZPdMn0

Free page (2 writes remain)

Valid page (1 write remains)

Valid page (0 writes remain)

Invalid page

http://bit.ly/ZPdMn0
http://bit.ly/ZPdMn0

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

The number of valid pages in a block
(over all blocks)
Assumed uniform distribution
Easy to compute the expected value

The number of valid pages per block (over one block)
random distribution of writes gives binomial distribution
Easy to compute the expected value

Equate two ways to find the expected number of valid blocks
Simple analytic expression for write amplification A:

The uniform distribution assumption valid under some conditions.

Analysis “Technique A” [Agarwal & Marrow]

12

−50 0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

v (Number of Valid Pages in a block)

Nu
m

be
r o

f b
lo

ck
s

wi
th

 v
 v

al
id

 p
ag

es

Histogram of valid pages

Uniform Approximation

Fig. 1. Histogram of valid pages.

However, if in steady state f(v) becomes the uniform
distribution i.e. v ∼ Unif[x, Np],

E[v] =
Np + x

2
=

1

1 + ρ
Np = pNp (4)

Hence,

W =
Np

Np − (2pNp − Np)

W =
1

2

(

1 + ρ

ρ

)

(5)

which is seen to be independent of the number of pages
per block. As a sanity check for the derived expression,
when over-provisioning ρ is 0 (minimum value), W is infinity
(maximum value). Similarly, when ρ is 1 (maximum value),
W is 1 (minimum value). Hence, both these extreme values
are correct. Write amplification, in general, depends on the
number of pages in a block. For example, in the extreme
case, if Np = 1, then W = 1 regardless of over-provisioning
ρ. However, as shown via simulation results in the next
section, for reasonable values of Np (64 and higher), write-
amplification W is seen to be independent of Np, supporting
the result in this section.

V. MONTE-CARLO SIMULATIONS
This section performs Monte-Carlo simulations to com-

pare the derived analytical expression with actual write-
amplification values observed for the case under study.
Figure 2 shows write-amplification over time using Monte-

Carlo simulations for a fixed drive size U = 1024. The
write-amplification converges to a value 2.67 fairly quickly
regardless of the number of pages in a block. This value is
close to the theoretically derived approximate value of 2.5
when ρ = 0.25. Figure 3 shows write-amplification over time
using Monte-Carlo simulations for a fixed number of pages
per block Np = 256. Both the over-provisioning and drive size
U are varied. Figure 3 shows that write-amplification depends
only on ρ regardless of the value of drive size U . Furthermore,
the steady-state value of write-amplification from Monte-Carlo

simulations is seen to be 2.67, 3.18 and 3.96, which is fairly
close to the corresponding analytical approximation of 2.5, 3
and 3.83, when over-provisioning ρ is 25%, 20% and 15%
respectively.

0 100 200 300 400 500 600 700 800 900 1000
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Block Writes over time

W
rit

e
Am

pl
ific

at
io

n

Np = 512
Np = 256
Np = 64

Fig. 2. Write-Amplification over time for 25% over-provisioning with fixed
T = 1024.

0 500 1000 1500 2000 2500 3000
2

2.5

3

3.5

4

4.5

5

5.5

6

Block Writes over time

W
rit

e
Am

pl
ific

at
io

n

Write Amplification for different U and OP values

U=4096, OP=0.25
U=2048, OP=0.25
U=1024, OP=0.25
U=4096, OP=0.20
U=2048, OP=0.20
U=1024, OP=0.20
U=4096, OP=0.15
U=2048, OP=0.15
U=1024, OP=0.15

Fig. 3. Write-Amplification over time for {25%, 20%, 15%} over-
provisioning with fixed Np = 256.

Finally, figure 4 shows the effect of a delay in updating
the sorted list of number of valid pages in a block for the
whole drive. The delay is measured in terms of the number of
host block rewrite requests. Figure 4 shows that this delay
translates to an increase in the write-amplification value,
hence effectively reducing the over-provisioning. The system
designer can trade-off these two design parameters - over-
provisioning (decreases effective storage space) and delaying
the sort (reduces CPU cycles spent in book-keeping). An
expression for the fit of this curve as a function of number
of blocks U (in the figure denoted as NBlock) and delay D
is also provided.

VI. SUMMARY AND DISCUSSION
This paper studied write-amplification arising from garbage-

collection in a NAND Flash. A simple closed-form expression

1911

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Analysis: Technique B
Our Approach

Technique A works with number invalid pages over the entire memory
Technique B works with the number invalid pages in the block selected for

garbages collection
Each garage collection, x invalid blocks are freed
# of invalid pages = # blocks per page × probability of being invalid

... Contribution — Obtain write amplification:

W(.) is the Lambert W function. The solution to c = xex is W(c).
Let the number of pages →∞. Reasonable, since flash memories are huge.

13

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Improved Prediction of Write Amplification

14

0 0.2 0.4 0.6 0.8 11

1.5

2

2.5

3

3.5

4

4.5

Overprovisioning

W
rit

e
Am

pl
ific

at
io

n

Agarwal & Marrow

Our improved expression

 simulation

U = 1024 logical blocks
256 pages/block

excellent
agreement

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

WOM Codes: Codes for Write-Once Memories

WOM codes:
 re-write flash memory without erasing
Write flash memory t times
Decrease the code rate R for increasing t
For a q-level flash [Fu and Han Vinck 1999]:

Flash memories have log2 q bits/cell
SLC (1 bit), MLC (2 bits), TLC (3 bits), QLC (4 bits)

We assume the existence of WOM codes that achieve capacity

15

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

WOM Memory Controller

Controller tracks the state of the WOM code. For each page:
Free → t – 1 writes remain → ... → 1 writes → 0 writes → Invalid

Consider the “total provisioning” ρtotal

 Traditional overprovisioning ρ
 WOM code rate/write R, and t writes

16

“Valid” states

Physical Blocks T

Logical Blocks U

WOM code
rate penalty

�total = (� + 1)
log2 q

tR
� 1

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Analysis: Write Amplification with WOM Codes

Technique B does not allow a closed-form solution

Use Technique A. Obtain an expression for write amplification:

WOM code shifts the distribution of valid pages in a block,
� Uniform distribution appears accurate

no WOM t=1 WOM t > 1

Technique A some agreement
Agarwal & Marrow

accurate

Technique B accurate not possible

Comparison of conditions used

17

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Write Amplification for t=2 WOM Codes

18

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

ρto ta l

W
rit

e
Am

pl
ifi

ca
tio

n

q = 2

q = 4q = 8

q = 16

q = 32

q = 128

q = 1024

q=2
48

1024

Write amplification
decreases for
increasing q

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Write Amplification for q=16 (QLC) flash

19

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

ρto ta l

W
rit

e
Am

pl
ifi

ca
tio

n

t = 4

t = 2

t = 6

t = 8

t=2
writes

t=4
t=6 t=8

Write Amplification
is lowest for
t = 2

t=1 no WOM

/19Loujie Xiang, Brian Kurkoski and Eitan Yaakobi

Discussion & Conclusion

20

Write amplification is are excess writes in flash memory systems:
 conventionally mitigated by overprovisioning

WOM Codes: promise to extend the life of flash memories
hot topic among coding theorists

Contribution: WOM Codes can also reduce write amplification
as q increases, WOM codes are more effective at reducing WA
 t = 2 write WOM codes have lower WA than no WOM/t ≥ 3 WOM (q = 16)

