Lower Bound on the Error Rate of Genie-Aided Lattice Decoding

Jiajie Xue and Brian M. Kurkoski

Japan Advanced Institute of Science and Technology

July 1, 2022 2022 IEEE International Symposium on Information Theory

Motivation — ML Decoding of Lattices

An *n*-dimensional lattice code is the intersection of a lattice Λ and a shaping region:

- Candidate for high-rate coded modulation. Practical to achieve shaping gain.
- Lattice codes with maximum likelihood decoding achieve the capacity of the AWGN channel ¹
- Unfortunately, Maximum likelihood decoding of lattices is not efficient

¹Rudiger Urbanke and Bixio Rimoldi, "Lattice codes can achieve capacity on the AWGN channel", IT Trans, 1998

Motivation — Lattice Decoding Achieves Capacity

- Lattice codes with low-complexity lattice decoding can also achieve capacity
- Lattice decoding This is possible if scale by α_{MMSE} ²:

$$\alpha_{MMSE} = \frac{P}{P+N}$$

Intuition: noise moves y away from the origin, so "expand" the decoding lattice 2 Uri Erez and Ram Zamir, "Achieving $\frac{1}{2} \log(1 + SNR)$ on the AWGN Channel With Lattice Encoding and Decoding," IT Trans, October 2004.

Preview — Scaling for Finite-Dimension Lattices

 α_{MMSE} is optimal when $n \to \infty$

• How to choose scaling α when n is finite?

 \blacktriangleright Actually, α_{MMSE} is not a bad choice^3 for $n\geq 100$

What if we could try many different α ? Introduce a genie-aided decoder

- Genie tells decoder if estimated lattice point is correct or not
- \blacktriangleright If not, decoder retries decoding using different scaling α
- Genie may be implemented using CRC codes

Goal: quantify how much the decoding can be improved by re-try decoding.

³N. S. Ferdinand, M. Nokleby, B. M. Kurkoski, and B. Aazhang, "MMSE scaling enhances performance in practical lattice codes," in Asilomar Conference on Signals, Systems, and Computers, November 2014

Preview — Main Results

Consider a genie-aided exhaustive search decoder which is allowed to use all $\alpha \in \mathbb{R}$.

Clearly, genie-aided decoding achieves lower word error rate (WER) than one-shot decoder using α_{MMSE} only.

- $1. \ \mbox{Give a lower bound on WER for this decoder}$
- 2. Give an estimate of the WER. Not a bound, but empirically accurate for lattices with sphere-like Voronoi regions.
- 3. Asymptotic error expression when power $P \rightarrow \infty$
- 4. Implement genie by using CRC. Shows a 0.1 dB gain on $n=128 \ {\rm polar}$ code lattices.

Background — Lattices (1)

Definition (Lattices)

Lattices are additive subgroup in real number space. An n-dimension lattice Λ can be formed as:

$$\Lambda = \{ \mathbf{Gb} : \mathbf{b} \in \mathbb{Z}^n \}$$

where $\mathbf{G} = [\mathbf{g}_1, \mathbf{g}_2, \cdots, \mathbf{g}_n] \in \mathbb{R}^{n \times n}$ and $\mathbf{g}_1, \mathbf{g}_2, \cdots, \mathbf{g}_n \in \mathbb{R}^n$ are linear independent.

Figure 1: Example of 2-dimensional lattice spanned by $\mathbf{g}_1 = [\frac{\sqrt{3}}{2}, \frac{1}{2}]^T$ and $\mathbf{g}_2 = [0, 1]^T$.

Background — Lattices (2)

Definition (Voronoi region, covering sphere and effective sphere)

Given lattice Λ and $\mathbf{x}\in\Lambda,$ we can define:

- ▶ Voronoi region $\mathcal{V}(\mathbf{x})$: set of $\mathbf{y} \in \mathbb{R}^n$ closer to \mathbf{x} than any other lattice point;
- ▶ Covering sphere $S_c(\mathbf{x})$: sphere with minimal radius r_c that covers \mathcal{V} , i.e. $\mathcal{V} \subseteq S_c$;

• Effective sphere $S_e(\mathbf{x})$: sphere with radius r_e that has same volume as \mathcal{V} , i.e. $V(\mathcal{V}) = V(S_e)$.

Figure 2: Voronoi region.

Figure 3: Relationship among \mathcal{V} , \mathcal{S}_c and \mathcal{S}_e .

Background — Lattice codes

Definition (Lattice quantize and $mod\Lambda$)

Given lattice $\Lambda,$ we can define lattice quantizer Q_Λ and $mod\Lambda$ as:

$$egin{aligned} Q_\Lambda(\mathbf{y}) &= rg\min_{\mathbf{x}\in\Lambda} \|\mathbf{y}-\mathbf{x}\|^2 \ \mathbf{y} \ \mathrm{mod} \ \Lambda &= \mathbf{y} - Q_\Lambda(\mathbf{y}) \end{aligned}$$

Definition (Nested lattice codes)

Let two lattices Λ_c and Λ_s satisfy $\Lambda_s \subseteq \Lambda_c$ and form a quotient group Λ_c/Λ_s . A nested lattice code C is defined as:

$$\mathcal{C} = \{\mathbf{x} \bmod \Lambda_s : \mathbf{x} \in \Lambda_c\}$$

Background—Encoding and decoding

Encoding and decoding scheme is given as:

Let *n*-dimensional lattice code $C = \Lambda_c / \Lambda_s$ and **G** is generator matrix of Λ_c ,

Encoder: $\mathbf{x} = \mathbf{Gb} \mod \Lambda_s$, with $E[||\mathbf{x}||^2] = nP_x$ **Channel:** $\mathbf{y} = \mathbf{x} + \mathbf{z}$, with $\mathbf{z} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$ **Decoder:** $\hat{\mathbf{x}} = Q_{\Lambda_s}(\alpha \mathbf{y}) \mod \Lambda_s$, with $\alpha \in \mathbb{R}$

Decoder Design

- The genie-aided exhaustive search decoder is allowed to use all $\alpha \in \mathbb{R}$ for scaling as shown in Fig. 4
 - For practical implementation with finite complexity, *finite search range* and *search step* can be considered.

Figure 4: Genie-aided decoding

Given x, what is region that decoder can correctly decode the message? This is equivalent to the region of y that:

- Example y₁: there exists an α such that Q(αy₁) = x.
- Example \mathbf{y}_2 : there is no α such that $Q(\alpha \mathbf{y}_2) = \mathbf{x}$.

Figure 5: Decodable region of A_2 lattice given $\mathbf{x} = [\sqrt{3}, 3]^T$.

Decodable region

Definition (Decodable region)

Let Λ be *n*-dimensional lattice. Given $\mathbf{x} \in \Lambda$ and $\mathcal{V}(\mathbf{x})$ be the Voronoi region of \mathbf{x} , decodable region of \mathbf{x} is defined as:

$$\mathcal{D}(\mathbf{x}) = \{ \mathbf{y} \in \mathbb{R}^n : \exists \alpha \in \mathbb{R}, Q_\Lambda(\alpha \mathbf{y}) = \mathbf{x} \}$$

Or equivalently, the decodable region is the closure of the lines connecting 0 and any point inside \mathcal{V} .

Lower Bound on Error Rate

Form a lower bound on $P_{e,Dec}$ using the covering sphere.

Bound will depend on $||\mathbf{x}||^2$ but not \mathbf{x} .

For finite dimension lattices, by the fact $\mathcal{V} \subset \mathcal{S}_c$, $P_{e,Dec}$ is lower bounded by

$$P_{e,Dec} > P_{e,cover}$$

 \Rightarrow Integrate Gaussian noise z over region $\mathcal{D}_c(\mathbf{x}) - \mathbf{x}$.

Theorem (1)

Let non-zero \mathbf{x} be a lattice point of an $n \geq 2$ dimensional lattice Λ having covering radius r_c and per-dimensional power $P_{\mathbf{x}} = \|\mathbf{x}\|^2/n$. With the restriction of $r_c^2 < nP_{\mathbf{x}}$, the probability of word error for the genie-aided decoder on the AWGN channel with noise variance σ^2 is lower bounded by:

$$P_{e,Dec} > 1 - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{z^2}{2\sigma^2}} (1 - h(z)) dz$$

where
$$h(z) = e^{-t} \left(\sum_{k=0}^{(n-3)/2} \frac{t^k}{k!} \right)$$
 for odd n ;
 $h(z) = erfc(t^{1/2}) + e^{-t} \left(\sum_{k=1}^{(n-2)/2} \frac{t^{k-1/2}}{(k-1/2)!} \right)$ for even n , with $t = f^2(z)/(2\sigma^2)$
and $f(z) = \left| \frac{r_c z}{\sqrt{nP_x - r_c^2}} + \sqrt{nP_x r_c^2}/(nP_x - r_c^2) \right|$.

Sketch of Proof

Denote the probability density function of *n*-dimension Gaussian be $g(z_1, z_2, \cdots, z_n) \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n).$

Figure 6: 2-dim image of *n*-dim cone-like decodable region with known r_c and $\sqrt{nP_x}$.

where $S_{n-1}(r_z)$ is n-1 dimensional sphere with radius r_z .

 $\int_{\mathcal{S}_{n-1}(r_z)} g(z_2, z_3, \cdots, z_n) dz_{2\sim n}$ integral of Gaussian over sphere has closed form.⁴

⁴Tarokh, Vardy and Zeger, "Universal Bound on the Performance of Lattice Codes," IT Trans., March 1999

Estimate of Error Rate

- Obtain estimate of error rate (rather than lower bound) on error rate
- Replace covering sphere with effective sphere (sphere of same volume as Voronoi region).
- Use the same expression given in Theorem 1, but replace covering radius r_c with effective radius r_e .

Then we can obtain:

$$1 - Prob(\mathbf{y} \in \mathcal{D}(\mathbf{x})) \approx 1 - Prob(\mathbf{y} \in \mathcal{D}_e(\mathbf{x}))$$
$$P_{e,Dec} \approx P_{e,effc}.$$

Numerical Evaluation of Bound for E8 and BW16 Lattices

- Genie-aided decoder gives gain over one-shot decoding
- Estimate of error-rate is quite accurate

Asymptotic analysis when $P_x \to \infty$

When $P_x \to \infty,$ cone decodable region becomes cylinder-like in area of interest.

- ▶ Radius of S_{n-1} is a constant r and independent of z_1 .
- $P_{e,asym}$ is this probability of error, given by:

$$\begin{cases} 1 - e^{-t} \left(1 + \frac{t}{1!} + \frac{t^2}{2!} + \dots + \frac{t^{(n-3)/2}}{((n-3)/2)!} \right), & n \text{ of } \\ 1 - \operatorname{erfc}(t^{1/2}) - e^{-t} \left(\frac{t^{1/2}}{1/2!} + \frac{t^{3/2}}{(3/2)!} + \dots + \frac{t^{(n-3)/2}}{((n-3)/2)!} \right), & n \text{ even} \end{cases}$$

With fixed dimension n, noise variance σ^2 and covering (or effective) radius r, the error probability $P_e \rightarrow P_{e,asym}$ when $P_x \rightarrow +\infty$.

Figure 7: Asymptotic case of the cone-like decodable region.

Implementation of Genie Using CRC

- ▶ The genie may be implemented using a CRC code.
- ▶ In a typical communications system, failed CRC is used to request re-transmission.
- In this case, a failed CRC is used to adjust α. Repeating decoding is more efficient than re-transmission.

Polar Code Lattices Using CRC-Enabled Genie

- Dimension n = 128 polar code lattice.
- R = 1.74 with 223 bits per codeword;
 4 CRC bits.
- 3 decoding attempts.
- (SC decoding in standard Construction D multilevel decoder)
- ▶ 0.1 dB improvement in WER.
 - Includes SNR penalty 0.078 dB due to CRC bits

Figure 8: SNR vs WER of 128-dim polar code lattice with one-shot decoding and 3-times decoding.

Preliminary result included to show promise of the method.

Conclusions

- 1. One-shot lattice decoding fails if \mathbf{y} is outside Voronoi region,
- 2. Lattice decoding performance can be improved when retries are allowed
- 3. Retries help significantly when a genie is available, shown through lower bound and estimate expressions.
- 4. Good for small n, benefit seems to decrease for increasing n.
- 5. Genies are not practical, so use a CRC instead.
- 6. Preliminary results for n = 128 polar code lattice indicate modest gains in performance.