
CRC-Enabled Lattices for Multiuser Communication

Jiajie Xue and Brian M. Kurkoski

Japan Advanced Institute of Science and Technology

February 16, 2023
2023 Information Theory and Applications (ITA) Workshop

1 / 23



Motivation

Cyclic redundancy check (CRC) codes are widely used in communications

I If a CRC code check passes, received data is assumed valid, and is forwarded for
further processing

I If check fails, the receiver requests retransmission, or other corrective action

In lattice-based communications:

I Decoder has one or more parameters

I If lattice decoding fails, try decoding again with a different parameter

I Beneficial if retransmission is more expensive than re-try decoding.

We are particularly interested in the finite-length domain.
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Outline

1. Background on lattices for communications

2. Genie-aided decoder for computing a bound on probability of decoder error for
point-to-point AWGN channel

3. CRC-enabled lattices for the point-to-point channel

4. CRC-enabled lattices for compute-forward multiple access
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Maximum Likelihood Decoding of Lattices

An n-dimensional lattice code is the intersection of a lattice Λ and a shaping region:

I Candidate for high-rate coded modulation. Practical to achieve shaping gain.

I Lattice codes with maximum likelihood decoding achieve the capacity of the
AWGN channel 1

I Unfortunately, Maximum likelihood decoding of lattices is not efficient
1Rudiger Urbanke and Bixio Rimoldi, “Lattice codes can achieve capacity on the AWGN channel”, IT Trans, 1998
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Motivation — Lattice Decoding Achieves Capacity

x  

  y

I Lattice codes with low-complexity lattice decoding can also achieve capacity

I Lattice decoding This is possible if scale by αMMSE
2 :

αMMSE =
P

P + σ2

I Intuition: noise moves y away from the origin, so “expand” the decoding lattice
2Uri Erez and Ram Zamir, “Achieving 1

2
log(1 + SNR) on the AWGN Channel With Lattice Encoding and Decoding,” IT Trans, October 2004.
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Scaling for Finite-Dimension Lattices

αMMSE is optimal when n→∞

I How to choose scaling α when n is finite?

I Actually, αMMSE is not a bad choice3 for n ≥ 100

What if we could try many different α? Introduce a genie-aided decoder

I Genie tells decoder if estimated lattice point is correct or not

I If not, decoder retries decoding using different scaling α

I Genie may be implemented using CRC codes

Goal: quantify how much the decoding can be improved by re-try decoding.

3N. S. Ferdinand, M. Nokleby, B. M. Kurkoski, and B. Aazhang, “MMSE scaling enhances performance in practical lattice codes,” in Asilomar
Conference on Signals, Systems, and Computers, November 2014
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Background — Lattices

Definition (Lattices)

Lattices are additive subgroup in real
number space. An n-dimension lattice Λ
can be formed as:

Λ = {Gb : b ∈ Zn}

where G = [g1,g2, · · · ,gn] ∈ Rn×n and
g1,g2, · · · ,gn ∈ Rn are linear independent.

Voronoi region V is the set of points closer
to 0 than any other lattice point, with
volume:

V (Λ) = |det(G)|
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Figure 1: Example of 2-dimensional lattice

spanned by g1 = [
√
3
2 ,

1
2 ]T and g2 = [0, 1]T .
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Background — Nested Lattice Codes
Let two lattices Λc and Λs satisfy Λs ⊆ Λc

and form a quotient group Λc/Λs. A
nested lattice code C is defined as:

C = {x mod Λs : x ∈ Λc}

have code rate:

R =
1

n
log

V (Λs)

V (Λc)
.

Nested lattice codes:

I Allow lattices to satisfy a power
constraint

I Possess certain algebraic properties

8-dimensional LC (E8 lattice code) and generator matrix G is

G =




1/2 0 0 0 0 0 0 0
1/2 1 0 0 0 0 0 0
1/2 −1 1 0 0 0 0 0
1/2 0 −1 1 0 0 0 0
1/2 0 0 −1 1 0 0 0
1/2 0 0 0 −1 1 0 0
1/2 0 0 0 0 −1 1 0
1/2 0 0 0 0 0 −1 2




NLC can control the transmit power level by mapping the original power at
the lattice point of the shaping lattice to the constrained power at the lattice
point of the coding lattice.

Figure 2.4: Illustration of nested lattice code

As shown in Figure 2.4, in this lattice example, Λc is the coding lattice
and Λs is the shaping lattice. If a codeword is transmitted with the original
power, the distance between this point and zero point is very far. It is
highly recommended to be shaped back into the area of the shaping lattice

18

Figure 2: Nested lattice code formed using a
coding lattice Λc and a shaping lattice Λs.
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Background—Single-User System

Encoding and decoding scheme is given as:

Λc
b modΛs

Encoder

x
z α

QΛc modΛs
x̂

DecoderAWGN

Channel

y

Let n-dimensional lattice code C = Λc/Λs and G is generator matrix of Λc,

Encoder: x = Gb mod Λs, with E[‖x‖2] = nPx

Channel: y = x + z, with z ∼ N (0, σ2I)

Decoder: x̂ = QΛc(αy) mod Λs, with α ∈ R
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Genie-Aided Decoder

The genie-aided exhaustive search decoder is allowed to use all α ∈ R

α

QΛc modΛs

x̂
Decoder

y
Genie

x

Lattice decoder

y
Initial α

Genie

?x = x̂
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Output x̂
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Cone region is the “decodable region”.

There exists some α such that y1 will be correctly decoded.

Idea: Bound the probability of decoding error by integrating noise over the cone.
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Probability of Decoding Error: Lower Bound and Estimate

(1) Form a lower bound on probability of decoding error using the lattice covering
sphere. Using this approximation because the Voronoi region is irregular.

2022/06/14
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(2) Form an estimate on the probability of decoder error using the lattice equivalent
sphere. While not a bound, it is numerically close for some lattices.
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Lower Bound on Error Rate

Theorem (1)

Let non-zero x be a lattice point of an n ≥ 2 dimensional lattice Λ having
covering radius rc and per-dimensional power Px = ‖x‖2/n. With the
restriction of r2

c < nPx, the probability of word error for the genie-aided decoder
on the AWGN channel with noise variance σ2 is lower bounded by:

Pe,Dec > 1−
∫ ∞
−∞

1√
2πσ2

e−
z2

2σ2 (1− h(z))dz

where1 h(z) = e−t
(∑(n−3)/2

k=0
tk

k!

)
for odd n;

h(z) = erfc(t1/2) + e−t
(∑(n−2)/2

k=1
tk−1/2

(k−1/2)!

)
for even n, with t = f2(z)/(2σ2)

and f(z) =
∣∣∣rcz/√nPx − r2

c +
√
nPxr2

c/(nPx − r2
c )
∣∣∣.

1Tarokh, Vardy and Zeger, “Universal Bound on the Performance of Lattice Codes”, IT Transactions, 1999
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Numerical Evaluation of Bound for E8 and BW16 Lattices

12 13 14 15 16 17 18 19

SNR(dB)

10 -4

10 -3

10 -2

10 -1

100

W
E

R
E8 lattice code

Lower bound

Proposed
decoder

Estimate
of WER

0.5dB

One-shot decoding
using 

MMSE

12 13 14 15 16 17 18 19 20

SNR(dB)

10 -4

10 -3

10 -2

10 -1

100

W
E

R

BW16 lattice code

Lower bound Proposed
decoder

Estimate
of WER

One-shot decoding
using 

MMSE

0.4dB

I Genie-aided decoder gives gain over one-shot decoding

I Estimate of error-rate is quite accurate
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Implementation of Genie Using CRC

I The genie may be implemented using a CRC code.

I In a typical communications system, failed CRC is used to request re-transmission.

I In this case, a failed CRC is used to adjust α. Repeating decoding is more
efficient than re-transmission.
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CRC-Enabled Lattice Code Λ′

Embed a codeword of Cb in the LSB of the lattice integer b,
where Cb is a block code of length n.

The original lattice Λ is:

Λ = {Gb | b ∈ Zn}

The CRC-enabled structure Λ′ is:

Λ′ = {Gb | b ∈ Zn,bLSB ∈ Cb}

1 1 0 0· · · 20

0 1 1 1· · · 21

1 1 1 1· · · 22

b1 b2 b3 bn

codeword of C

Theorem
If Cb is an (n, k) linear block code then Λ′ is a lattice.

We use a CRC as the linear block code Cb.
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CRC-Enabled Lattice Code Λ′

Λ′ is a lattice with generator matrix:

G′ = G ·
[
Ik 0
P 2In−k

]
︸ ︷︷ ︸

CA

CA is the Construction A generator
matrix for C.

Volume is V (Λ′) = 2n−kV (Λ).

With N bits/codeword on AWGN
channel, we must pay:

Rate penalty = 10 log
N

N − (n− k)
dB

0

0

' CRC-enabled lattice
Removed from original lattice

Original Λ is A2 hexagonal lattice.

Using single-parity check code Cb,
points are removed to form Λ′.
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Polar Code Lattices Using CRC-Enabled Genie

I Dimension n = 128 polar code
lattice1.

I R = 1.74 with 223 bits per codeword;
4 CRC bits.

I 3 decoding attempts.

I (SC decoding in standard
Construction D multilevel decoder)

I 0.1 dB improvement in WER.
I Includes SNR penalty 0.078 dB due

to CRC bits

12 12.5 13 13.5 14 14.5 15 15.5 16
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10 -5
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10 -3
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100
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E

R

One-shot decoding using 
MMSE

Decoding using 3 different 
(Retry decoding based on CRC check)

Figure 3: SNR vs WER of 128-dim polar code
lattice with one-shot decoding and 3-times
decoding.

1Ludwiniananda, Liu, Anwar, and Kurkoski, “Design of polar code lattices of small dimension,” ISIT 2021.
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α for Successive Attempts

On the first decoding
attempt, choose α = αMMSE.

If we need to re-attempt,
which value of α should be
used?

P1(α) is the probability of
correct on second try, given
first try failed.
⇒ The local optimums
α1,1, α1,2 are next candidates.
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Multiple-Access Using Compute-Forward Relaying1

L transmitters transmit xi ∈ C over channel with fading coefficient hi.

One receiver with one linear combination shown; need L independent linear
combinations.

h1

h2

hL

S1

S2

SL

D...

h1x1 + · · ·hLxL + z h ∈ R

decoder should produce

a1x1 + · · · aLxL ∈ Λ ai ∈ Z

Receiver must determine ai ∈ Z. Usual strategy is to maximize computation rate:

a = arg max log+
(
||a||2 − P |hta|2

σ2 + P ||h||2
)

ai is considered to be an integer approximation of real hi.
1Nazer and Gastpar, “Compute-and-forward: Harnessing interference through structured codes,” IT Trans 2011 19 / 23



Linear Combinations of CRC-Enabled Lattice

For the unconstrained lattice, the linear combinations preserve the CRC:

Theorem
Let xi ∈ Λ′. Then for any ai ∈ Z, the linear combination

∑L
i=1 aixi ∈ Λ′.

However, for a nested lattice code, there is a minor restriction on the lattice code
design for linearity to hold:

Theorem
For a nested lattice code C = Λ′/Λs, let Λ′ and Λs have generator matrices Gc and
Gs, respectively. If G−1

c Gs has only even integers, then
∑L

i=1 aixi ∈ C.
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Compute-Forward with CRC-Enabled Lattice Codes
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I a0 and a1 give the maximum and
second maximum computation
rate.

I 2 decoding attempts using a0,
then a1.

I 1.0 dB gain with
n = 128, R = 1.74 polar code
lattice

I 0.8 dB gain with
n = 256, R = 1.84 polar code
lattice

I 4 bits CRC.
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Optimized CRC Length
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I The WER after retry decoding
can be estimated analytically as a
function of CRC length l.

I CRC length can be optimized by
combining the estimated WER
after retry decoding and SNR
penalty due to CRC bits.

I Gain increased to 1.3 dB for CRC
length of l = 7 to 11 (n = 128
polar code lattice).
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Conclusion

Lattice-based decoders have asymptotically-optimal parameters,

but in the finite-length domain, retrying decoding with other parameters can improve
error-rate performance.

For the point-to-point channel:

I For genie-aided decoding and CRC-enabled lattices, the benefit of retry decoding
is greatest for small dimension n.

I But at small n, the rate penalty due to the CRC is significant.

I For example, an n = 128 polar code lattice has a gain of 0.1 dB

For the two-user multiple-access channel using compute-forward:

I Retry decoding allows using second-best a when first-best fails.

I Shows a benefit of 1.3 and 0.8 dB for n = 128 and 256 polar code lattices.
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