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Introduction

Pr(Y|X) #,
X —> Y —> Z Given a joint distribution pxvy(z,y),

find the quantizer () which maximizes
mutual information:

Y
N Q@
Z Q* = arg mgx I(X, Z)
\ 47
>‘(!)‘ with K < M where:
“,10A -

//““ M = Y|
w‘ K = |Z]
-




Motivation: Decoder & Detector VLSI

e Information and coding theorists develop elegant decoding

algorithms
o Factor-graph decoding algorithms use real numbers

e Algorithms are often implemented in VLSI, particularly for power-

sensitive applications like mobile devices, SSDs, etc.

e VLSI has fixed precision, e.g. real numbers might be approximated

using 4 to 8 bits

e This fixed-point design is often done in an ad hoc tashion.




Factor Graph Representation of Decoders
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Message Passing Decoding on Factor Graphs

Decoding algorithms can be
represented as “message passing on a

factor graph”
e FEdges represent messages

e Nodes represent “local” decoding

functions

Important example:

e Imessages are probabilities

¢ L1 XLy X L3 — 2 e decoding functions are derived from
basic rules of probability theory




Max-LUT Method

Max-LUT is a method for

implementing the node decoder J

functions for graph-based . E[ o § S

decoders, using lookup tables L)

that maximize mutual

information. | — "
T 2




Max-LUT Method: Central Idea

Encoder Side: Code Symbols X; Decoder Side
) L 1\\
>(. £ >< " |LUT =/
XA L,
2 2

e Check node x3 = x1 +x2 L; is a noisy version of X;
e Var node x; = X2 = X3 / is a noisy version of Xs
e ctcC.

Choose LUT to maximize mutual information

max I (X3;Z) = max I (Xs; LUT(Ly, Ly))



Max-LUT Step 1: Joint Distribution

e Step 1: Construct joint distribution Pr(Ly, L2|X3)
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f($1,\$2) — X3




Max-LUT Step 2: Quantize

e Too many levels! Reduce to Z with K levels

e (Quantizer is a mapping from (L;,L2) to Z
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Max-LUT Step 3: Lookup Table

Lookup table:
= LUT(L:, L)

/




Quantization of DMCs

(Global optimization has exponential complexity in general
J = 2 binary input, finding optimal quantizer complexity M° or better
Information theory quantization = machine learning classification

Suboptimal approaches for non-binary inputs

e Greedy combining complexity M*(M — K) e Information bottleneck method
e KL-Means algorithm

+ Replace K-Means Euclidean distance metric with KL divergence

+ Quantization in reverse channel Pr|X | Y|

+ Minimizing KL divergence equivalent to max mutual information

+ Complexity MKT for T iterations



Machine Learning: Classification
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Machine Learning: Classification

Pr(Y[X)
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Machine Learning: Classification

Pr(Y[X)

X — Y 9 \ Z flé/iilfngtlm—entropy optimal classi-

)" = arg Hgn H(Z|X)

Z
Exploit existing results in machine

learning:
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Reverse Channel as a Vector

Consider the “reverse channel” Pr(X | Y):

U, =

Y

1

J = 3 input DMC

Pr(X =1]Y = y), Pr(X =

J = 3 dimensional

probability simplex
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Maximization of Mutual Information is
Minimization of KL Divergence

Consider random vector versions:

P (110) Py 0l0)
U=|Pr(X=1Y),...,Pr(X = J|Y)] ° . . ¢
V= |Pr(X=1|2),...,Pr(X = J|Z)] o
Then, 1t can be shown: . °.
I(X;Y) = I(X;Z) = E(D(U||V))
D(-||-) is the Kullback-Leiber divergence .

and F' 1s expectation.




K-Means Algorithm

K-means clustering: vector quantization method, or

clustering method.

1. given n-dimensional data set, randomly choose

K “means”

1terat
T each of K clusters consists of data points

2.
closest to its mean in Euclidean distance @
3. move the mean to the center of the cluster
Not optimal, but works well in practice. data © up = (UsUz - U)m

Complexity is linear in M means @ vy = (V1V; ... Vj)g

Hugely successful in machine learning




KL-Means Algorithm: KL Divergence

“KL-M lgorithm”
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Quantization of Non-Binary Channels

Performance Comparison of Random DMC Quantization
| | | | | |

e Random DMC with 512 .
outputs K Y T 6 :

e Efficient optimal

: : : S, £
quantization is not known ey =]

G d bini K-means, J= 6
e (Greedy combining K-means++. J=6

KL means, J=6
KL means++, J=06

performs well, but has

complexity M3

I(X;Y)—I1(X;2Z)

e KI.-Means has
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“KL-Means” MI-max Quantizers

107 | d .
] reedy Quantizer I'all m:

Replace the FEuclidean : _
distance metric with -0 blnary—mput DMC.

Kullback-Lieber divergence

\ KL Means Quantization

Objective is now to

maximize mutual

information
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Conclusion

For the Markov chain X — Y — Z, finding the optimal quantizer
QQ* = argmax I (X;Z) has exponential complexity.

Motivated by Max-LUT method for factor graph hardware implementations
Described KL Means Algorithm, K-Means clustering with KL distance

e Efficient but suboptimal
e KL Means is equivalent to informant bottleneck method |[SCC17]

e moving closer to optimal: e.g. KL-Means++ and IB-based soft clus-
tering

e need optimal quantization as a benchmark

e application to Max-LUT method for non-binary factor graphs




