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Motivation: Decoder & Detector VLSI

• Information and coding theorists develop elegant decoding 
algorithms 

• Factor-graph decoding algorithms use real numbers 

• Algorithms are often implemented in VLSI, particularly for power-
sensitive applications like mobile devices, SSDs, etc. 

• VLSI has fixed precision, e.g. real numbers might be approximated 
using 4 to 8 bits 

• This fixed-point design is often done in an ad hoc fashion.
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Factor Graph Representation of Decoders
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Message Passing Decoding on Factor Graphs
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Decoding algorithms can be 
represented as “message passing on a 
factor graph” 

• Edges represent messages 

• Nodes represent “local” decoding 
functions φ 

Important example: 

• messages are probabilities  

• decoding functions are derived from 
basic rules of probability theory



Max-LUT Method

Max-LUT is a method for 
implementing the node decoder 
functions for graph-based 
decoders, using lookup tables 
that maximize mutual 
information.
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Max-LUT Method: Central Idea

Encoder Side: Code Symbols Xi Decoder Side

• Check node x 3 = x 1 +x 2 
• Var node x 1 = x 2 = x 3 
• etc. 

Li is a noisy version of Xi ,  
Z is a noisy version of X3

Choose LUT to maximize mutual information
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• Step 1: Construct joint distribution

Max-LUT Step 1: Joint Distribution
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local constraint:
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Max-LUT Step 2: Quantize
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K = 5

• Too many levels!  Reduce to Z with K levels 

• Quantizer is a mapping from (L1,L2) to Z
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Max-LUT Step 3: Lookup Table
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Lookup table: 
Z = LUT( L1 , L2 ) 



Quantization of DMCs
Global optimization has exponential complexity in general 

J = 2 binary input, finding optimal quantizer complexity M 
3 or better 

Information theory quantization = machine learning classification 
Suboptimal approaches for non-binary inputs 

• Greedy combining complexity M 
2(M – K)  • Information bottleneck method 

• KL-Means algorithm 

✦ Replace K-Means Euclidean distance metric with KL divergence 

✦ Quantization in reverse channel Pr[X | Y]  

✦ Minimizing KL divergence equivalent to max mutual information  

✦ Complexity MKT for T iterations 



Machine Learning: Classification
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Consider the “reverse channel” Pr(X | Y): 
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Consider the “reverse channel” Pr(X | Y): 
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Quantization in Backwards Channel
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Quantization in Backwards Channel
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Maximization of Mutual Information is 
Minimization of KL Divergence
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K-Means Algorithm

K-means clustering: vector quantization method, or 
clustering method.  

1. given n-dimensional data set, randomly choose 
K “means” 

2. each of K clusters consists of data points 
closest to its mean in Euclidean distance 

3. move the mean to the center of the cluster 

Not optimal, but works well in practice.  
Complexity is linear in M 
Hugely successful in machine learning
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KL-Means Algorithm: KL Divergence
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“KL-Means algorithm” 
replace Euclidean distance  
with KL Divergence



Quantization of Non-Binary Channels

• Random DMC with 512 
outputs 

• Efficient optimal 
quantization is not known 

• Greedy combining 
performs well, but has 
complexity M 

3 

• KL-Means has 
complexity M
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“KL-Means” MI-max Quantizers

Replace the Euclidean 
distance metric with 
Kullback-Lieber divergence 

Objective is now to 
maximize mutual 
information
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Conclusion
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