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Conventional LDPC Message Quantization
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Belief-propagation decoding of LDPC is well understood.  
Variable node function:

Z = Y1 + Y2 + Y3

Where Z, Y are continuous values:

Y2Y1 Z

Y3 log
Pr[y|x = 1]

Pr[y|x = 0]
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VLSI Implementation
Y, Z are quantized using fixed-point representations

Increasing the number of bits improves performance, but increases complexity
Typically, 6-7 bits per message are needed for floating-point performance

Can we do something better?
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Theory

Compute fundamental limits
 Capacity, bounds

Coding theory:
• find good codes
• efficient decoding algorithms
• implement in C/Matlab

Break the wall between Theory and Practice
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Broad Research Goal: Break this wall
~ Find the fundamental limits on implementation complexity ~

• Theory: Find and solve new information theoretic problems
• Practice: Improve the performance/complexity tradeoff

Cheaper devices, longer battery life, etc.

Practice

Circuits for mobile 
communications, storage, etc.

Implement in VLSI
• low power consumption
• high performance
Basic questions:

• How to quantize?
• Which decoding algorithm?
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History of 
Quantization of Messages-Passing Algorithms

BCJR Algorithm   vector quantization of the state metrics
 Convolutional codes, erasure channel: exact quantization [Globe 2003, ISIT 2004]
 Inter-symbol interference channel [ISIT 2005]                            High complexity

GF(q) LDPC codes   Vector quantization of q-ary messages
 “Heuristic” vector quantization [ITA 2007]                     Good only certain chan.

Vector quantization is hard!  Try scalar quantization

Binary LDPC codes quantize messages to maximize mutual information
 Channel quantization ≈ Message-passing decoding maps [Globecom 2008]
 Algorithm to quantize DMC [ITW 2010], proof of optimality [sub. IT 2011]

 Typical VLSI 6-7 bits/message → our method 4 bits/message
Finite-length binary codes (this talk):
 Show results hold for finite-length codes
 Look at one-bit per message LDPC decoding, compare with bit-flipping

Above papers are my joint work with P. Siegel, J. Wolf, K. Yamaguchi, K. Kobayashi 
and H. Yagi. 4
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Mutual information of a discrete memoryless channel (DMC):

Channel capacity C is the maximization of mutual information 
(over input distribution pj):

• Arimoto-Blahut algorithm computes the capacity.
• Mutual information gives highest achievable rate R

Thus:
Maximization of mutual information is an excellent metric for quantization!

Background: 
Maximizing Mutual Information

5

0 1

m
ut

ua
l

in
fo

rm
at

io
n

pj

concave

I(X;Z) =
∑

k

∑

j

pjQk|j log
Qk|j∑
j pjQk|j

.
pj

Qk|j

R ≤ C = max
pj

I(X;Z)

DMC
X



Zou and Kurkoski.  University of Electro-Communications /15

Mutual information of a discrete memoryless channel (DMC):

Channel capacity C is the maximization of mutual information 
(over input distribution pj):

• Arimoto-Blahut algorithm computes the capacity.
• Mutual information gives highest achievable rate R

Thus:
Maximization of mutual information is an excellent metric for quantization!

Background: 
Maximizing Mutual Information

5

0 1

m
ut

ua
l

in
fo

rm
at

io
n

pj

concave

I(X;Z) =
∑

k

∑

j

pjQk|j log
Qk|j∑
j pjQk|j

.
pj

Qk|j

R ≤ C = max
pj

I(X;Z)

DMC
X



Zou and Kurkoski.  University of Electro-Communications /15

Suppose a bit X is transmitted over two independent DMCs
Goal: combine Y1 and Y2 into Z
Want to maximize mutual information I(X;Z)
How to combine? 

Depends upon the alphabet size of Z:
Easy    Size 9: trivial to get I(X;Z) = I(X;Y1,Y2)
Easy    Size 2: making hard decisions
Hard    Size 3: Let me tell you.... 

A Question For You 
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Y1 ∈ {1, 2, 3}

Y2 ∈ {1, 2, 3} ?X ∈ {0, 1}
Z ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}

Z ∈ {1, 2}

Z ∈ {1, 2, 3}
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Answer: “DMC Quantization Algorithm”

Create a “product channel”
K: number of quantizer outputs

 K = 9.  A one-to-one mapping → no loss of mutual information
 K ≤ 8.  “DMC Quantization Algorithm” finds the optimal quantizer 

[K. and Yagi, sub. IT 2011, http://arxiv.org/abs/1107.5637]
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Z
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Answer: “DMC Quantization Algorithm”
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From the quantizer, can easily construct a table that gives Z from Y1 and Y2

This table is a decoding rule!
Y1, Y2 are inputs at a variable node
Z is the output

Easily extend to check node, multiple inputs, etc.
Message-passing decoding which maximizes mutual information

From Channel Quantizers to 
Decoding Algorithm
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Quantization of a 
Binary-Input AWGN Channel
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Before density evolution, we 
need to quantize the AWGN 
channel.

Use the Quantization Algorithm:

• Quantization Algorithm 
cannot operate on continuous 
output channels

• First create a DMC (using 
uniform quantization)

• Then apply the Quantization 
Algorithm

Example:

• AWGN various variances

• DMC with 30/500 outputs

• Quantized to 8 outputs

(boundaries are shown)
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Infinite Block Length — (3,6) Regular LDPC
Density Evolution Noise Thresholds
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4 bits/message
very close!
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4 bits/message
very close!

Channel: 1 bit
decoder: unquant.

Channel:unquant
decoder: 1 bit

Low-complexity 
Decoder
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What about finite-length codes?
Investigate the proposed technique with one bit per message:

Variable-check message consists of one bit
Decoding maps found using “DMC Quantization Algorithm”
Channel is AWGN quantized to 16 levels
Compare with “Improved Modified Weighted Bit Flipping” (IMWBF) 

algorithm [Jiang et al, Comm Letters, 2005].

Check node map
The map below is “obvious”
But, it was obtained automatically, 

using optimization of mutual information

Proposed One Bit Message-Passing vs.
Weighted Bit Flipping
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inputs output

Number of 1’s at input Output

even 0

odd 1
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Variable Node Map — SNR of 3 dB — 
Automatically Obtained Using DMC Quantizer

12

check message
(number of 1’s)

Channel Message

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

iteration 1

iteration 2-3

If message disagrees 
with channel, do not 
flip bit

If two messages 
disagree, use 
channel’s hard 
decision

As iterations 
increase, the 
influence of check 
message becomes 
stronger 

The maps are almost always symmetrical

Degree 3 node

check message

channel message
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One-Bit Message Passing Decoding — 
Simulation
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Belief Propagation

Channel

• AWGN quantized to 
16 levels

Code 
• Rate 1/2
• (816, 408) from 

MacKay’s web site

One-bit message 
passing has about 
the same 
performance as bit 
flipping.

More complicated BP 
has better 
performance.

Bit-flipping (IMWBF)

One-bit 
message passing

Belief Propagation
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Complexity Comparison

IMWBF algorithm must compute 
a flipping function:

Same complexity as one iteration 
of min-sum decoding!

 At high SNR, only a few 
iterations needed.

 Flipping function is high 
fraction of total complexity.

 The two algorithms required 
about the same amount of 
computer time.
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i

|yi|
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∑
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2sm − 1) · wm − α|yn|
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One-bit 
message passing
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Conclusions

 There is a “wall” between information theory and VLSI implementation 
 Quantization of messages is important for practical implementations

 Reducing quantization can reduce power consumption, cost, etc.
 New perspective breaks the wall:

  Implementation is an information theoretic problem
 “DMC Quantization Algorithm” optimizes mutual information

 Already know:
 How to optimally quantize channels
 For infinite-length codes, reduce to 4 bits/message (from 6-7 bits)

 In this talk, showed:
 For finite length codes, one-bit per message decoders perform as well as 

advanced bit-flipping algorithms
 Open questions:

 Better understanding of performance/complexity trade-off
 The role of symmetry
 Implementation in VLSI
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