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Abstract. Points-to analysis for Java infers heap objects that a refer-
ence variable can point to. Existing practiced context-sensitive points-to
analyses are cloning-based, with an inherent limit to handle recursive
procedure calls and being hard to scale under deep cloning. This paper
presents a stacking-based context-sensitive points-to analysis for Java, by
deriving the analysis as weighted pushdown model checking problems. To
generate a tractable model for model checking, instead of passing global
variables as parameters along procedure calls and returns, we model the
heap memory with a global data structure that stores and loads global
references with synchronized points-to information on-demand. To ac-
celerate the analysis, we propose a two-staged iterative procedure that
combines local exploration for lightening most of iterations and global
update for guaranteeing soundness. In particular, summary transition
rules that carry cached data flows are carefully introduced to trigger
each local exploration, which boosts the convergence with retaining the
precision. Empirical studies show that, our analysis scales well to Java
benchmarks of significant size, and achieved in average 2.5X speedup in
the two-staged analysis framework.

1 Introduction

The notion of context-sensitivity bears a similarity to inline expansion, as if
method calls are replaced with bodies of the callees. As such, the typical cloning-
based program analysis [17] creates a separate copy of a method call within a
bounded call depth or with collapsing recursive procedure calls. The cloning-
based approach has an inherit limit to handle (recursive) procedure calls. An
alternative to obtaining context-sensitivity in terms of valid call paths is to model
the program’s call stack with the pushdown stack. Since the stack can grow
unboundedly, no restriction is placed on the call depth and recursions. By valid,
it means a procedure call always returns to the most recent call site.

Points-to analysis (PTA) infers the set of heap objects that a reference vari-
able may point to. PTA for Java is featured for being interdependent of call
graph construction, due to dynamic language features like late binding. The long-
standing challenge is to design a scalable yet precise PTA. Context-sensitivity is
shown to be crucial to the precision of PTA for Java. To the best of our knowl-
edge, existing practiced PTA for Java are all cloning-based [17, 13]. However,



empirical study recently shows that, more than one thousand of methods are
typically contained within recursive procedure calls in practice [18], and approx-
imating recursions potentially threatens the analysis precision [6].

This paper presents a stacking-based context-sensitive PTA for Java, by en-
coding the analysis as model checking problems on WPDSs [11]. Our analysis
is context-sensitive, field-sensitive, and flow-insensitive, with the call graph con-
structed on-the-fly. In contrast to the cloning-based approach, there is a single
copy for each procedure in the analysis, while calling contexts are entirely char-
acterized as (regular) configurations over the pushdown stack. Our first step to
scalability is that, instead of passing global variables explicitly as parameters
along procedure calls and returns (that is hopeless to scale from our empirical
study) [10], we model the heap memory with a global data structure during the
analysis, which loads intermediate points-to information of global references, and
stores cached values to global references on-demand when they are referred to
inside procedures. This encoding dramatically reduces the number of pushdown
transitions and generates a tractable model for model checking.

To further accelerate the analysis, we propose a two-staged iterative proce-
dure, denoted by (LE ◦ GU)∗ as opposed to the traditional iterative procedure
denoted by GU∗, which combines local exploration (LE) for lightening most of
iterative cycles and global update (GU) for guaranteeing the completeness. Our
insight is, to localize most of iterative cycles on the partial program models in
LEs, and perform GUs on the entire program model as few times as possible. In
particular, summary transition rules that carry previously computed data flows
are introduced to effectively trigger each LE and boost the convergence. In ef-
fect, the computation of data flows to some program point in the partial program
model is divided into independent phases via frontiers: the computation of data
flows from the program entry to frontiers and the computation of data flows
from frontiers to the concerned program point. By carefully adding summary
transition rules to frontiers, the analysis by (LE◦GU)∗ retains the same precision
as the analysis by GU∗. Empirical studies show that, a substantial speedup in
practice can be achieved by the two-staged analysis.

This paper primarily makes the following contributions.

– We present a scalable stacking-based context-sensitive PTA for Java by
model checking WPDSs, with no restriction on (recursive) procedure calls.

– We propose a two-staged iteration procedure, supported by carefully intro-
ducing summary transition rules, to effectively accelerate the analysis.

– We implemented the analysis algorithms as a tool named Japot. Empirical
study shows that Japot scales well to Java benchmarks of significant size.

The rest of the paper is organized as follows. Section 2 briefly reviews weighted
pushdown model checking. Section 3 presents Java semantics and abstractions.
Detection of points-to information by model checking is in Section 4. Section
5 presents a two-staged iteration procedure. Section 6 gives experiments and
Section 7 discusses related work. Section 8 concludes the paper.



2 Weighted Pushdown Model Checking

Definition 1. Define a pushdown system P = (Q, Γ,∆, q0, ω0), where Q is
a finite set of states called control locations, Γ is a finite stack alphabet, and
∆ ⊆ Q × Γ × Q × Γ ∗ is a finite set of transition rules. q0 ∈ Q and ω0 ∈ Γ ∗

are the initial control location and stack contents respectively. A transition rule
(p, γ, q, ω) ∈ ∆ is denoted by 〈p, γ〉 ↪→ 〈q, ω〉. A configuration of P is a pair
〈q, ω〉 for q ∈ Q and ω ∈ Γ ∗. ∆ defines a transition relation ⇒ on configurations
such that 〈p, γω′〉 ⇒ 〈q, ωω′〉for each ω′ ∈ Γ ∗ if 〈p, γ〉 ↪→ 〈q, ω〉.

Definition 2. S = (D,⊕,⊗,0,1) with 0,1 ∈ D is a bounded idempotent
semiring if

1. (D,⊕) is a commutative monoid with 0 as its unit element, and ⊕ is idem-
potent, i.e., a⊕ a = a for a ∈ D;

2. (D,⊗) is a monoid with 1 as the unit element;
3. ⊗ distributes over ⊕;
4. ∀a ∈ D, a⊗ 0 = 0⊗ a = 0;
5. The partial ordering v is defined on D such that ∀a, b ∈ D, a v b iff a⊕b = a,

and there are no infinite descending chains in D.

By Def. 2, we have that 0 is the greatest element.

Definition 3. Define a weighted pushdown system (WPDS) W = (P,S, f),
where P = (Q, Γ,∆, q0, ω0) is a pushdown system, S = (D,⊕,⊗,0,1) is a
bounded idempotent semiring, and f : ∆→ D is a weight assignment function.

When encoding the program as a WPDS, the bounded idempotent semiring
models program data flows. A weight element encodes traditional program trans-
formers; f ⊕ g combines data flows at the meet of control flows; f ⊗ g composes
sequential control flows; 1 is identity function, and 0 implies program errors.

Definition 4. Given a weighted pushdown system W = (P,S, f), where P =
(Q, Γ,∆, q0, w0). Assume σ = [r0, ..., rk] for ri ∈ ∆(0 ≤ i ≤ k) to be a sequence
of pushdown transition rules, and v(σ) = f(r0)⊗ ...⊗f(rk). Let path(c,c′) be the
set of all transition sequences that transform configurations from c into c′. Given
sets of regular configurations C,C ′ ⊆ Q×Γ ∗, for each configuration c ∈ Q×Γ ∗,

– the Generalized Pushdown Successor (GPS) problem is to find gps(c) =⊕
{v(σ) | σ ∈ path(c′, c), c′ ∈ C}.

– the Generalized Pushdown Predecessor (GPP) problem is to find gpp(c) =⊕
{v(σ) | σ ∈ path(c, c′), c′ ∈ C ′}.

– The Meet-Over-All-Valid-Path (MOVP) problem is to find MOVP(C,C ′,W ) =⊕
{v(σ) | σ ∈ path(c, c′), c ∈ C, c′ ∈ C ′}.

Given p ∈ Q, γ ∈ Γ and c ∈ Q × Γ ∗, and let conf(p, γ) = {〈p, γω〉 | ω ∈ Γ ∗},
further define M̂OVP(c, 〈p, γ〉,W ) = MOVP({c}, conf(p, γ),W ).



Efficient algorithms for solving the GPS and GPP problems are proposed
based on the fact that a regular set of configurations is closed under forward and
backward reachability [11]. Then, MOVP is solved based on the results of either
GPS or GPP. There are two off-the-shelf implementations of weighted pushdown
model checking, Weighted PDS Library 1 and WPDS++ [3, 4]. We exploit the
former as the back-end analysis engine.

Example 1. As shown in Table 1, a context-sensitive PTA is able to distinguish
that, x1 and x2 points to objects created at line 2 and 3, respectively. In contrast,
an imprecise analysis may mix them.

Table 1. A Java Code Snippet

0. public class Main {
1. public static void main(String[] args){ 8. public static Object f1(Object a){
2. Object y1 = new String(); 9. return f2(a);
3. Object y2 = new Object(); 10. }
4. Object x1 = f1(y1); 11. public static Object f2(Object b){
5. Object x2 = f1(y2); 12. return b;
6. System.out.println(x1.equals(x2)); 13. }
7. } 14. }

3 Semantics and Abstraction

3.1 Java Semantics on the Heap and Call Stack

Definition 5. A method signature consists of method name, parameter types,
and return type. We denote by C the set of classes, and denote by Ψ the set of
method signatures. A method is identified by a pair of its enclosing class C ∈ C
and its method signature ψ ∈ Ψ , denoted by C.ψ. The set of method identifiers
is denoted by C.Ψ ⊆ C ×Ψ . We denote by Θ the class environment, including all
classes, type representations of classes, and the type hierarchy.

In Java, a heap object is a dynamically created instance of either a class or
an array. Reference variables are typically local variables, method parameters,
array references, and static or instance fields that hold reference types. Fields
and array references can be regarded as global variables. A local variable v from
its enclosing method C.ψ is denoted by indexing with the scope as vC.ψ. If C.ψ
is clear from the context, we often simply write v.

Definition 6. The set of references is denote by V, and the set of heap objects
is denoted by O. An abstract heap environment henv is a mapping, denoted
by 7→, from V to O. The set of abstract heap environments is denoted by Λ,
on which the update operation � is defined such that for r, r′ ∈ V, o ∈ O,
(henv� [r 7→ o])r′ = o if r = r′ and (henv� [r 7→ o])r′ = henv(r′) otherwise.
1 http://www.fmi.uni-stuttgart.de/szs/tools/wpds/



Definition 7. We denote by L the set of program line numbers and denote by S
the set of program statements. Let Stmt : L → S be the function that returns the
statement at a given line number. Sε ⊆ S denotes the set of statements that do
not contain explicit method invocations and operate on the heap memory, and by
SI ⊆ S denotes the set of statements that contains explicit method invocations.

Definition 8. Let Elem = L × (O ∪ {∗}) × C.Ψ . Let Π = Elem∗.{⊥} be the
set of calling histories over the call stack. Define push(stack, e) = e.stack for
stack ∈ Π; and pop(e.stack) = stack, top(e.stack) = e for e ∈ Elem and
stack ∈ Π; and pop(⊥) = top(⊥) = ⊥.

A call stack symbol 〈l, o, C.ψ〉 ∈ Elem denotes the program execution point at
line l of the instance method C.ψ that is invoked on the object o, and 〈l, ∗, C.ψ〉 ∈
Elem represents an execution point inside a static method C.ψ.

Table 2. Transition Rules on the Heap and Call Stack

stmt(l) from C.ψ henv’ stack’

x = new T henv� [x 7→ ν(henv)]
x = y henv� [x 7→ henv(y)] push(s, e) where
x := (T)y henv� [x 7→ henv(y)] s = pop(stack)
x := @this : T henv� [x 7→ henv(this)] e = 〈next(l), o, C.ψ〉
x := @parameterk : T henv� [x 7→ henv(argk)] o =′ ∗′ if C.ψ is static

x = y[i] henv� [x 7→ henv(y)[i]] o ∈ henv(thisC.ψ) o.w.
y[i] = x henv� [henv(y)[i] 7→ henv(x)]
x = y.f henv� [x 7→ henv(henv(y).f)]
y.f = x henv� [henv(y).f 7→ henv(x)]

return y henv� [ret 7→ henv(y)] pop(stack)

z = r0.m(r1, ..., rn) henv� [thisC
′.ψ′

7→ henv(r0)] push(s′, e′) where

� [argC
′.ψ′

1 7→ henv(r1)]� · · · s′ = push(s, e)

� [argC
′.ψ′

n 7→ henv(rn)] s = pop(stack)

� [z 7→ retC
′.ψ′

] e = 〈next(l), o, C.ψ〉
where ψ′ ∈ Ψ is the method signature of m, e′ = 〈lC

′.ψ′

0 , o′, C′.ψ′〉
and C′.ψ′ = resolve(TypeOf(o′), ψ′, Θ)
for o′ = henv(r0).

z = C′.m(r1, ..., rn) henv� [argC
′.ψ′

1 7→ henv(r1)]� · · · push(s, e′) where

� [argC
′.ψ′

1 7→ henv(r1)] s = push(pop(stack), e)

� [z 7→ retC
′.ψ′

] e = 〈next(l), o, C.ψ〉
where ψ′ ∈ Ψ is the method signature of m, e′ = 〈lC

′.ψ′

0 , ∗, C′.ψ′〉
and C′.ψ′ = resolve(C′, ψ′, Θ).

We use a transition system (states, sinit,→) to represent the operational
Java semantics on the heap and call stack, where states ⊆ L × Θ × Λ ×Π is
the set of program states, each of which is a tuple of program locations, class
environment, heap environments and calling histories, and sinit ∈ states is the
initial state; →⊆ states× states is the set of transition rules.



As far as single-threaded Java programs are concerned, the next program
location after each execution step at l (∈ L) is uniquely determined, and is de-
noted by next(l). As given in Table 2, for the program execution of the statement
stmt(l) at l ∈ L from the method C.ψ, the transition rule is 〈l, Θ, henv, stack〉
→ 〈next(l), Θ, henv′, stack′〉. Here, ν is a function that generates a fresh heap
object. this, argk and ret are fresh variables to denote the this reference of a
class instance, the kth method argument, and the return variable, respectively.
TypeOf : O → C is the function that returns the runtime type of a heap object.
resolve : C × Ψ × Θ → C.Ψ is the function implements how JVM resolves and
the method to be invoked at runtime according to its method signature and
possible enclosing class. lC

′.ψ′

0 refers to the entry point of the method C ′.ψ′.

3.2 Abstraction

We apply the following abstractions to abstract away various sources of infinities.

– A unique abstract heap object models concrete heap objects created at the
same allocation site (a.k.a., the context-insensitive heap abstraction). Thus,
the number of abstract heap objects are syntactically bounded to be finite.
An abstract heap object is a pair of its allocation site and runtime type.

– The indices of arrays are ignored, such that members of an array are not
distinguished. We denote by [[o]] the unique representative for all members
of the array instance o (∈ O). After abstracting the set of heap objects to be
finite, the nesting of array and field reference become finite correspondingly.

Definition 9. The set of abstract heap objects is Obj = (L ∪ { }) × C, where
is a fresh symbol for indicating nowhere. Let TypeOf : Obj → C be the function
returns the second projection of an abstract heap object.

Definition 10. Let RetPoint ⊆ L× C.Ψ be the set of return points for method
invocations. Define abstractions αt : Elem→ { } × C.Ψ , αr : Elem→ RetPoint,
and αo : Elem→ Obj× C.Ψ such that, for 〈l, o, C.ψ〉 ∈ Elem,

– αt(〈l, o, C.ψ〉) = ( , C.ψ),
– αr(〈l, o, C.ψ〉) = (l, C.ψ), and
– αo(〈l, o, C.ψ〉) = (o, C.ψ).

αr and αo are extended to the call stack in an element-wise manner.

Definition 11. Let C = ({ } × (C.Ψ)).RetPoint∗ be the set of abstract calling
contexts. Define a calling context abstraction α : Π → C such that α(⊥) = ε and
α(e.stack) = αt(e).αr(stack) for e ∈ Elem, and stack ∈ Π.

By Def. 10, αt abstracts the topmost stack symbol for flow-insensitivity. αr
abstracts the return points of method invocations, which results in calling con-
texts in terms of call site strings. Our choice of αr indicates, method invocations
to the same method from different places of the same caller is still distinguished.
An alternative of αr is αo, which abstracts calling contexts as sequences of heap
objects on which methods are invoked, also known as object-sensitivity [9].



Definition 12. We denote by Ref the set of abstract reference variables, and
by cc(v) all possible abstract calling contexts for a reference variable v ∈ Ref.

Note that, cc(v) are exactly all possible calling contexts for the method which
v belongs to, and cc(v) is automatically computed as the set of reachable regular
configurations during model checking (Section 4).

Definition 13. Let R : Ref×C → P(Obj) be the function that stores the points-
to relation, where P denotes the powerset operator. R ↓V : V × C → P(Obj) is
the restriction of R to V ⊆ Ref. Define � : R × R → R, such that for any
r ∈ Ref and cc ∈ C, (R1 �R2)(r, cc) = R1(r, cc) \R2(r, cc).

4 Detecting Points-to Information by Model Checking

This section presents, given points-to information and a call graph, how to detect
new points-to information and enlarge a call graph in a context/field-sensitive
and flow-insensitive way.

Definition 14. G = (M,E) is a call graph of a program if M ⊆ C.Ψ and E ⊆
M × L×M . An element in E is called a call edge.

We call P ⊆ C.Ψ a program coverage, and denote the program coverage
consisting of enclosing methods of program entries by P0.

Definition 15. Let Henv, sp be fresh symbols. Define a weighted pointer assign-
ment graph (WPAG) G = (N,L, , n0), where N ⊆ (Ref ∪ {Henv}) × (C.Ψ ∪
RetPoint) is the set of nodes, L ⊆ {λx.{o} | o ∈ Obj} ∪ {λx.x} is the set of
labels,  ⊆ N × L×N is the set of edges, and n0 = (Henv, sp) ∈ N is the root.

A WPAG G is a directed labeled graph to represent data flow of heap objects.
Henv and sp indicate the program environment that provides new abstract heap
objects and program inputs, and the dummy program entry, respectively. The
first projection of N represents abstract references, and the second projection
represents their program scopes. Edges of G are classified into inter-edges ( i,
defined in Table 3) and intra-edges ( c, r, t, defined in Table 4). An edge
(v,m) (v′,m′) is denoted by{

 i if m = m′ ∈ C.Ψ
 c if m 6= m′ and m,m′ ∈ C.Ψ

{
 r if m′ ∈ RetPoint

 t if m ∈ RetPoint

The procedure of finding new points-to information consists of the following
steps. Step 1 builds intra-edges of a WPAG G given R. Step 2 builds inter-edges
of G given E. During Step 2, the set of return points associated with each method
invocation is recorded as a mapping M : c→ P(RetPoint). Initially, M is the
constant function to the empty set. Step 3 encodes G as a WPDS W and detects
new points-to information, denoted by R̂, by model checking.



Table 3. A[[ ]] : Sε → P( i)

A[[x = new T]] = {(Henv, C.ψ)
λx.{(l,T)}
 i (x,C.ψ)}

A[[x = y]] = {(y, C.ψ) i (x,C.ψ)}
A[[x := (T)y]] = {(y, C.ψ) i (x,C.ψ)}
A[[x := @this : T]] = {(this, C.ψ) i (x,C.ψ)} ∪ Ae

where Ae = {(Henv, C.ψ)
λx.{( ,T)}
 i (this, C.ψ)} if C.ψ ∈ P0 and Ae = ∅ otherwise

A[[x := @parameterk : T]] = {(argk, C.ψ) i (x,C.ψ)} ∪ Ap

where Ap = {(Henv, C.ψ)
λx.{( ,T)}
 i (argk, C.ψ)} if C.ψ ∈ P0 and Ap = ∅ otherwise

A[[return x]] = {(x,C.ψ) i (ret, C.ψ)}
A[[x = y[i]]] = {([[o]], C.ψ) i (x,C.ψ) | o ∈ R(y, cc(y))} ∪Ag
A[[y[i] = x]] = {(x,C.ψ) i ([[o]], C.ψ) | o ∈ R(y, cc(y))} ∪Ag
where Ag = {(Henv, C.ψ)

λx.s
 i ([[o]], C.ψ) | o ∈ R(y, cc(y)), s = R([[o]], cc([[o]]))}

A[[x = y.f ]] = {(o.f, C.ψ) i (x,C.ψ) | o ∈ R(y, cc(y))} ∪Af
A[[y.f = x]] = {(x,C.ψ) i (o.f, C.ψ) | o ∈ R(y, cc(y))} ∪Af
where Af = {(Henv, C.ψ)

λx.s
 i (o.f, C.ψ) | o ∈ R(y, cc(y)), s = R(o.f, cc(o.f))}

Step 1: Building Intra-procedural Data Flows

Table 3 gives rules that translate statements from Sε at line l(∈ L) of the method
C.ψ to intra-edges of G, denoted by A[[ ]] : Sε → P( i). For simplicity, we omit
a weight associated to  if it is λx.x. Our modeling is featured as follows.

– In contrast to cloning-based approach, there is the unique abstract reference
of each local reference variable. Global references are cloned only for methods
inside which they are referred.

– Instead of passing global variables explicitly as parameters along procedure
calls and returns, the heap memory is modelled with the global data structure
R and provides global references with cached data flows (i.e., Ag, Af ) when
they are locally referred (only necessary for field read).

Step 2: Building Inter-procedural Data Flows

Table 4 gives rules that translate statements from SI that contains explicit
method invocations to inter-edges of G, denoted by A[[ ]] : SI → c ∪ r ∪ t,
where Ac denotes call edges, Ar denotes return edges, and At denotes data flows
from return points to the calling procedure. Note that, Henv as the program
environment is explicitly passed as a parameter among calls and returns. Dur-
ing generation of inter edges, the mapping M is updated with newly produced
return points. The translation rules for static method invocations can be defined
similarly. Finally, new edges {n0  (Henv, C.ψ) | n0 = (Henv, sp), C.ψ ∈ P0}
are added to G that lead from the dummy root node n0 to the program entries.

Step 3: Building the WPDS W from G and Model Checking

Definition 16. Let D1 = {λx.s | s ∈ P(Obj)} and D2 = {λx.x ∪ s | s ∈
P(Obj)}. Define a bounded idempotent semiring S = (D,⊕,⊗,0,1), such that



Table 4. A[[ ]] : SI → c ∪ r ∪ t

A[[z = r0.f(r1, ..., rn)]] = Ac ∪Ar ∪At
where Ac = {(r0, C.ψ) c (thisC

′.ψ′
, C′.ψ′)} ∪ {(Henv, C.ψ) c (Henv, C′.ψ′)}

∪
S
ri∈Ref{(ri, C.ψ) c (argi

C′.ψ′
, C′.ψ′)}

Ar = {(retC
′.ψ′

, C′.ψ′) r (retC
′.ψ′

, rp)} ∪ {(Henv, C′.ψ′) r (Henv, rp)}
At = {(retC

′.ψ′
, rp) t (z, C.ψ)} ∪ {(Henv, rp) t (Henv, C.ψ)}

ψ′ is the method signature of the method f , and
(C.ψ, l, C′.ψ′) ∈ E, and rp = (l, C.ψ), and
for all r ∈ Ac, M(r) = M(r) ∪ {rp}

– The weighted domain D = D1 ∪D2 ∪ {0}, and 1 = λx.x;
– d1 ⊗ d2 = d1 ⊕ d2 = λx. d1(x) ∪ d2(x) for d1, d2 ∈ D \ {0}
– d⊗ 0 = 0⊗ d = 0 for d ∈ D;

It is easy to see that both the distributivity of ⊗ over ⊕ and the associativity
of ⊗ hold. D1 consists of constant functions, and λx.s ∈ D1 is that a reference
points to the set of abstract heap objects s; and λx.x∪s ∈ D2 is that a reference
may keep unchanged along a path and be updated to point to s along another.

Given a WPAG G from Definition 15, a WPDS W = (P,S, f) with P =
(Q, Γ,∆, q0, w0) is encoded G as follows,

– The set of control locations Q is the first projection of N , i.e., Ref∪{Henv};
– The stack alphabet Γ is the second projection of N , i.e., C.Ψ ∪ RetPoint;
– S is from Definition 16;
– q0 = Henv and w0 = sp;

– For each edge r represented as (v1,m1)
l
 (v2,m2) such that f(r) = l and

• 〈v1,m1〉 ↪→ 〈v2,m2〉 if r ∈ i or  t;
• 〈v1,m1〉 ↪→ 〈v2,m2mr〉 for each mr ∈ M( c) if r ∈ c;
• 〈v1,m1〉 ↪→ 〈v2, ε〉 if r ∈ r.

Definition 17. Let W = (P,S, f) be a weighted pushdown system with P =
(Q, Γ,∆, q0, γ0). For any reference v ∈ Ref from the method C.ψ, R̂(v, cc(v)) =
M̂OVP(c, 〈v, C.ψ〉,W ) (Hinit(v)), where c = 〈q0, γ0〉 and Hinit denotes the initial
abstract heap environment such that Hinit(v) = ∅ for any v ∈ Ref.

To solve MOVP(Cs, Ct,W ), we (i) first compute gps(c) for each c ∈ Ct given
Cs, and then (ii) read out and combine the value of all paths between Cs and
Ct. We denote by H = 2|Obj| the length of the longest descending chain of the
weighted domain, and by T the time to perform either ⊗ or ⊕. In our case,
the time required to perform step (ii) can be ignored, and the worst case time
complexity of performing step (i) is O(|Q|2 |∆| |Γ | H T ).



5 Acceleration by Lightening Iterative Cycles

5.1 A Traditional Iterative Procedure Scheme

Algo. OnTheFlyPTA in Fig. 1 sketches a procedure scheme for on-the-fly Java
PTA. It starts with analyzing the program entry points P0, and computes the
call graph E and points-to relation R until convergence. For each iterative cycle,

– FindPointsTo : P × E × R → R (line 3) detects points-to information R̂
on the partial program P, according to updated information in the previous
iteration. The updated points-to information ∆R is derived at line 4.

– FindCallEdges : P×R×Θ → E (line 5) resolves call relation Ê according
to R̂, obeying to the standard JVM semantics. The updated call relation
∆E is derived at line 6.

– TakeReachables : E → P (line 8) returns the set of methods (reachable
from program entries) to be analyzed in the next iteration. It can be defined
as the union of the first and third projection of E.

Algorithm OnTheFlyPTA

Input: the program entry points P0 and the class environment Θ
Output: G = (M,E) and R
0. E := ∅; R := ∅; P := P0

1. do

2. bR = FindPointsTo(P,E,R)

3. ∆R := bR�R
4. R := R t∆R

5. bE := FindCallEdges(P,R, Θ)

6. ∆E := bE \E
7. E := E ∪∆E
8. P := TakeReachables(E)
9. while ∆E 6= ∅ or ∆R 6= ∅

Fig. 1. A Procedure for On-the-fly Java Points-to Analysis

Theorem 1. The algorithm OnTheFlyPTA terminates if (i) the domain of P, E
and R are finite, and (ii) each of these functions FindPointsTo, FindCallEdges
and TakeReachables is monotonic wrt the set inclusion on P, E and the element-
wise extension on R of the set inclusion.

FindPointsTo is the core procedure of PTA for Java. For most cloning-
based algorithms, FindPointsTo corresponds to the propagation of points-to
sets, which is typically reduced to constraint solving problems. In contrast, we
derive the analysis algorithm as model checking problems on WPDSs (Section 4).
Since the abstraction given in Section 3.2 is an over approximation, soundness
of our analysis is straightforward.



5.2 A Two-Staged Iterative Procedure Scheme

For an on-the-fly points-to analysis, the program coverage is enlarged when
points-to analysis proceeds. However, we found that only part of the whole pro-
gram would effectively contribute to the enlargement of the program coverage.
To boost on-the-fly PTA, we propose a two-staged iterative procedure, denoted
by (LE◦GU)∗, which combines two phases of LE (local exploration) and GU (global
update). Generally, an LE iteration localizes the analysis on small parts of the
program, which is more likely to enlarge the program coverage, and GU is per-
formed on-demand for guaranteeing completeness. Line 9 switches LE and GU
when conditions defined by SwitchCond are satisfied. Otherwise, a GU iteration
will be triggered to check sound convergence.

Algorithm TwoStaged OnTheFlyPTA

Input: the program entry points P0 and the class environment Θ
Output: G = (M,E) and R
0. E := ∅; R := ∅; P := P0; NotDone = NotDone’ := true
1. do
2. NotDone := NotDone’

3. bR = FindPointsTo(P,E,R)

4. ∆R := bR	R
5. R := R t∆R

6. bE := FindCallEdges(P,R, Θ)

7. ∆E := bE \E
8. E := E ∪∆E
9. if SwitchCond(∆E,∆R) = true then
10. P := TakeCoverage(E,∆E,∆R)
11. NotDone’ := true
12. else
13. P := TakeReachables(E)
14. NotDone’ := false
15. while ∆E 6= ∅ or ∆R 6= ∅ or NotDone = true

Fig. 2. A Two-Staged Procedure for On-the-fly Java Points-to Analysis

Definition 18. SwitchCond(∆E,∆R) = (∆E 6= ∅) ∨ (∆R ↓Reff
6= ∅), where

Reff ⊆ Ref is the set of base references of instance fields.

Def. 18 means that, an LE is triggered when either new call edges are detected
or new global references are found. Both indicates that the underlying model for
model checking is extended with new pushdown transitions.



Definition 19. TakeCoverage(E,∆E,∆R) = M1∪M2∪M3 ∪TakeReachables(∆E),

M1 =
{
m′′ | ∃m,m

′ ∈ C.Ψ ∃l, l′ ∈ L. (m, l,m′) ∈ ∆E, (m, l′,m′′) ∈ E,
and the return type of m′′ is a reference type

}
M2 = {C.ψ | vC.ψ ∈ Reff and ∆R(vC.ψ, cc(vC.ψ)) 6= ∅}
M3 = {m,C.ψ | ∆R(retC.ψ, cc(retC.ψ)) 6= ∅ and ∃l ∈ L.(m, l, C.ψ) /∈ E}

A partial model is taken in the ways defined in TakeCoverage, where M1 says
that, if a new call relation found from m to m′, other callees of m that returns
values of reference type are collected. M2 says that, if the points-to information
of base variables of instance fields are updated, their enclosing methods are
collected. M3 says that, if the points-to information of return variables of C.ψ
is updated, C.ψ and methods that call C.ψ and are not included in the previous
LE are collected. Note that, our choice of TakeCoverage is inspired and decided
by empirical studies on practiced Java benchmarks regarding efficiency.

Theorem 2. The algorithm TwoStaged OnTheFlyPTA terminates if (i) the do-
main of P, E and R are finite, and (ii) each of these functions FindPointsTo,
FindCallEdges, TakeCoverage and TakeReachables is monotonic on all argu-
ments from their domains, and (iii) SwitchCond(∅, ∅) = false.

5.3 Adding Summary Transition Rules in LE

As given in Table 5 that extends translation rules Table 5, to make the two-staged
iterative procedure work effectively, summary transition rules (i.e., Ac) that
carry cached data flows to PE (Def. 20) are introduced, when building a WPAG
in an LE iteration. Translation rules leading from the dummy root node n0 to the
program entries are lifted to {n0  (Henv, C.ψ) | n0 = (Henv, sp), C.ψ ∈ PE}.

Definition 20. Given a program coverage P and the call relation E, PE =
{m ∈ P | m′ /∈ P if (m′,m) ∈ E}.

Table 5. B[[ ]] : Sε → P( i)

B[[x := @this : T]] = A[[x := @this : T]] ∪ Ac

where Ac = {(Henv, C.ψ)
λx.s
 i (this, C.ψ) | s = R(this, cc(this))}

if C.ψ ∈ PE and Ac = ∅ otherwise
B[[x := @parameterk : T]] = A[[x := @parameterk : T]] ∪ Ac

where Ac = {(Henv, C.ψ)
λx.s
 i (argk, C.ψ) | s = R(argk, cc(this))}

if C.ψ ∈ PE and Ac = ∅ otherwise

In sequel, we show that adding summary transitions to arguments (i.e.,
argi, this) of methods from PE will not cause any loss of precision.



Definition 21. For a pushdown system P = (Q, Γ,∆, q0, ω0), define D ⊆ Q ×
Γ ×Q× Γ , such that 〈p, γ〉D 〈p′, γ′〉 if there exists 〈p, γ〉 ⇒∗ 〈p′, γ′ω′〉 for some
ω′ ∈ Γ ∗. Define Ds ⊆ D such that 〈p, γ〉 Ds 〈p′, γ′〉 if (i) 〈p, γ〉 D 〈p′, γ′〉 and
(ii) for each ω ∈ Γ ∗ and all transition sequence of σ : 〈p, γω〉 ⇒∗ 〈p′, γ′ω′ω〉 for
some ω′ ∈ Γ ∗, and any 〈p′′, ω′′〉 appearing in σ satisfies |w′′| > |w|. 〈p, γ〉 is a
dominator of 〈p′, γ′〉 if 〈p, γ〉Ds 〈p′, γ′〉.

Definition 22. Let W = (P,S, f) be a WPDS with P = (Q, Γ,∆, q0, γ0). For
p ∈ Q, γ ∈ Γ , {〈pi, γi〉 | 0 ≤ i ≤ k} is a dominator set of 〈p, γ〉 if (1), for
each i with 0 ≤ i ≤ k, 〈pi, γi〉 Ds 〈p, γ〉, and (2), for each transition sequence
σ : 〈q0, γ0〉 ⇒∗ 〈p, γw〉 with w ∈ Γ ∗, there uniquely exists 〈pj , γj〉 such that
〈pj , γjw′〉 for some w′ ∈ Γ ∗ appears in σ.

Lemma 1. Given a WPDS W = (P,S, f) where P = (Q, Γ,∆, q0, γ0). For p ∈
Q, γ ∈ Γ , let H be a dominator set of 〈p, γ〉 and let c = 〈q0, γ0〉, we have
M̂OVP(c, 〈p, γ〉,W ) =

⊕
〈pi,γi〉∈H M̂OVP(c, 〈pi, γi〉,W ) ⊗ M̂OVP(〈pi, γi〉, 〈p, γ〉,W ).

Proof. Straightforward by definitions of frontiers and MOVP problems.

By Lemma 1, the computation of MOVP problems can be soundly divided
into two independent phases via dominators.

Definition 23. Given a WPDS W = (P,S, f) with P = (Q, Γ,∆, q0, γ0). For
p ∈ Q \ {q0}, γ ∈ Γ \ {γ0}, 〈p, γ〉 is a frontier of W if either 〈p, γ〉Ds 〈p′, γ′〉 or
〈p, γ〉 4 〈p′, γ′〉 for any p′ ∈ Q, γ′ ∈ Γ . A frontier set of W , denoted by FW , is
a set of frontiers and 〈p, γ〉 ∈ FW implies 〈p′, γ′〉 /∈ FW if 〈p, γ〉Ds 〈p′, γ′〉.

Theorem 3. Given a WPDS W = (P,S, f) with P = (Q, Γ,∆, q0, γ0). Let W′ =
(P′,S, f′) with P′ = (Q′, Γ ′,∆′ ∪ δ, q0, γ0), where Q′ ⊆ Q, Γ ′ ⊆ Γ , ∆′ ⊆ ∆, and
δ = {r = 〈q0, γ0〉 ↪→ 〈pi, γi〉, f ′(r) = M̂OVP(c, 〈pi, γi〉,W )⊕ f(r) | 〈pi, γi〉 ∈ FW ′}.
For p ∈ Q′, γ ∈ Γ ′, let c = 〈q0, γ0〉, M̂OVP(c, 〈p, γ〉,W ′) w M̂OVP(c, 〈p, γ〉,W ).

Proof. By Definition 23, given p ∈ Q, γ ∈ Γ , any frontier set FW ′ of W ′ can
be decomposed into disjoint union FW ′ = F1 ] F2, where F1 is some collection
of dominators of 〈p, γ〉 and F2 ⊆ {〈p′, γ′〉 | M̂OVP(〈p′, γ′〉, 〈p, γ〉,W ′) = 0}. The
proof is done according to Lemma 1 and the fact that F1 may not contain a
dominator set of 〈p, γ〉.

By Theorem 3, the analysis of LEs with introducing summary transition rules
will never cause any loss of precision, but can be not complete. The completeness
is guaranteed by analysis of GUs.

Note that, the set of arguments CE = {(argk, C.ψ), (this, C.ψ) | C.ψ ∈ PE}
from PE is a witness of the frontier set FW ′ , where W ′ is the WPDS encoded
from methods of P augmented with cached transition rules. Recall the example
in Table 1, assume the partial model P taken in an LE consists of methods f1
and f2. We know PE consists of f1 only by definition. A loss of precision would
be incurred, if summary transition rules Ac are introduced to arguments in f2.



6 Empirical Studies

We developed our analysis algorithms as a tool named Japot 2, which exploits
Soot2.3.0 [16] for preprocessing from Java programs to Jimple codes, and the
Weighted PDS Library as the model checking engine. We perform experiments
on Java applications from the Ashes benchmark suite [15] and the influential Da-
Capo benchmark suite [2] (Table 6). These applications are de facto benchmarks
when investigating Java points-to analysis. We target on the newest version of
DaCapo benchmark which requires JDK 1.5 or above, and stable Ashes bench-
marks for which JDK 1.3 suffices. In sequel, the performance of Japot is measured
by call graph generation in terms of the number of reachable methods, which
is given in the “# Reachable Methods” column and these numbers take into
account libraries used by each benchmark. Benchmarks on which the back-end
model checker runs out of memory are not shown. All experiments were per-
formed on a Mac OS X v.10.5.2 with a Xeon 2×2.66 GHz Dual-Core processor,
and 4GB RAM. Only one processor is used in the following experiments.

Table 6. Benchmark Statistics and Call Graph Generation

Benchmark # Reachable Methods # Statements # Suite # JDK
CHA Japot Prec.↑ Japot

soot-c 5460 5079 7% 83936
sablecc-j 13,055 9004 31% 143140 Ashes JDK 1.3.1 01

antlr 10,728 ×
bloat 12,928 11090 14% 194063
chart 30,831 ×
jython 14,603 ×
pmd 12,485 × Dacapo JDK 1.5.0 13
hsqldb 9983 8394 16% 142629
xalan 9977 8392 16% 141405
luindex 10,596 8961 15% 152592
lusearch 11,190 9580 14% 163958
eclipse 12,703 ×

The sub-column titled CHA gives the number of reachable methods by the
CHA (Class Hierarchy Analysis) of Spark in soot-2.3.0. The sub-column titled
Japot gives results computed by our context-sensitive PTA and the “# State-
ments” column gives the number of Jimple statements that Japot analyzed. The
“Prec.↑” sub-column shows how much improvement on precision can be obtained
by Japot over CHA. Our proposals regarding program modelling alone does not
yield high scalability. Applying type filtering on-the-fly as usual and ignoring
differences of string constants are also essential to the scalability.

2 As an approximation, return variables from any native methods and reflection calls
can point to objects whose type allows, and a throw exception can be handled by
any exception handler whose declared type allows as an over-approximation.



Table 7. An Acceleration on Efficiency

Benchmark # (LE ◦ GU)∗ (sec.) # GU∗ (sec.) # Acceleration

soot-c 656 1591 59%
sablecc-j 1547 2785 44%

bloat 12339 41434 70%
hsqldb 1205 2910 59%
xalan 1321 2926 55%
luindex 1514 3880 61%
lusearch 1757 4057 57%

We studied the efficiency improvement of (LE ◦ GU)∗ over GU∗, and initial
results are given in Table 7 3. The “# (LE◦GU)∗” column and the “# GU∗” column
gives the time in seconds of performing these iterative schemes respectively.
The “# Acceleration” column shows an acceleration in terms of |GU∗|−|(LE◦GU)∗|

|GU∗| ,
which shows that (LE ◦ GU)∗ is 2.5X faster in average than GU∗. We expect novel
strategies of taking LEs can improve the practical efficiency even more.

7 Related Work

One of the pioneer work is Andersen’s PTA for C [1]. It is a subset-based, flow-
insensitive analysis encoded as constraint solving problems, such that object
allocations and pointer assignments are described by subset constraints, e.g.
x = y induces pta(y) ⊆ pta(x). The scalability of Andersen’s analysis has been
greatly improved by more efficient constraint solvers. Andersen’s analysis was
introduced to Java by using annotated constraints [12].

The first scalable cloning-based context-sensitive Java PTA is presented in
[17], in which programs and analysis problems are encoded as rules in logic
program Datalog. Calling contexts are cloned after merging loops as equivalent
classes. The BDD (Binary Decision Diagram) based implementation, as well as
approximation by collapsing recursions, enable the analysis to scale. As discussed
in [6], there are usually rich and large loops within the call graph, and the loss
of precision is potentially incurred after approximating recursions.

Reps, et al. present a general framework for program analysis based on CFL-
reachability [10], in which a PTA for C is shown by formulating pointer assign-
ments as productions of context-free grammars. Inspired by this work, Sridha-
ran, et al. formulated Andersen’s analysis for Java [14] as balanced-parentheses
problems regarding field read and write. A novel refinement-based analysis [13]
is based on context-insensitive analysis and recovers the precision on-demand
by removing imprecise propagation of points-to sets as violating a grammar for

3 Note that,data structures and program states cannot be shared between soot (in
Java) and the back-end model checker (in C). These numbers include DISK IO time
for exchanging information between these two parts via files.



balanced parentheses, regarding both heap access and method calls. It shows
good precision and scalability with respect to downcast safety analysis.

Spark[5] is a widely-used test-bed for experimenting with Java PTA. It sup-
ports both equality and subset-based analysis, provides various algorithms for
call graph construction, such as CHA, RTA(Rapid Type Analysis), and on-the-fly
algorithms, as well as variations on field-sensitivity. The BDD-based implemen-
tation of the subset-based algorithms further improves the efficiency

One stream of research examines calling contexts in terms of sequences of
objects on which methods are invoked, called object-sensitivity [9]. Similar to
call-site strings based approach, the sequence of receiver objects can be un-
bounded and demands proper approximations, like k-CFA. [6] indicates that
object-sensitivity excels at precision and is more likely to scale. Last but not
the least, existing practiced Java PTA as discussed above, are cloning-based for
context-sensitivity and have restrictions on handling recursive procedure calls.

In contrast to points-to analysis with call graph constructed on-the-fly, an
ahead-of-time points-to analysis is proposed as one run of weighted pushdown
model checking [7]. The notion of valid paths are enriched with further obeying
to the Java semantics on dynamic dispatch. In particular, invalid control flows
that violate Java semantics on dynamic dispatch are detected as those carrying
conflicted data flows. The analysis enjoys context-sensitivities regarding both
call graph construction and valid paths.

Last but not least, WPDSs are extended to conditional weighted pushdown
systems (CWPDSs), by further associating each transition rule with a regu-
lar language that specifies conditions under which the transition rule can be
applied [8]. There are wider applications of CWPDs when analyzing programs
with objected-oriented features, for which WPDSs are not precise enough un-
der a direct application. It is also shown that, the model checking problem on
CWPDSs can be reduced to model checking problems on WPDSs.

8 Conclusions

We presented a scalable stacking-based context-sensitive points-to analysis for
Java. The algorithm is derived as model checking problems on WPDSs, and
no restriction is placed on (recursive) procedure calls. A two-staged iterative
procedure is further proposed to effectively accelerate the analysis, supported
by introducing summary transition rules. Our new iteration schemes shows the
potential of an incremental points-to analysis, and we are extending the current
setting with performing local explorations only.
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