Conditional Weighted Pushdown Systems and Applications

Xin Li Mizuhito Ogawa
School of Information Science, School of Information Science,
Japan Advanced Institute of Science and Technology Japan Advanced Institute of Science and Technology
Nomi, Ishikawa, Japan, 923-1292 Nomi, Ishikawa, Japan, 923-1292
li-xin@jaist.ac.jp mizuhito@jaist.ac.jp
Abstract The notion of context-sensitivity bears a similarity to inline ex-

Pushdown systems are well understood as abstract models of propansmn, as if method calls are replaced W'th. the body of aI_I _the
callees. As such, the typical approach to obtain context-sensitivity

grams with (recursive) procedures. Reps et al. recently extended: > .
pushdown systems into weighted pushdown systems, which serve!S cloning-baseqdby creating a separate copy of a procedure for

as a generalized framework for solving certain kinds of meet-over- different calling contexts within a bounded call depth. It is well
all-path problems in program analysis. In this paper, we extend understood that, the cloning-based approach has an inherit limit

weighted pushdown systems to conditional weighted pushdown on handling (recursive) procedure calls, and the common choice

systems, by further specifying conditions under which a pushdown is to sacrifice context-sensitivity inside recursive procedure calls
transition rule can be applied, and show that model checking prob- [6: 18], such as the well-known cloning-based points-to analysis for

lems on conditional weighted pushdown systems can be reduced to’2V@ [18]. However, empirical study on practiced Java benchmarks

those on weighted pushdown systems. shows that., more than one thousand of me.thods are typically con-
There are wider applications of conditional weighted pushdown t@ined within recursive procedures [19]. Taking Java points-to anal-

systems when analyzing programs with objected-oriented features YSIS @S an instance, approximating recursions potentially threatens
for which weighted pushdown systems is not precise enough underPr€cision [8], and cloning-based points-to analysis cannot scale un-
a direct application. As an example, we lift a stacking-based points- 4" déep context cloning. . .

to analysis for Java designed in the framework of weighted push- _ R€PS et al. recently extend pushdown systems into weighted
down systems to a more precise counterpart in the framework of Pushdown systems (WPDSs), by associating a value with each
conditional weighted pushdown systems. In addition to the funda- pushdown transition rule. In particular, it is shown that clas-
mental context-sensitivity in terms of valid paths, the lifted points- SI¢ Meet-Over-All-Path (MOVP) problems of certain kinds can
to analysis algorithm further enjoys context-sensitivity with respect P& Solved as model checking problems on weighted pushdown

to objected-oriented features, including call graph construction, SyStems. Therefore, weighted pushdown systems is expected to

heap abstraction, and heap access. These context-sensitive IOrOIOs_erve as a generalized framework for yielding new algorithms of

erties are shown to be crucial to the analysis precision in practice. cont(?).(t-.sengitive program aqalysis that naturally enjoy the context-
sensitivity with respect to valid paths.

Categories and Subject DescriptorsD.2.4 [Software Engineer- In this work, we extend weighted pushdown systems to con-
ing]: Software/Program Verification—Model Checking ditional weighted pushdown systems (CWPDSSs), by further asso-
ciating each transition rule with a regular language that specifies
conditions under which the transition rule can be applied. Such an
Keywords Weighted Pushdown Systems, Model Checking extension of weighted pushdown systems is motivated by the find-
ing that, weighted pushdown systems is not precise enough when
1. Introduction analyzing objected-oriented programs like Java. We also show that
) model checking problems on CWPDSs can be reduced to model
Pushdown systems (PDSs) [15] are well understood as abstractchecking problems on WPDSs. Our solution is inspired by the ex-
models of programs with (recursive) procedures. By encoding pro- tension of LTL model checking on pushdown systems with simple
grams as pushdown systems, procedure calls and returns are guasaluation to a counterpart with regular valuation.
anteed to be correctly paired with one another, which is catéid Conditional weighted pushdown systems have a wider applica-
paths A traditional context-sensitive program analysis is to com- tions than those that weighted pushdown systems can directly ap-
pute precise analysis results, which are only (or as much as pos-plicable, by allowing an investigation on the calling contexts — the

General Terms Reliability, Verification

sible) involved with valid paths. We call program analysfack- (dynamic) history of procedure calls — during the analysis. A scal-
basedif it is derived by an encoding of the program as pushdown able stacking-based points-to analysis for Java is proposed in the
systems or its variants. framework of weighted pushdown systems [10], which is context-

sensitive in terms of valid paths. We lift this analysis to a more

precise counterpart in the framework of conditional weighted push-

down systems. The lifted analysis further enjoys context-sensitivity
Permission to make digital or hard copies of all or part of this work for personal or regarding obJe_ct-orlented features, such as call graph construction,
classroom use is granted without fee provided that copies are not made or distributedheap abstraction, and heap access. These context-sensitive proper-
for profit or commercial advantage and that copies bear this notice and the full citation ties are shown to be essential to the precision of points-to analysis
on the first page. To copy otherwise, to republish, to post on servers or to redistribute on large-scale programs [8, 16]

to lists, requires prior specific permission and/or a fee. :
PEPM'10, January 18-19, 2010, Madrid, Spain. This paper makes the following contributions:

Copyright© 2010 ACM 978-1-60558-727-1/10/01. .. $10.00

¢ We extend weighted pushdown systems to conditional weighted flows of the program. Typically, a weight element encodes the tra-
pushdown systems, and present model checking algorithms onditional program transformer, i.e., the changes of program states

it. Such an extension provides the ability of modelling wider
application scenarios for which weighted pushdown systems
are not directly applicable for enough precision.

practical application of conditional weighted pushdown sys-
tems. In addition to valid paths, the lifted analysis further enjoys
context-sensitivity with respect to heap abstraction, call graph
construction, and heap access.

In the remainder of the paper: Section 2 gives a brief review on

weighted pushdown systems and an application to stacking-based GPYc,C) =

points-to analysis for Java. Motivations for extending weighted

pushdown systems are discussed in Section 3, by illustrating oc-
casions on which program analysis by weighted pushdown sys-
tems is not precise enough. We present conditional weighted push-

down systems and model checking algorithms on it in Section 4.
A lifted stacking-based points-to analysis algorithm by conditional

(in the abstract domain), @ g combines data flows at the meet of
control flows; f ® g composes sequential control flonlsgenotes
identity function, and implies program errors.

We present a stacking-based points-to analysis for Java, as apggniTion 4. Given aweighted pushdown system=WP, S, f),
where P =

(@, T, A, go,wo). Assumes = |[rg,...,rx] be a
sequence of pushdown transition rules fore A with0 < ¢ <
k, and val(oc) = f(ro) ® ... ® f(rk). Given sets of regular
configurationC, C’ C Q xI'*, for each configuratiom € Q xI"*,

¢ the Generalized Pushdown Successor (GPS) problem is to find

{val(o) | &% ¢, € C};

¢ the Generalized Pushdown Predecessor (GPP) problem is to
findGPRc,C) = {wal(o) |c 2", € C};

¢ the Meet-Over-4ll-Valid-Path (MOVP) problem is to find
MovP(C,C") = {wal(o) |cS* ,ce C,c e C'}.

Based on the finding that a regular set of configurations is

weighted pushdown systems is presented in Section 5. Section 6closed under forward and backward reachability, efficient algo-

discusses related work and Section 7 concludes the paper.

2. Preliminaries
2.1 Weighted Pushdown Systems

DEFINITION 1. Apushdown systens a five-tuple P 5(Q,T", A, qo,
wo), whereQ is a finite set of states called control locatiofisis a
finite stack alphabet, and C Q xT'x @ xT'* is afinite set of tran-
sition rules, andy € @ andwo € T'* are the initial control loca-
tion and stack contents, respectively. A transition fgley, ¢, w) €
A is written as(p,y) — (q,w). A configuration of P is a pair of
(¢q,w) for ¢ € Q andw € IT"*. A computation relatiors- on config-
urations is defined such th@p, ') = {(q,ww’) forall w’ € T*
if there exists a transition rule : (p,v) — (q,w) € A, written

as(p, yw') = (g, ww’). The reflective and transitive closure-ef

is denoted by=*, and we writec =" ¢ if ¢ = ¢; =2 ..cn 2 ¢

foranyn € Nandec,c',c; € Q x '™ with1l < i < n and

o = [r1,72,...,mo). Given a set of configuration§', we define
pre*(C) = {c' | /="¢, foreachc € C,c’ € Q xT'*}, and define
post (C) = {c' | e=*¢, foreachc € C,c’ € Q x I'*}.

A pushdown system can be normalized (or simulated) by a
pushdown system for whicho| < 2 for each transition rule
(p,v) — {(g,w) [15]. In sequel, pushdown systems under con-
sideration are assumed to be normalized as above.

DEFINITION 2. Abounded idempotent semiring S =(D, ®, ®,0
,1), where0,1 € D, and

1. (D, ®) is a commutative monoid withas its unit element, and
@ is idempotent, i.eqg @ a = afora € D;

. (D, ®) is a monoid withl as the unit element;

. ® distributes over;

NVa€eD,a®0=0®a=0;

. The partial orderingC is defined onD such thatVa,b €
D,a C biff a ® b = a, and there are no infinite descending
chains inD.

a b~ wWN

By Def. 5, we havé is the greatest element.

DEFINITION 3. A weighted pushdown systeis a triplet W =
(P, S f), where P= (Q,T', A, go,wo) is a pushdown system,=S
(D,®,®,0,1) is a bounded idempotent semiring, andA — D
is a weight assignment function.

When developing program analysis in the framework of WPDSs,

rithms for solving the GPS and GPP problems are proposed us-
ing P-automaton techniques [13]. MOVP problems can be solved
based on the results of solving either GPS or GPP problems. We are
aware of two off-the-shelf implementations of weighted pushdown
model checking, Weighted PDS Librahand WPDS++.

2.2 Stacking-based Points-to Analysis by WPDSs

We show how to yield program analysis by weighted pushdown
model checking, using the points-to analysis algorithm in [10] as
an example. Points-to analysis is a prerequisite of precise program
analysis on objected-oriented programs. It aims at computing a
points-to relation (denoted by») that maps a variable of reference
type to the set of objects it may point to at runtime. In particular,
a context-sensitive points-to analysis distinguishes the calling con-
texts in which a points-to relation is valid.

We apply a context-insensitive abstraction on heap, such that a
unique abstract heap object models concrete heap objects allocated
at the same heap allocation site. Thus, the number of abstract heap
objects are syntactically bounded to be finite. The set of abstract
heap objects is denoted 9% j, and the set of reference variables
(in the abstract domain) is denoted Bgf. In contrast to the
cloning-based approach, calling contexts are entirely managed by
the pushdown stack.

DEFINITION 5. LetP be the powerset constructor. We define
={\z.s | s € P(Obj)} and Dy = {Az.xUs | s € P(0bj)},
and a bounded idempotent semiring=S D, &, ®, 0, 1), such that

¢ The weighted domaify = D; U D, U {0};

e 1 = \z.x, denoted by:d;

o di®do =di1 Ddo = Ax. d1(£lf) Ud2($) f0rd1,d2 S D\{O}
e d®0=0®d=0 ford € D;

To be self-contained, Definition 5 recalls the bounded idem-
potent semiring used in the analysis, whetes € D; means
that a reference points to the set of abstract heap objecad
Az.x U s € Dy means that a reference may keep unchanged along
some paths and point toalong others. It is easy to see that, both
the distributivity of® over® and the associativity ad hold.

ExamMpPLE 1. A Java code snippet is given in Fig. 1(a), and its en-
coding as weighted pushdown systems is given in Fig. 1(b), where
o' denotes an abstract heap object allocated at lingenv and sp

L http://www.fmi.uni-stuttgart.de/szs/tools/wpds/

the bounded idempotent semiring is typically used to model data 2 http://www.cs.wisc.edu/wpis/wpds++/index.php

0. public class Mai 1. public class Maif
1 public static void main(String[] argg) 2. public static void main(String[] argg)
2 Objectz; = new String(); 3. Aa=newA();
3. Objectzs = new Object(); 4. Object ¢ = foo(a);
4, Objecty: = fi(z1); 5. Object i = A.get(a);
5. Objectys = fi(x2); 6. Integer inti = (Integer) i;
6 System.out.printlnf .equalsg2)); 7. A b =newB();
7 } 8. Object d = foo(b);
8 public static Objecf; (Object a}{ 9. Object s = B.get(b);
9. return a; 10. String strs = (String) s;
10. } 1. }
11. } 12. public static Object foo(A XJ
(a) A Java Code Snippet 13. return x.set();
14.
ro: (Henv,sp) — (Henv, main) id 15. }
ro: (Henv,main) — (z1,main Az.{o®} 16. public class A
r3: (Henv,main — (zo,main) Az.{o®} 17. Objectf;
ra: (z1,main < (arg; , fils) id 18. Object[] arr;
ry: (rety,li) — (yi, main) id 19. A(){ this.arr =new Object[1]; }
s (x2,main) — (arg, , fi Is) id 20. public Object set(}
Ty (retg,ls) — (y2, main) id 21. this.f = new Integer(5);
rs: (argy, f1) < (a, f1) id 22. this.arr[0] = this.f;
ro: (a, fi) < (rety,, f1) id 23. return this .f;
ro: (rety, fi) < (rety€) id 24}
25. public static Object get(A X)

(b) Weighted Pushdown System Encoding 26. return x.arr[0];

Figure 1. A Java Code Snippet for Showing Valid Paths })
29. public class B extends A

30. public Object set(y

are fresh symbols to denote the abstract heap environment and the 31 this.f = new String();
program entry point, respectivelyiet and arg are fresh variables 32. this.arr[0] = this.f;
to denote return values and formal arguments, respectively. These 33. return this .f;
variables are indexed with their method scope if necessary. 34. }

As shown in the figure, variables are encoded as control lo- 35. }

cations, methods, as well as return points of procedure calls,
are encoded the stack alphabet. For any variablec Ref,
MOVP(C, @(v))(v) returns the set of objects thatmay point to,
whereC' = {(Henv, sp)} and @Q(p) = {(p,w) | w € T'"*}. The
points-to analysis precisely infefg — 0?} and {yz — 0°}. In
contrast, an context-insensitive analysis would infer mix them. This 55 weighted pushdown systems. For instance, the failure of prov-
example illustrates the featured power of stacking-based program jng downcast safety for this example is attributed to, (i) context-
analysis regarding valid paths. insensitive heap abstraction (at line 19), such tfiadrr ando” .arr
point to the same objeet'?; and (ii) mixing field read at line 26
under different calling contexts.

Fig. 3 illustrates the imprecision caused by the construction of
a context-insensitive call graph regarding the program fragments.
‘Each call edge is labelled witt), and its corresponding return

EXAMPLE 2. We consider the following analysis clients on the €dge is labelled witt(s)’, for 1 < i < 4. There are two valid
Java code snippet in Fig. 2: control flows(1)-(2)-(2)-(1)" and(3)-(4)-(4)"-(3)" starting from
. .) . the main() method. By encoding the program as (weighted) push-
* whether variables andd are aliased, i.e., whether these vari- gown systems, it is guaranteed that any call and return edges are
ables point to the same objects at runtime; correctly paired with one another. However, invalid control flows
* whether downcasts at line 6 and 10 are safe, i.e., whether the of (1)-(4)-(4)’-(1)" and (3)-(2)-(2)’-(3)" still remain when pro-
returned value of calling get() can only point to Integer objects ducing the analysis results, because control flows along ed@yes
atline 6 and String objects at line 10, respectively. and(4) depend on the type of objectamay point to at line 13, i.e.,
obeying to the semantics of dynamic dispatch.
We can conclude that at runtime, (i) ¢ and d are not aliased,
and (ii) both downcasts at line 6 and 10 are safe. However, we . .
cannot infer the correct answer by performing the aforementioned 4. Conditional Weighted Pushdown Model
stacking-based points-to analysis, which imprglcisglly infers that, Checking
any of variables c, d, int, and stts may point to{o~", 0°" }. . .
The imprecision is due to the fact that, sorcr>1{e kinds c];f data flows 4.1 Conditional Weighted Pushdown Systems
are sensitive to the calling history because of object-oriented fea- We extend pushdown systems to conditional pushdown systems, by
tures, but such dependency is missed when the program is modelledurther associating each transition rule with conditions that specify

Figure 2. A Java Code Snippet for llustrating the Needs of Condi-
tional Extension of Weighted Pushdown Systems

3. Motivations

We use Example 2 to illustrate typical occasions on which the
aforementioned points-to analysis by WPDSs is not precise enough

main A.set()
I this.f = new Integer(5)
Aa=newA(); foo(Ax) return this.f;

(1)
l4: Object ¢ = foo(a);

|

Ab = new B();
Is: Object d = foo(b); 4\

~
(3)
N

this.f = new String();
N return this.f;

@™
N
N

Figure 3. lllustrating Context-Insensitive Call Graph Construction

when this rule can be applied, and correspondingly lift weighted
pushdown systems to conditional weighted pushdown systems.

DEFINITION 6. A conditional pushdown systeiis a 6-tuple R =
(Q,T, A, C,qo0,wo), WhereQ is a finite set of control locations,
T" is a finite stack alphabet] is a finite set of regular languages
overl'y) A, C Q xI' x C x Q x I'" is the set of transition rules,
andgo € Q andwy € T'* are the initial control location and
stack contents, respectively. A transition r@ley, L, q,w) € A,

is written as (p,) L (¢,w). A computation relation=-. on
configurations is defined such thas, vw') =. (g, ww’) for all

. . - L
w' € I if there exists a transition ruldp,v) — (¢,w) and
W' € L, written as (p,yw’) =. {(g,ww’). The reflective and
transitive closure o&. is denoted by=-7, and for anyn € N, we
write ¢ =7 ¢ if ¢ e 01 = ooon =2 ¢ fore,d,e; € Q x T
withl < i <mnando = [r1,r2,..., ™n].

Note that, for the sake of efficiency, we do not play a condition

Assume condition automatd; = (S;, %, d;, 8, Fi) with ¢ €
{1, 2}. We define the product automatéof A; andA,, denoted
by A1 x Az, suchthatd; x Ay = (S X S, X, 4, (31, $2), F), where
(5(81,82) = (51(81),52(82)) for s; € S with¢ ¢ {1,2}, and
F=F1 XS US X Fa. LetA = {Ay,...,A,} be afinite set of
condition automata that have the same input alphabet. We denote
by 11 <i<nA; the productA; x A; x ... x A, and bys; the i*"
component of a statefrom Il1<;<,A;, i.e.,s; € A;. Itis easy to
see that]I; <;<,A; iS a condition automaton.

DEFINITION 8. Let ¢ be a function that designates a condition
automatonA with respect to any given regular language L, such
that (i) A has minimal states fo£(A) = L; and (ii) for regular
languages LL' (over the same alphabet), condition automath)
and¢(L") are identical if L= L’, otherwise the states gf(L) and
¢(L") are disjoint.

We also denote brev(w) the reverse of a word from some
language, and denote by® the set{REV(w) | w € L} of all
reversed words frond.

4.2 Solving Conditional WPDMC

As shown in Fig. 4, Algorrans translates a conditional weighted
pushdown system to a corresponding weighted pushdown system,
by extending the stack alphabet. The idea of the translation is
to synchronize the underlying (weighted) pushdown system and
the product automatoilo<;<,A; = (D,F,P,S,P), with read-

ing the stack symbols bottom-up. In sequel, we fix a CWPDS
We = (P, S, f) with P. = (Q,T',C, A, qo,70), and letW,
(P, S, f') be the WPDS translated frofi. by Algo. TRANS with
P= (Q7 F/7 A7 qo, ’Y(’))

DEFINITION 9. A configuration(q, (yn,S:)(Yn—1,Sa—1)---(70, %))
of W, is consistentf s, = sandB(s;, v:) = si41 for 0 < i < n.
The set of consistent configurationslof is denoted byonfs.

DEFINITION 10. We define a functiop: Confs — (QxT")* that
maps each consistent configuration1df to some configuration
of W,, such that for any(q, (vn,S:)(Yn-1,Sn-1)...(70, %)) €
confs, p({q; (Yn,Sn)(Yn-1,Sn-1)---(70,%0))) = (@, Yn¥n—1--70)-

LEMMA 1. pis bijective.

Proof By the definition ofp and consistent configurations,is

on the whole stack, because the topmost stack symbol is alreadyeasily seen to be injective, based on the fact that the product au-

specified by the underlying pushdown transition rule.

DEFINITION 7. A conditional weighted pushdown systeim a
triplet W, = (P.,Sf), where R = (Q,I',C,A,qo,%) is a
conditional pushdown system,S (D, ®,®,0,1) is a bounded
idempotent semiring, and:fA — D is a function that designates
a weight to each pushdown transition rule.

We lift model checking problems in Definition 4 to conditional
weighted pushdown system, denotedd®s., GPP. and MOVP,,

respectively, which can be solved by a reduction to model checking

problems on weighted pushdown systems.

Given aregular languagdk, acondition automatomith respect
to L is a deterministic finite state automaton, denoted/y=
(S,%,0, s, F), whereS is the finite set of states] is the finite
input alphabety : S x ¥ — S is the total transition function,
$ € S is the initial state, and” C S is the set of final states.
The language recognized by the automatois denoted byC(A).

Without loss of generality, condition automata under consideration

have noe transitions. We extend to be the type o6 x ¥* — S
in the standard way, such that for eache S §(s,e) = s and
0(s,wa) = 0(0(s,w), @) for eachw € ¥* anda € .

tomatonll; <;<,A; is deterministic. Furthermore,can be proved
surjective, becaud®is total. 0

According to Lemma 1, we are able to define the inversg, of
denoted by 1.

LEMMA 2. Given a computation sequeneg = c¢; of W,. Let
ch = pt(cs) andc, = pt(c:). There exists’ of W, such that

o
¢y =* ¢ with val(o) = val(c’).

Proof By an induction on the transition steps of ¢s =3 c:.
Whenm = 0, the proof is trivial. Assume that the lemma holds

form = k, i.e., forc, =" ¢, there exists’ such that, =* ¢,
with val(o) = val(o’) of W;. Leter = (g, VnYn—1.--70), and
i =p Her) = (g (> $0) (Yn—1,80-1) - (70, %)) With sy = &.

L;

Assume that there exists a transition rule: (g¢,v») —
(p,w) € A, such that; = ¢ for some configuration € @ x T..
By the definition of=., we havec (p,wyn—-1...70) and
Yo An_1 € L(A;), whereA; = ¢(L). Since®(so, yo...ym_1)
=s,, we know(s,); is a final state ofd;. By Algo. TRANS, there

existsr’ : (q, (Yn,Sn)) — (p,w’) € A’, such thatf(r') = f(r).
Sinceval(o-r) = val(o)®f(r), we haveral(o-r) = val(c’'-r')
by induction hypothesis.

Furthermore, there exists = ¢’ with ¢’ = (p,w’(Yn—1, Su—1)
...(70,%0)). Itis not hard to see that = p~!(c), by a case analysis
onw. Forinstance, itv = v;, € T, thenw’ = (v;,,s,) € T by the
algorithm construction and thus = p~*(c). We can conclude the
lemma holds whem = k + 1, and thus prove the lemma. O

LEmMMA 3. Given a computation sequence=-" ¢, of W, where
cs and ¢, are consistent. Let, = p(cs) andc; = p(c;). There

existso’ of W, such thate, =} c; with val(o) = val(c’).
Proof Similarly to the proof of Lemma 2, by an induction on the
O

transition stepsn of ¢ =™ ¢;.

THEOREM 1. Given configuration’s,C; C Q x I'" of W,
and configurations”;,, C; C Q x (T')* of W, such thatC’,
{p™c) |ce CsyandC; = {p~'(c) | c € C:}. We have

MOVP.(Cs, Ct) = MOVP(C4, Cy)

Proof Becaused is idempotent and commutative, the proof is
straightforward by Lemma 2 and 3, according to the definition of
the MOVP problems. O

4.3 Discussions

Consider the translation algorithm in Fig. 4, it is easily seen that
IT'| < |[| % |B] and|A’| < |A] x |B)], because the product au-
tomatonIl;<;<, A; is deterministic by construction. LéH | be
the length of the longest descending chain of the weighted do-
main that may occur in the problem instance. i&tand —(be
states and transitions of tffe-automaton accepting the given reg-
ular set of configuration§’, respectively. According to the com-
plexity results of solving WPDSs [13], by extending the stack al-
phabet, (i) the time complexity of computing pf€’) for W, is
O(|®] |Q? |A| |H]), and (ii) the time complexity of computing
post (C) is O((19 |Q| |4 ne + 1511Q1 1A n1 + Q] n0) | H),
wherens = [{(p,7) | (p,7) = (@',7'7") € A}, n1 =[Q\Q],
andng = | —o |. We can conclude that the time complexity in-
crease is linear ifb)| for solving pre (C'), and polynomial in |
for solving post(C), after extending WPDSs to CWPDSs.

There is an alternative approach to conducting the synchro-
nization algorithm in Fig. 4, by extending control locations of

the underlying pushdown system. The construction resembles
the extension on the stack alphabet. First, a product automaton

Micicn Ai = (B,T,8,5 P) over all regular conditions is built,

and then for each transition rute: (p,~) & (q,w) € A with

A; = (S:,T,8;, 8, F;), the transition ruleg\’ of the translated

WPDSW; are generated as follows: for eask D, A’ consists of
8

% (#:9,7) = (@9,), ifr:(p) 2 (gv)

ands; € Fj;
(9:9),7) = (@96, ifr:(p7) (g6
ands; € Fj;
% ((1,9),7) = (@, 1),aB), if7:(p,7) 2 (g,aB)

ands; € F; andt = B(s, 3).

LetW, = (P,S f') with P = (Q',T", A’, g5, v0). We know
Q'] < |Q| x |B| and|A’| < |A| x |B], because the prod-
uct automatoril;<;<, A; is deterministic. By extending control
locations, (i) the time complexity of computing p(€') for W,

is O(1B]> |QI* |A| |H|), and (ii) the time complexity of com-
puting post(C) is O((|8° Q| |A] nz + |87 Q| |A] n1 +
|8]|Q| no) | H|). Therefore, the translation by extending the stack
alphabet is more efficient than the translation by extending control
locations in principle.

5. Applications

CWPDSs provide the facility of modelling wider application sce-
narios than those that WPDSs are directly applicable. These appli-
cation scenarios beyond the scope of WPDSs are characterized by a
dependency on the dynamic calling histories of the program. Such
a well-known application is analyzing programs with local security
checks on the state of the stack frames at runtime, e.gstéuok
inspectionrmechanism in the Java sandbox model for security.

Taking the simple stack inspection in Netscape 3.0 as an in-
stance, when a sensitive operation is to be launched, the stack in-
spection system will check the calling stack in a top-down man-
ner: (i) the access would be allowed if a procedure with enabled
privileges is found, and (ii) an exception would be thrown other-
wise. The stack inspection properties can be modelled as regular
languages, and it is straightforward to yield algorithms for program
analysis with stack inspection by CWPDSs.

In the following of this section, we present a new practical
application of CWPDSs to program analysis with object-oriented
features, using points-to analysis as an example. Points-to analysis
for object-oriented languages is a challenging task, because call
graph construction and points-to analysis are inter-dependent due
to dynamic language features like late binding.

5.1 Lifting Stacking-based Points-to Analysis by CWPDSs

We lift the stacking-based context-sensitive points-to analysis by
weighted pushdown systems [9] to a more precise counterpart in the
framework of conditional weighted pushdown systems. The lifted
analysis is also field-sensitive and flow-insensitive, with call graph
constructed on-the-fly.

Our analysis is an iterative procedure that computes two global
data structures: the call gragh and the points-to relatioR of
the program. Initially, both the call graph and points-to relation are
empty sets. The analysis starts with analyzing the program entry
points (denoted by/y), and update§ andR until convergence. In
each iterative cycle,

¢ First, the program (i.e., the reachable methods detected so far)
is encoded as conditional weighted pushdown systems;

e Second, points-to information on the partial program is detected
by conditional weighted pushdown model checking;

e Third, obeying to the semantics of Java virtual machine, new
call edges, as well as new reachable methods, are (potentially)
discovered according to the updated points-to information.

Abstraction

DEFINITION 11. We denote by the set of classes, and denote by
¥ the set of method signatures. A method is identified by a pair of
its enclosing clas€ € C and method signatur¢ € ¥, denoted

by C.¢. The set of method identifiers is denoted’by C C x .

DEFINITION 12. LetL be the set of program line numbers, and let
RetPoint C C.¥ x L be the set of return points of method invoca-
tions. We defin€ = (C.¥ x {_}).RetPoint™ as the set of abstract
calling contexts, where * is a fresh symbol that indicates any-
where. For(m,_ Jw € Cwithw = (mn,ln)...(m1, 1) (mo, lo),
we definetazl((m, -)w) = w, and extend this this function to a
set of calling contexts element-wise.

Areturn point(m, !) € RetPoint refers to a method invocation Alz =710.f(r1,..;m)] = AcU A, U A,

site at linel in the methodm. Being flow-insensitive, a calling wil(L) oy,
context (m, -)(mn, In)...(m1,11)(mo, lo) € C is with respect whereA. = {(ro, C.1) (this® ", C"Y rp)}
to the methodn_ that i_s called most recently, rather than specific U gﬂenv, Ca) & (Henv, C’.1)’ rp)}
program execution points.

tail(L) Y
. U el (i, C) = (arg, @Y, C"9)" xp)}
DEFINITION 13. LetC C C. We denote by an equivalence re-

- > S ‘ Ol) . ' tail(L) '
lation on C' which partitionsC' into disjoint (nonempty) equiva- A = {(ret 7Cé-w'> — (ret ,TP)}
lence classes with a finite index. The set of all equivalence classes U {(Henv, C’ 4)’) < (Henv,rp)}

in C with respect tov is denoted by’'/ .. A {<retcl'w/ rp) tail(L) (2,)}
t =) y e
DEFINITION 14. A context-sensitive call graph of a program is U {(Henv, r ¢
,Tp) — (Henv, C.¢))}
G = (M,E), whereM C C.¥ andE C M x £ x (P(C) U for eachC’ .+’ and L with (C.4p, 1, L, C’'.4)") € E, and

{_-}) x M. An elementm, i, L,m’) € E is a context-sensitive call

L 1" is the method signature gf andrp = (C.%,1).
edge, written asn -~ m'. We define the set of calling contexts of

amethodn asAcc(m) = {(m, -)(mn, ln)...(m1, 1) (mo, lo) € Alz =C" . f(r1,..smn)] = AcU A, U Ay
C | mo 080 1y 5y, ek m}. whereA. = {(Henv, C.9) & (Henv, C' .9’ rp)}

C ! ! Yy
DEFINITION 15. We define the set of abstract heap objects as U™, cpeed (T, C0) = (arg, ¥, C" 4" rp)}
0bj = (LU{_})xC.¥xCx(P(C)), and defindR : RefxP(C) — A, = {(xet® ¥ ") N (ret® " rp)}

2%7 pe the function that stores the points-to relation. ¢
U {(Henv, C’.¢)') < (Henv,rp)}

In Java, a heap object is a dynamically created instance of either A, = {<retcl'w, rp) C (2, Cb)}

aclass or an array. Reference variables are typically local variables,

method parameters, array references, and static or instance fields U {(Henv, rp) & (Henv, C.))}
of reference types. Fields and array references can be regarded for eachC’ .4’ with (C.ap, 1, _,C’.9)") € E, and
as global variables. The abstraction on heap objects in Def. 15 is 1" is the method signature gf andrp = (C.%,1).
context-sensitive, andbj is finite becaus€/ . has a finite index.
Furthermore, we take an over-abstraction on arrays such that Figure 6. A[-] : Stmt — P(—)

indices of an array is ignored, i.e., members of an array are not dis-
tinguished. We denote Hy] the unique representative for all mem-
bers of an array instanee After bounding the set of abstract heap
objects to be finite, the nesting of arrays and field references be-
come finite correspondingly. In contrast to cloning-based approach,
there is a unigue abstract reference for each local reference variabl
in the analysis, and global references are cloned for methods inside
which they are referred to.

Modelling Analyzing

Let Stmt be the set of program statements. We denotetfy] : Points-to information is detected as model checkin_g prc_)blems on
stmt — 7P(—) the function that translates the program into the CWPDS encoded from the target program, as given in Def. 16.
transition rules of conditional weighted pushdown systems. Fig. 5
gives the translation schemes on statements at (ivel) in the
methodC'.¢, and these statements do not contain explicit metho
invocations. For simplicity, we omit the weight associated with a
transition ruler if f(r) = id. In the traditional way of modelling
a program as a pushdown system, global variables are explicitly
passed as parameters along procedure calls and returns. In contrast, R(v, L) = MOVP.(C, L)(v)
we model the heap memory as the global data structure R)e.,
The heap memory provides global references with cached datafor €achL € Acc(m)/~, whereC' = {(qo,wo)}.
flows (i.e., A4, Ay), when they are locally referred inside methods
(only necessary for field read). . . .
Table 6 gives translation schemes on statements that contains _>°!ving themovp. problem of . is reduced to solving the
explicit method invocations, wherd, denotes method calls,. MOvVP problem of the WPDSV; translated fromiV. by the al-
denotes method returns, ant} denotes data flows from return 90Tithm in Fig. 4. To solveuove(Cs, Cr) on Wr, we can (i) first
points to the corresponding calling procedures. Note that, the heapt®MPute post(Cs), and then (i) read out %gd‘ combine the value
environmentenv of the program is explicitly passed (as a parame- ©Of all paths betweed’s andC;. Let H = 2™ be the length of
ter) among any procedure calls and returns, to hold the thread con-the longest descending chain of the weighted domain, Zaitie

= {(Henv, sp) & (Henv, C.y) | Cp € Mo}, andf(r) = id
or eachr from¢.

d DEFINITION 16. Let W. = (P, S f) be the conditional weighted
pushdown system encoded from the target program, where: P
(Q,T,C, A, qo,wo}). For any reference € Ref in the methodn,

trol of the program. time to perform eithe® or &. Assume the equivalence relation
LetW, = (P, S f) be the conditional weighted pushdown sys- taken in the analysis has a finite indexThe time required to per-

tem encoded from the target program, where= (Q, T, C, A, qo, form step (ii) can be ignored, and the worst case time complexity

wo}). The set of control locationg is encoded frorkef U{Henv}. of performing step (i) i0(k |8)* [Re£|” [Stmt| [0bj| [C.¥| H T),

The stack alphabét is encoded fron€. ¥ URetPoint. The choice whered is states of the product of all condition automata/af.

of the bounded idempotent semiring is the sameSan Def. 5. Provided with the newly-detected points-to information, the call

Let g0 = Henv andwo = sp. A setd of dummy transition rules graph is potentially updated with new call edges. Briefly, for each
leading to the actual program entry points is introduced, such that statemens in the method”'.+) that dispatches a method invocation,

of a large number of methods. Though this analysis scales very

8 {(C,1,L,C" ")}, if scontainsr. f(r1, ...,) well to Iarge-s_cale Java _applications, a loss of precision is caused
% and the method?’.w’ will be by approximating recursions.

called according to the JVM _ Reps, et al. present a g_eneral fr_amevyork for program anal_y-

E - EU semantics,when € R(ro, L) sis based on CFL-reachability [12], in which a points-to analysis
for 7o € Ref. for C programs is discussed by formulating pointer assignments

{(Cap,1,,C")}, if s containsC”. f(r1, ...,) as productions of context-free grammars. Inspired by this work,

- for ¢’ € C. Sridharan, et al. formulated Andersen’s analysis for Java [17] as
balanced-parentheses problems with respect to operations of field
wherey)’ is the method signature ¢t read and write. A novel refinement-based analysis is later proposed

in [16]. It firstly performs a context-insensitive analysis, and later
recovers the precision on-demand by removing imprecise propaga-
We illustrate how to conduct the lifted points-to analysis, using the tion of points-to sets as violating a grammar for balanced parenthe-

5.2 Examples

Java code snippet in Example 2. ses, with respect to both heap access and method calls. The afore-
) i mentioned refinement, as well as demand-driven manner, are essen-
DEFINITION 17. Given an alphabef” and a fixedk, and let tja| to the success of this analysis regarding good performance on
kind(w) denote the number of distinguished symbols appearing precision and scalability (measured by downcast safety analysis).
inw € I'". Forawordw = 7y071...7» € I'", we denote by(k) SPARK[7] is a widely-used test-bed for experimenting with vari-

the prefixw’ = Y071...7m Of w with 0 < m < n, such that ous Java points-to analysis algorithms. It supports both equality and
kind(w') < k and kind(w'ym+1) > k whenm < n. We define sybset-based points-to analysis, and provides various algorithms
an equivalence relation- onI'™* such thatr ~ y for z,y € I'" iff for call graph construction, such as class hierarchy analysis (CHA),
z(k) andy(k) are the same. rapid type analysis (RTA), on-the-fly algorithms such as the afore-
mentioned cloning-based context-sensitive points-to analysis for
Java [18]. It also provides variations regarding field-sensitivity. The
BDD-based implementation of the subset-based algorithms further
improves the efficiency.

Another stream of research examines calling contexts in terms
of sequences of objects on which methods are invoked, called
object-sensitivity [11]. Similar to call-site-strings based approach,
the sequence of receiver objects can be unbounded and demands
d. Proper approximations. A recent empirical study compares the pre-
cision of subset-based points-to analysis with various abstractions
on context-sensitivity [8]. It shows that, context-sensitivity is cru-
cial to the analysis precision in practice, and points-to analysis with
object-sensitivity excels at precision and is more likely to scale.

For the sake of practical scalability, a context-insensitive ab-
straction on heap is commonly adopted in most of points-to anal-
ysis algorithms. Recently, some efforts are made on designing
points-to analysis with context-sensitive heap abstraction, e.g., the
analysis with full heap cloning within acyclic call paths in [6], and
the analysis with bounded heap cloning by merging equivalent call-
ing contexts in [19].

One key issue of conducting program analysis by conditional
weighted pushdown systems is choosing an appropriate equiva-
lence relation~ that finitely partitions calling contexts. In practice,
it would induce a tradeoff between precision and scalability. Def.
17 provides an example of choosing with taking Kleene star into
account. It is easily seen that, the insights behind is how deep the
calling context would be looked into, and we will fix= 3 when
illustrating the example.

Fig. 7 gives the core parts of the encoding (organized metho
wise) of the program in Fig. 2 as a CWPDS. Because pro-
gram lines are globally numbered, we simply writdor a re-
turn point (m,1), and write [{,C, L] for an abstract heap ob-
ject (I,m,C,L). In this example, the sef of regular condi-
tions is {{ls}, {la}, {ls}, {I7}, {ls}, {lo}, {lisla}, {lLisls}, C}.
Applying a context-sensitive heap abstraction, abstract heap ob-
jects allocated at line 9 are distinguished|&s, Objecf], 3] and
[119, Object], l7], respectively. The lifted analysis can precisely
answer both questions posed in Example 2.

6. Related Work and Discussions

6.1 Points-to Analysis 6.2 Stacking-based Program Analysis
Though WPDSs are well understood as a generalized framework
for analyzing programs with procedures on certain properties,

many problems remain to be investigated like,

Points-to analysis has been an active field over the past two
decades. At present, it remains a challenging task to design a scal
able yet precise analysis under the current popular computing re-
sources. Existing practiced points-to analysis are cloning-based to e whether stacking-based analysis can provide the same precision
achieve context-sensitivity, as briefly discussed below. as cloning-based analysis on objected-oriented features, and
One of the pioneer work is Andersen’s points-to analysis for C
programs [2]. It is a subset-based, flow-insensitive analysis that is
encoded as constraint solving problems. More specifically, pointer
assignments are described by subset constraints; e-g; induces
pta(y) C pta(z). This analysis is the basis of many points-to anal- To tackle with the second problem, we propose and develop
ysis algorithms afterwards. The scalability of Andersen’s analysis a scalable stacking-based points-to analysis for Java [9], with no
has been greatly improved by efficient constraint solvers. Ander- restriction on recursive procedure calls. The first step to scalability
sen’s analysis was leveraged to Java by annotated constraints [14].s that, instead of passing global variables explicitly as parameters
The first scalable cloning-based context-sensitive Java points-along procedure calls and returns [12], we model the heap memory
to analysis is presented in [18], in which programs and analysis as a global data structure, which provides global references with
problems are encoded as rules in logic program Datalog. To handlesynchronized cached data flows. To further accelerate the analysis,
recursive procedures, calling contexts are cloned after merging we propose a two-staged iterative procedure, to diet most of local
loops as equivalent classes. The BDD (Binary Decision Diagram) iteration cycles for a substantial speedup.
based implementation, as well as the approximation on recursions, In this paper, we investigate the precision of the stacking-based
enable the analysis to scale. As pointed out in [8], there are usually analysis and propose CWPDSs. Our solution is inspired by the ex-
many loops within the call graph, each of which typically consists tension of LTL model checking on pushdown systems from simple

¢ whether stacking-based analysis can scale well to large practi-
cal applications. Retaining context-sensitivity within recursive
procedure calls is the major bottleneck to scalability.

valuation to regular valuation [3]. The authors propose techniques form partitions provides a way of encoding demand-driven style of
for solving model checking problems with regular valuation with analysis regarding precision.

an eye on efficiency. They also present algorithms for checking

LTL properties on pushdown systems with check points, for pro- Acknowledgments

gram analysis with stack inspection. . . .

Our reduction algorithm by extending the stack alphabet resem- This research is supported by STARC (Semiconductor Technol-
bles one of their proposals with the following difference. In our ©9Y Academic Research Center). The authors would like to thank
case, configurations that cannot be induced-hyhave to be ex- ~ anonymous reviewers for their valuable comments.
cluded from theP-automaton construction, otherwise the invalid
value would be propagated. To this end, instead of modifying model References
checking algorithms on WPDSs, a simple check is performed dur- 1) R Alur and P. Madhusudan. Adding nesting structure to wordis.
ing the translation (Fig. 4). Besides, for the sake of efficiency, we ACM, 56(3), 2009.
place a condition on stack contents excluding the topmost stack
symbol. Such a concern has a slight effect on acceptance conditions
of condition automata, such that the initial state can be accepted. [3] J. Esparza, A. Kucera, and S. Schwoon. Model checking LTL with

In contrast to on-the-fly points-to analysis, an ahead-of-time regular valuations for pushdown systensf. Comput, 186(2):355—
points-to analysis is proposed as one run of weighted pushdown 375 5003

model checking [9]. The notion of valid paths are enriched such . .
. . . ’ . [4] A. Lal, T. Reps, and G. Balakrishnan. Extended weighted pushdown
Ejhat '?Vﬁ“d Co(;]t';OI Ilot\st tht?']t violate ‘]_ava sen;l_ar:tlgsdor; ?lynar‘rjrlﬁ systems. IrCAVfOS: Proc_e_edi_ngs of the 17th International Conference
ISpatch are detected as those carrying contlicted datarlow. The oy computer Aided Verificatiopages 434-448, 2005.

analysis enjoys context-sensitivities regarding both call graph con- [5] A. Lal and T. W. Reps. Improving pushdown system model check-

struction and Va".d paths. . ing. In CAV'06: Proceedings of the 18th International Conference on
Tremendous improvements have been proposed on weighted computer Aided Verificatiopages 343-357, 2006.

pushdown systems. Extendeq weighted pgshdown Systems (EW- 6] C.Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-
P_DSS) are propos_ed, to provide a convenient abstraction mecha- 2 to analysi’s with heap (’:Ioning practical for?he real worEl.GPLXN
nism for local variables [4]. EWPDSs exclude the call to return Not, 42(6):278-289, 2007.

edge in the supergraph abstraction. Instead, a merge function is pro-
posed to restore the local variables of the caller when the callee
returns. Besides, a graph-theoretic algorithm is used to improve
the running time for model checking on (extended) weighted push-

down systems [S]. . . worth it? InCC'06: Proceedings of the 15th International Confer-
. Alur et al. proposed an interesting class_qf language, so-called ence on Compiler Constructiprolume 3923 o NCS pages 47—64,
visibly pushdown languages (VPLSs), by driving the stack opera- Vienna, Mar. 2006. Springer.

FIOI’IS (correspondingly, the stack height) W't.h.m.pUtS [1]. VPL is [9] X.Liand M. Ogawa. An ahead-of-time yet context-sensitive points-to
in between balanced languages and deterministic context-free lan- ™ 5,5 sis for Java. IRroceedings of BYTECODE'09 (to be available
guages, yet enjoys good closure properties and decidability results j5 ENTCS) York, Mar. 2009.

as regular languages. It would be interesting to see the possibility
of lifting regular conditions of CWPDS to VPLs.

[2] L. Andersen. Program analysis and specialization for the C program-
ming languagePhD thesis1994.

[7] O. Lhotak and L. Hendren. Scaling Java points-to analysis using
spark. InCC'03: Proceedings of the 12th International Conference
on Compiler Construction

[8] O. Lhotak and L. Hendren. Context-sensitive points-to analysis: is it

[10] X. Li and M. Ogawa. Stacking-based context-sensitive points-to
analysis for Java. IHVC’09: Hardware and Software: Verification

. and Testing, 5th International Haifa Verification Conference, to be

7. Conclusions and Future Work available in LNCSSpringer, 2009.

We extend weighted pushdown systems to conditional weighted [11] A- M_"_‘"‘r_‘o"f' A. Rountev, alnd. B]; G. Ryder. Paramete:ftf/\‘fd object

pushdown systems, by further associating each transition rule with Sl\‘/fe’lﬁggg{ 121r(f)c~)|1n_t2-1t02?)8a5 ysis for JaveACM Trans. Softw. Eng.

a regular language that specifies conditions under which the transi- ! ’ e - ’

tion rule can be applied. We show that, the model checking prob- [12] T- Reps. Program analysis via graph reachabilitylLIRS '97: Pro-

lem on conditional weighted pushdown systems can be reduced to ~ ¢€€dings of the 1997 international symposium on Logic programming

the existing model checking problems on weighted pushdown sys- pages 5-19, Cambridge, MA, USA, 1997. MIT_ Press_"

tems. The increase of time complexity for model checking prob- [13] T- Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown

lems on weighted pushdown systems after extending to condi- systems and their application to interprocedural dataflow anafsis.

tional weighted pushdown systems, is polynomial (including a lin- Comput. ngram'SS(l'z)'zoe_%g’ 2005. _ _

ear case) in the states of the product automata that recognizes thél4] A Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java

union of regular conditions. using annotated constraintSIGPLAN Not.36(11):43-55, 2001.
There are wider applications of conditional weighted pushdown [15] S. SchwoonModel-Checking Pushdown SysterR8D thesis, 2002.

systems than those that weighted pushdown systems are directly{16] M. Sridharan and R. Bdl. Refinement-based context-sensitive

applicable. We lift a stacking-based points-to analysis algorithm points-to analysis for Java. volume 41, pages 387-400, New York,
for Java in the framework of conditional weighted pushdown sys- NY, USA, 2006. ACM.

tems. In addition to the fundamental context-sensitivity in terms of [17] M. Sridharan, D. Gopan, L. Shan, and R. Bad Demand-driven
valid paths, the lifted analysis further enjoys context-sensitivity, re- points-to analysis for Jav&IGPLAN Not.40(10):59-76, 2005.

garding heap abstraction, call graph construction, and heap accesg18] J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias
These context-sensitive properties are shown to be crucial to the analysis using binary decision diagramsPIoDI'04: ACM SIGPLAN

analysis precision. Conference on Programming Language Design and Implementation
It would be interesting to evaluate the lifted points-to analysis in pages 131-144, 2004.

practice. A practical tradeoff between precision and practical scala- [19] G. Xu and A. Rountev. Merging equivalent contexts for scalable

bility is expected, by a proper choice of the equivalence relation heap-cloning-based context-sensitive points-to analysiSSiA '08:

over calling contexts. For simplicity, the choice-ofis uniform on Proceedings of the 2008 International Symposium on Software Testing

the entire program in the current presentation. The choice of uni- and Analysispages 225-236, New York, NY, USA, 2008. ACM.

Algorithm Trans
Input : A conditional weighted pushdown systdiif. = (P., S, f),
whereP. = (Q,T,C, A, qo,vo) WithC = {L1, ..., L}
Output: A weighted pushdown systew, = (P, S f’), whereP = (Q, T, A’, g0, 7))

0. letA = {A, ..., A} with A; = ¢(Lf) for 1 < i < n, and letll <i<nA: = (9,7, 8,5 P)
1. T":=T x 8 andy{ := (70,9
2. for eachr € A

30 i v (p,ry) S (g, v) with A = (Si,T, 64, 84,)
4. for eachs € B

5. if s; € F;

6. then ' := (p, (,9)) <= (g, (+,9))

7. A=A u{r'}andf' (r') = f(r)

8. if 1 (p,y) S (g, ¢) with A; = (Si,T, 64, 44, F)
9. for eachs

10. if s; e F;

11. then 7' := (p, (,9)) — (q,€)

12. A =AU {r'}andf'(r') = f(r)

13, if 7: (p,7) &% (g, aB) with A; = (i, T, 6, &, F)
14. for eachs,t € b

14. if s; € F; andt = B(s, 8)
15. then ' := <p7 (’77 S)> — <Qa (OQt)(ﬂ,S >
16. A=A U{r'}yandf'(r') = f(r)

Figure 4. An Algorithm Translating CWPDSs to WPDSs

tail(L)
—

Az = newT] = {r : (Henv, C.))

Ale =y = {{y, C9) = (2, C4))}

Al = (D)) = {{y, C9) = (&, C4))}

Alreturnz] = {{z, C.¢) & (ret,C.h)}

Al = @this ;] = {(this, C.v) E (2, Cp) Y U A,
C

whereA, = {r: (Henv, C.¢)) < (this,C.¥) | f(r) = Az {(,C,T,C)}}, if Cyp € Mo;
0, otherwise.

(z,C) | f(r) = Az.{(l,C, T, tail(L))} for L € ACC(C.ap)/}

Alz = @para@ete,g: T] = {({arg,, C.¢) & (z,Cap)} U Ap

whered, — {r: (Henv,C.¢)) & (argy,, C0) | f(r) = Ae (L, C,T,C)}}, if Cp € Mo;
0, otherwise.

Alz = y[i]] = {{[o]. C.¥) fai(” (x,C4) |0 € R(y, L) for L € Acc(C.)/~} U A,

Alyli] = 2] = {(z, C.) "2 ([o], C.4) | 0 € R(y, L) for L € AcC(C.b)/} U A,
whereA, = {r : (Henv, C.¢) & ([ol, C.9) | f(r) = Ax.sfors = R([o],C),0 € R(y,C)}

Ale = y.f] = {{o.f,C) "2 (2,C0) |0 € R(y, L) for L € Acc(Cap)/~} U Ay

Aly.f = 2] = {{z, C.) " (0.1, C) | 0 € R(y, L) for L € ACC(C.ap) /. } U A;
whereA; = {r : (Henv, C.t)) < (o.f, C.4b) | f(r) = Az.s for s = R(0.f,C), 0 € R(y, C)}

Figure 5. A[] : Stmt — P(—)

(Henv, sp) & (Henv, main) id

(Henv, main) < (a,main Az.{[ls,A,e]}
(a, main) & (z,foo l4) id
(ret™ 14) < (c, main) id

(a, main) & (t,fools) id
(ret® [5) < (i, main) id

(Henv, main) & (b, main) Az A[lz7,B,e]}
(b, main) & (z,foolg) id
(ret®, Is) < (d, main) id

(b, main) & (t,foolg) id
(ret® 1) < (s, main) id

A.set:

(Henv, A.seb & ([l3, A, e].arr, A.seb

(Henv, Ased 4 (15,4, ¢].1, Ased

(s, 8,1.f, Ased "2 ([T, Object], 5], A.seb
(Tt5, 4,11, Aset Hith popaset A sep
(ret™s® A.seb & (ret™s®)

A.get:

(Henv, A.get) & ([ls, A, e].arr, A.get)

(Henv, A.get) & ([l7, A, e].arr A.get)

(Henv, A.get) = ([[l10, Object], 15]], A.geb
(Henv, A.get) <Ml1970bjecﬂ 1-1], A.get
([lt10, Object], I3]], A. get) (retA 9 A.get)
([TT1o, Object], 171], Aget & (ret” o, A get
(ret™% A gety — ‘ < (ret™o ¢)

A:
l3

(Henv, main) —

~
-

([ls, A, €].arr,A)
([l7, A, e].arm A)

-~
-

. 7
(Henv, main) —

!
z, foo) pat (this™s® A setl;3)

C
ret™s® [13) < (ret™, foo)

&, (ret™, foo)

(
(
(z,f00) <> (this®S* B.setl;s)
(
(ret™, foo) & (ret™se ¢)

Az.{[l19, Object], l3]}
Az.{[l21, Integer, l13l4]}
id
id
id

Az.{[lig, Object], l5]}
Az.{[l1g, Object], I7]}
Ax.{[l21, Integer, li3l4]}
Az.{[ls1,String, lisls]}
id
id
id

Az.{
o

x.{[l19, Object],

“197 Obj(?.‘Cﬂ7 I3
71}

id
id
id
id
id

1}

Figure 7. Core Parts of the Encoding of the Program in Fig. 2 as Conditional Weighted Pushdown Systems

