Decidable fragments of FOL
 ~ solving polynomial constraints by QE-CAD ~

Mizuhito Ogawa@JAIST

Logic for software verification

- As description language
\checkmark Most of model checkers accepts temporal logic specification (e.g., LTL, CTL)
- As formal reasoning
\checkmark Inductive reasoning in higher order logic
- As automated reasoning
\checkmark Approximate system behavior (e.g., SAT/SMT)
\checkmark Limited class
Logic is useful in practice!
- Note. Theoretical complexity does not match practice.

FOL proving in software verification

- FOL formula for loop invariants
\checkmark Craig interpolation is a strong strategy
\checkmark Lots of FOL provers: Vampire, E, SPASS, ...
-Based on resolution (refined as superposition)
- FOL for quantitative properties
\checkmark Solving linear (in)equality
-Presburger arithmetic widely used as backend of SMT.
\checkmark Solving nonlinear (in)equality
-PID control design, though still limited to 7-8 variables only.

Solving (in)equality with integer coefficients)

- Linear (in)equations : addition and subtraction only
\checkmark Both on integers and real numbers \checkmark Algorithms:
-(Existential) Quantifier elimination,

$$
\begin{aligned}
& \text { e.g., } \exists \mathrm{y} .(\mathrm{x}<\mathrm{y} \wedge \mathrm{y}<\mathrm{z}+3) \text { is equivalent to } \\
& \mathrm{x}<(\mathrm{z}+3)-1=\mathrm{z}+2 \text { (on integers) } \\
& \mathrm{x}<\mathrm{z}+3 \quad \text { (on real numbers) }
\end{aligned}
$$

-Linear programming (LP), e.g., simplex method

- What happen if we add multiplication?
\checkmark Undecidable for integers (Hilbert's $10^{\text {th }}$ problem)
\checkmark Decidable for real numbers (Tarski, 1930)

Entrance exam of Japanese University

- Tohoku U. (2010) : Let $f(x)=x^{3}+3 x^{2}-9 x$. Find the condition for a such that, for each x, y with $y<x<a$,

$$
f(x)>\frac{(x-y) f(a)+(a-x) f(y)}{a-y}
$$

Approaches

- For polynomial inequalities
\checkmark Sandwitch by testing (under-approximation) and intervals arithmetic (over-approximation)
-There are no guarantee for termination.
-Roundoff error of floating point is worry.
- QE-CAD (Cylindrical Algebraic Decomposition)
\checkmark Exact solution.
\checkmark Algebraic numbers are treated as an ideals (of defining polynomials).

Remark on roundoff errors: Rump's function

$$
\left(333.75-a^{2}\right) b^{6}+a^{2}\left(11 a^{2} b^{2}-121 b^{4}-2\right)+5.5 b^{8}+\frac{a}{2 b}
$$

- Tricky behavior when $a=77617, \mathrm{~b}=33096$ with IEEE 754 floating operations
\checkmark Single precision : 1.172604
\checkmark Double precision : 1.1726039400531786
\checkmark Fourfold precision :
1.17260394005317863185883490452011838
\checkmark Symbolic computation with rational number expressions (or, 140-150 bits) results - 54767 / 66192 (approx. - 0.8273960599).

QE-CAD (Quantifier Elimination by
Cylindrical Algebraic Decomposition)

Solving Tarski sentences

- Tarski sentences
\checkmark Boolean combination of polynomial constraints (in prenex normal forms)
- Tarski set
\checkmark If a closed formula, decide its truth-false over real numbers.
\checkmark If it has free variables, decide their conditions such that constraints hold, e.g.,

$$
\forall x y .(y<x<a) \Rightarrow f(x)>\frac{(x-y) f(a)+(a-x) f(y)}{a-y}
$$

Answer. $\mathrm{a}+1 \leqq 0$

Brief histroy

- Tarski sentenses on real algebraic numbers is decidable (Tarsky 30) \checkmark Complexity is non-elementary.
- QE-CAD (Collins 75)
\checkmark QE on polynomial constraints is double-exponential.
- Optimizations have been investigated \checkmark Partial CAD (Collins-Hong 85) \checkmark Single-exponential
-Virtual substitution (for small degrees)
-Sign-definite constraints on the single argument $\forall x>0 . f(x)>0$ (typically for mechanical control).

QE-CAD implementations

- Open source tools
\checkmark REDLOG (Weispfenning,et.al. 88) built on REDUCE
-latest 3.06 (2006, though REDUCE updated Oct 2010, also on windows)
-rlcad (QE-CAD) not maintained, rlqe (virtual substitution) has been developed.
\checkmark QEPCAD (Hong, et.al. 90) built on SACLIB
-latest 1.65 (May 2010, on UNIX only)
- Commercial tools
\checkmark Mathematica (latest 8.0)
\checkmark SynRac (Anai@Fujitsu, et.al. 03) built on Maple

Reference

- B.Mishra, Algorithmic Algebra, Springer, 1993
- S.Basu, R.Pollack, M.-F. Roy, Algorithms in Real Algebraic Geometory, $2^{\text {nd }}$ edition, Springer, 2006.

CAD idea

- A cell C is a connected (genus 0) component such that signs of constraints in $Q\left[x_{1}, \ldots, x_{n}\right]$ are preserved. \checkmark As a computable finite refinement, cylindrical cells.
\checkmark Each cylindrical cell is a (semi-)algebraic set.
- Cylindrical algebraic decomposition is computed by classifying the number of (real) roots.
\checkmark Projection: "Discriminant", and projection to lower dimensions. \Rightarrow Counting roots + matrix operations
\checkmark Base: Find sampling points
\checkmark Lifting: Algebraic extensions (as ideals).]
\Rightarrow Groebner basis

Projection phase

QE-CAD example

$\exists x \exists y . f(x, y)<0 \wedge g(x, y)<0$?

where $\left\{f(x, y)=y^{2}-\left(x^{2}-1\right) y+1\right.$

$$
g(x, y)=x^{2}+y^{2}-4
$$

By REDLOG

Example of counting real roots

- $f(x, y)=y^{2}-\left(x^{2}-1\right) y+1 \Rightarrow f_{x}(y)=y^{2}-\left(x^{2}-1\right) y+1$

$$
\checkmark D=\left(x^{2}-1\right)^{2}-4=x^{4}-2 x^{2}-3=\left(x^{2}-3\right)\left(x^{2}+1\right)
$$

$\Leftrightarrow D \geqq 0$ is equivalent to existence of solutions.
$\checkmark f_{x}^{\prime}(y)=2 y-x^{2}+1 \Rightarrow f_{x}^{\prime}(y)$

$\begin{array}{lllll}D>0 & -\sqrt{3} & D<0 & \sqrt{3} & D>0\end{array}$

Counting the number of roots

- For a quadratic case, the discriminant D works. Then?
- Enumeration of complex roots of $f(x), f(x)$
\checkmark Number of complex roots (with duplication) of $f(x)$ is $\operatorname{deg}(f)$
\checkmark Number of different complex roots of $f(x)$ is

$$
\operatorname{deg}(f)-\operatorname{deg}\left(\operatorname{gcd}\left(f, \frac{d f}{d x}\right)\right)
$$

$$
f(x)=a \prod_{i=1}^{k}\left(x-\beta_{i}\right)^{e i} \Rightarrow \operatorname{gcd}\left(f, \frac{d f}{d x}\right)=\prod_{i=1}^{k}\left(x-\beta_{i}\right)^{e i-1}
$$

- Remark. If they do not change, the number of real roots will not change (though do not know how many).

Example: preservation of the number of real roots

- $f(x, y)=y^{2}-\left(x^{2}-1\right) y+1$
$\checkmark \operatorname{deg}\left(f_{x}(y)\right)=2$
$\checkmark \mathrm{f}_{\mathrm{x}}{ }^{\prime}(\mathrm{y})=2 \mathrm{y}-\mathrm{x}^{2}+1$
$\checkmark \operatorname{gcd}\left(f_{x}(y), f_{x}^{\prime}(y)\right)=\left(x^{2}-1\right)^{2}-4=\left(x^{2}-3\right)\left(x^{2}+1\right)$
$\rightarrow \operatorname{deg}\left(\operatorname{gcd}\left(f_{x}(y), f_{x}^{\prime}(y)\right)\right)=\left\{\begin{array}{l}0 \text { if } x^{2} \neq 3, \\ 1 \text { if } x^{2}=3\end{array}\right.$
\rightarrow For $x^{2}<3, x^{2}=3, x^{2}>3$, the number of (real) roots are preserved.
\rightarrow Cells are decomposed to $x^{2}<3, x^{2}=3, x^{2}>3$, when the projection to x is applied.

Euclidian Algorithm to compute GCD

- Euclid: For $F_{0}(x)=f(x), F_{1}(x)=g(x)$, repeat $\checkmark F_{i+1}(x)=F_{i-1}(x)-Q_{i}(x) F_{i}(x)$ until $F_{k}(x)=0$. Then, $F_{k-1}(x)=\operatorname{gcd}(f(x), g(x))$
- Note that this works also on $Q\left(x_{2}, ., x_{n}\right)$, \checkmark i.e, By regarding $f\left(x_{1}, . ., x_{n}\right) \in \mathbb{Q}\left[x_{1}, ., x_{n}\right]$ as $F\left(x_{1}\right) \in Q\left(x_{2}, . ., x_{n}\right)\left[x_{1}\right]$,

Extended Euclidian Algorithm

- Extended Euclid: For $F_{0}(x)=f(x), F_{1}(x)=g(x),(f \neq g)$ $U_{0}(x)=1, U_{1}(x)=0, V_{0}(x)=0, V_{1}(x)=1$, repeat $\checkmark F_{i+1}(x)=F_{i-1}(x)-Q_{i}(x) F_{i}(x)$
$\checkmark \mathrm{U}_{\mathrm{i}+1}(\mathrm{x})=\mathrm{U}_{\mathrm{i}-1}(\mathrm{x})-\mathrm{Q}_{\mathrm{i}}(\mathrm{x}) \mathrm{U}_{\mathrm{i}}(\mathrm{x})$
$\checkmark V_{i+1}(x)=V_{i-1}(x)-Q_{i}(x) V_{i}(x)$
until $F_{k}(x)=0$. Then, $F_{k-1}(x)=\operatorname{gcd}(f(x), g(x))$ and

$$
F_{k-1}(x)=U_{k-1}(x) f(x)+V_{k-1}(x) g(x)
$$

with $\operatorname{deg}\left(\mathrm{U}_{\mathrm{k}-1}(\mathrm{x})\right)<\operatorname{deg}(\mathrm{g}(\mathrm{x}))-\operatorname{deg}\left(\mathrm{F}_{\mathrm{k}-1}(\mathrm{x})\right)$

$$
\operatorname{deg}\left(\mathrm{V}_{\mathrm{k}-1}(\mathrm{x})\right)<\operatorname{deg}(\mathrm{f}(\mathrm{x}))-\operatorname{deg}\left(\mathrm{F}_{\mathrm{k}-1}(\mathrm{x})\right)
$$

- Remark. Under degree constraints, $u(x), v(x)$ with $\operatorname{gcd}(f(x), g(x))=u(x) f(x)+v(x) g(x)$ are unique.

(Sub)Resultant

- For $f(x)=a_{m} x^{m}+\ldots+a_{1} x+a_{0}, g(x)=b_{n} x^{n}+\ldots+b_{1} x+b_{0}$, $u(x) f(x)+v(x) g(x)=h(x)$ are described by a matrix M_{j}, where $\operatorname{deg}(\mathrm{u}(\mathrm{x})) \leqq \mathrm{n}-\mathrm{j}, \operatorname{deg}(\mathrm{v}(\mathrm{x})) \leqq \mathrm{m}-\mathrm{j}$.
\checkmark We know $G C D h(x)$ is unique $\Leftrightarrow \operatorname{det}\left(M_{j}\right) \neq 0$.

The number of common roots

- Number of common roots (with duplication) of $f(x)$ and $g(x)$ is $\operatorname{deg}(\operatorname{gcd}(f(x), g(x)))$
- With higher differentials, the number of duplicated roots with higher multiplicity is computed by gcd.
- They are obtained by degree of gcd only. \Rightarrow Reduced to computation of resultants.
- During projections, boundary of decompositions is set at each point where the number of roots changes.

Example: enumerating common roots

$$
\text { - } f(x, y)=y^{2}-\left(x^{2}-1\right) y+1, \quad g(x, y)=x^{2}+y^{2}-4
$$

$$
\checkmark \operatorname{gcd}\left(f_{x}(y), g_{x}(y)\right)=x^{6}-5 x^{4}-x^{2}+21
$$

$$
\rightarrow \operatorname{deg}\left(\operatorname{gcd}\left(f_{x}(y), g_{x}(y)\right)\right)=\left\{\begin{array}{l}
0 \text { if } x^{6}-5 x^{4}-x^{2}+21 \neq 0 \\
1 \text { if } x^{6}-5 x^{4}-x^{2}+21=0
\end{array}\right.
$$

$$
\rightarrow \text { For } h(x)=x^{6}-5 x^{4}-x^{2}+21=\left(x^{2}-3\right)\left(x^{4}-2 x^{2}-7\right)
$$ $h(\pm \sqrt{3})=h(\pm \sqrt{1+2 \sqrt{2}})=0$. There is a common real root at $x= \pm \sqrt{3}, \pm \sqrt{1+2 \sqrt{2}}$

\rightarrow Cells are decomposed at $x= \pm \sqrt{3}, \pm \sqrt{1+2 \sqrt{2}}$ when the projection to x is applied.

Example : Cylindrical decomposition

- For $f(x, y)=y^{2}-\left(x^{2}-1\right) y+1, g(x, y)=x^{2}+y^{2}-4$, $\exists x \exists y . f(x, y)<0 \wedge g(x, y)<0$?
\checkmark Each cylindrical cell has stable signs (of fand g), we will decide them by sampling.

Base phase

Compute sampling points

- Each cylindrical cell is guaranteed to keep sings of constraints and their differentials.
\checkmark Representatives by computing sample points.
\checkmark Better to have small denominators and numerators, especially 2 power denominators for shift operation.
- For inequalities, we can choose suitable rationals as sample points. For equalities, we need algebraic numbers.
\checkmark Representation: (Defining polynomial, [$1, \mathrm{~h}$])
\checkmark E.g., $\sqrt{3}$ is represented by $\left.\left(x^{2}-3,[1.7,1.8]\right)\right)$

Example: sampling

- For $f(x, y)=y^{2}-\left(x^{2}-1\right) y+1, \quad g(x, y)=x^{2}+y^{2}-4$, $\exists x \exists y . f(x, y)<0 \wedge g(x, y)<0$?

Finding sample points

- How to find sampling points
\checkmark Estimation of upper / lower bounds of real roots.
\rightarrow For $f(x)=x^{m}+a_{m-1} x^{m-1}+\ldots+a_{1} x+a_{0}$ and a
real root $\alpha,|\alpha| \leqq \max \left(\left|\mathrm{a}_{0}\right|, \ldots,\left|\mathrm{a}_{\mathrm{m}-1}\right|\right)$
\checkmark Decide the number of real roots.
\rightarrow Strum sequence (or, Fourier series)
- Then, by binary search, we can find sampling points, i.e., defining polynomial of (k real-)roots and

$$
\mathrm{c}_{0}<\alpha_{1}<\mathrm{c}_{1}<\ldots .<\mathrm{c}_{\mathrm{k}-1}<\alpha_{\mathrm{k}}<\mathrm{c}_{\mathrm{k}}
$$

Extended Euclidian Algorithm (again)

- Extended Euclid: For $F_{0}(x)=f(x), F_{1}(x)=f^{\prime}(x)$

$$
\begin{aligned}
& U_{0}(x)=1, U_{1}(x)=0, V_{0}(x)=0, V_{1}(x)=1, \text { repeat } \\
& \checkmark F_{i+1}(x)=F_{i-1}(x)-Q_{i}(x) F_{i}(x) \\
& \checkmark U_{i+1}(x)=U_{i-1}(x)-Q_{i}(x) U_{i}(x) \\
& \checkmark V_{i+1}(x)=V_{i-1}(x)-Q_{i}(x) V_{i}(x)
\end{aligned}
$$

until $F_{k}(x)=0$. Then, $F_{k-1}(x)=\operatorname{gcd}(f(x), g(x))$ and

$$
F_{k-1}(x)=U_{k-1}(x) f(x)+V_{k-1}(x) g(x)
$$

with $\operatorname{deg}\left(\mathrm{U}_{\mathrm{k}-1}(\mathrm{x})\right)<\operatorname{deg}(\mathrm{g}(\mathrm{x}))-\operatorname{deg}\left(\mathrm{F}_{\mathrm{k}-1}(\mathrm{x})\right)$

$$
\operatorname{deg}\left(\mathrm{V}_{\mathrm{k}-1}(\mathrm{x})\right)<\operatorname{deg}(\mathrm{f}(\mathrm{x}))-\operatorname{deg}\left(\mathrm{F}_{\mathrm{k}-1}(\mathrm{x})\right)
$$

- Let $S_{i}(x)=-F_{i}(x)$ and $S_{i}(x)=S_{i}(x) / S_{k-1}(x)$ for $2 \leqq \mathrm{i} \leqq \mathrm{k}-1$.

Strum's theorem

- Notation. $\mathrm{V}_{\mathrm{c}}(S)=\operatorname{var}\left(S_{0}(\mathrm{c}), S_{1}(\mathrm{c}), \ldots, S_{\mathrm{k}-1}(\mathrm{c})\right)$, where $\operatorname{var}\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)$ is the number of the change of signs between neighborhoods (after removal of 0 's). e.g., $\operatorname{var}(2,1,0,-1,3,5,0, \underline{4}, 0,-2)=3$
- Th. (Strum 1835) For $a<b$ with $f(a), f(b) \neq 0$, the number of different real roots in $(a, b]$ is $V_{a}(S)-V_{b}(S)$.
- Remark. With a modified resultant, $\mathrm{V}_{\mathrm{a}}(S)-\mathrm{V}_{\mathrm{b}}(S)$ can be computed.

Lifting phase

Lifting

- Lifting is finding sampling points over algebraic extensions.
- Lifting is the most heavy
\checkmark 80-90\% execution time devoted.
\checkmark Numeric method: approximation by intervals with validated numerics (Adam W.Strzebonski, CAD using validated numerics, JSC 41, pp.1021-1038, 2006)

Algebraic extensions

- Computing an algebraic number is computing a quotient of an ideal.
\checkmark E.g., $Q(\sqrt{3})$ is equivalent to $Q[z] /\left(z^{2}-3\right)$
- For higher degree formulae, we may need to repeat algebraic extensions.
\checkmark E.g., $f(x, y)=y^{2}-\left(x^{2}-1\right) y+1, g(x, y)=x^{2}+y^{2}-4$, adding to $x^{2}-3$, we have $x^{6}-5 x^{4}-x^{2}+21$ (from $f(x, y)=0$ and $g(x, y)=0$, erasing y with $\left.y^{2}=4-x^{2}\right)$
\checkmark Thus, $Q[z, w] /\left(z^{2}-3, w^{6}-5 w^{4}-w^{2}+21\right)$.

Groebner basis (Buchberger 65)

- Groebner basis is for computing quotient of ideals. \checkmark Starting from given basis of ideals (with WFO on monomials).
\checkmark Completion for polynomial rewriting systems (PRS) until a confluent PRS (in which variables are not substituted and completion always succeed).
- Difference from Knuth-Bendix completion algorithm \checkmark Polynomial rewriting is not closed wrt context, e.g., $\left\{x^{2} \rightarrow y\right\}, s=x^{2}+x y, t=x y+y, u=x^{2}-x y$. Then, $s \rightarrow t$, but not $s+u \rightarrow t+u$.
A.Middeldorp, M.Starcevic, A rewrite approach to polynomial ideal theory, 1991

Groebner basis (Buchberger 65)

- Groebner basis is for computing quotient of ideals.
\checkmark Starting from given basis of ideals (with WFO on monomials).
\checkmark Completion for polynomials (in which variables are not substituted and completion always succeed).
- E.g., $Q[z, w] /\left(z^{2}-3, z w^{2}+2 w-3 z\right)$ with $w>z$.
\rightarrow Regard them $z^{2} \rightarrow 3, z^{2} \rightarrow-2 w+3 z$
\rightarrow Critical pair $\left(3 w^{2},-2 z w+3 z^{2}\right)$
\rightarrow New rule $3 w^{2} \rightarrow-2 z w+9, \ldots$
\rightarrow Finally, we obtain $z^{2} \rightarrow 3,3 w^{2} \rightarrow-2 z w+9$ and $Q[z, w] /\left(z^{2}-3,3 w^{2}+2 z w-9\right)$.

Middeldorp, Starcevic, A rewrite approach to polynomial ideal theory, 1991

Future of QE-CAD

- Hard to scale
\checkmark Double exponential to the number of variables. The current limit is $7-8$ variables (say, degree 10).
\checkmark Groebner basis is not seriously used (rather by primitive elements).
\checkmark Combination with (under/over) approximation by validated numerics.
- Applications
\checkmark Quite successful PID control design of HDD head.
\checkmark Floating point roundoff errors

