Decidable fragments of FOL ~ solving polynomial constraints by QE-CAD ~

Mizuhito Ogawa@JAIST

Logic for software verification

- As description language
 ✓ Most of model checkers accepts temporal logic specification (e.g., LTL, CTL)
- As formal reasoning
 ✓ Inductive reasoning in higher order logic
- As automated reasoning
 ✓ Approximate system behavior (e.g., SAT/SMT)
 ✓ Limited class
 Logic is useful in practice!

• Note. Theoretical complexity does not match practice.

FOL proving in software verification

- FOL formula for loop invariants

 ✓ Craig interpolation is a strong strategy
 ✓ Lots of FOL provers: Vampire, E, SPASS, ...
 Based on resolution (refined as superposition)
- FOL for quantitative properties
 - ✓ Solving linear (in)equality
 - Presburger arithmetic widely used as backend of SMT.
 - ✓ Solving nonlinear (in)equality
 - -PID control design, though still limited to 7-8 variables only.

Solving (in)equality with integer coefficients)

- Linear (in)equations : addition and subtraction only
 ✓Both on integers and real numbers
 - ✓ Algorithms:
 - -(Existential) Quantifier elimination,
 - e.g., $\exists y. (x < y \land y < z+3)$ is equivalent to
 - x < (z+3) 1 = z+2 (on integers)
 - x < z+3 (on real numbers)

-Linear programming (LP), e.g., simplex method

What happen if we add multiplication?
 Undecidable for integers (Hilbert's 10th problem)
 Decidable for real numbers (Tarski, 1930)

Entrance exam of Japanese University

• Tohoku U. (2010) : Let $f(x) = x^3 + 3x^2 - 9x$. Find the condition for a such that, for each x,y with y < x < a,

$$f(x) > \frac{(x - y) f(a) + (a - x) f(y)}{a - y}$$

Approaches

- For polynomial inequalities
 - ✓ Sandwitch by testing (under-approximation) and intervals arithmetic (over-approximation)
 - -There are no guarantee for termination.
 - -Roundoff error of floating point is worry.
- QE-CAD (Cylindrical Algebraic Decomposition)
 ✓ Exact solution.
 - ✓ Algebraic numbers are treated as an ideals (of defining polynomials).

Remark on roundoff errors: Rump's function $(333.75 - a^2)b^6 + a^2(11a^2b^2 - 121b^4 - 2) + 5.5b^8 + \frac{a}{2b}$

- Tricky behavior when a=77617, b=33096 with IEEE 754 floating operations
 - ✓ Single precision : 1.172604
 - ✓ Double precision : 1.1726039400531786
 - ✓ Fourfold precision :
 - 1.17260394005317863185883490452011838
 - ✓ Symbolic computation with rational number expressions (or, 140-150 bits) results
 - 54767 / 66192 (approx. 0.8273960599).

Can remedy by validiated numerics

QE-CAD (Quantifier Elimination by Cylindrical Algebraic Decomposition)

Solving Tarski sentences

Tarski sentences

 ✓ Boolean combination of polynomial constraints (in prenex normal forms)

- Tarski set
 - ✓ If a closed formula, decide its truth-false over real numbers.
 - ✓ If it has free variables, decide their conditions such that constraints hold, e.g.,

$$\forall x y . (y < x < a) \Rightarrow f(x) > \frac{(x - y) f(a) + (a - x) f(y)}{a - y}$$

Answer. a+1 \le 0

Brief histroy

- Tarski sentenses on real algebraic numbers is decidable (Tarsky 30)
 ✓Complexity is non-elementary.
- QE-CAD (Collins 75)
 ✓QE on polynomial constraints is double-exponential.
- Optimizations have been investigated
 ✓ Partial CAD (Collins-Hong 85)
 - ✓ Single-exponential
 - -Virtual substitution (for small degrees)
 - -Sign-definite constraints on the single argument $\forall x>0$. f(x)>0 (typically for mechanical control).

QE-CAD implementations

- Open source tools
 - ✓ REDLOG (Weispfenning,et.al. 88) built on REDUCE
 - –latest 3.06 (2006, though REDUCE updated Oct 2010, also on windows)
 - -rlcad (QE-CAD) not maintained, rlqe (virtual substitution) has been developed.
 - ✓QEPCAD (Hong, et.al. 90) built on SACLIB–latest 1.65 (May 2010, on UNIX only)
- Commercial tools
 - ✓ Mathematica (latest 8.0)
 - ✓ SynRac (Anai@Fujitsu, et.al. 03) built on Maple

Reference

- B.Mishra, Algorithmic Algebra, Springer, 1993
- S.Basu, R.Pollack, M.-F. Roy, Algorithms in Real Algebraic Geometory, 2nd edition, Springer, 2006.

CAD idea

- A cell C is a connected (genus 0) component such that signs of constraints in Q[x₁,...,x_n] are preserved.
 ✓ As a computable finite refinement, *cylindrical cells*.
 ✓ Each cylindrical cell is a *(semi-)algebraic set*.
- Cylindrical algebraic decomposition is computed by classifying the number of (real) roots.
 - ✓ Projection: "Discriminant", and projection to lower dimensions. ⇒ Counting roots + matrix operations
 - ✓ Base: Find sampling points
 - ✓ *Lifting*: Algebraic extensions (as ideals).]
 - ⇒ Groebner basis

Projection phase

By REDLOG

🙀 0.07+0.81 secs reduce	- 🗆 ×
F <u>i</u> le <u>E</u> dit F <u>o</u> nt B <u>r</u> eak Load P <u>a</u> ckage <u>S</u> witch	Help
1: load_package redlog;	
2: rlset OFSF;	
Grow hash from 1 chunks	
to 1 chunks	
Rehashing done	
Ø	
3: psi := $ex(x, ex(y, y^{*2} - (x^{*2} - 1) \cdot y + 1 < 0 \text{ and } x^{*2} + y^{*2} < 4));$	
$\psi {:}= \exists x \exists y ig(-x^2y+y^2+y+1 < 0 \wedge x^2+y^2-4 < 0ig)$	
4: rlqea psi; Positive fraction ($\varepsilon_1 > \varepsilon_2 > 0$)	
$\left\{ \left\{ \text{true} \;,\; \left\{ x = \sqrt{-2\sqrt{2}\varepsilon_1} + 2\sqrt{2} - \varepsilon_1^2 + 2\varepsilon_1 - \varepsilon_2 + 1 \;,\; y = \sqrt{2} + \varepsilon_1 - 1 \right\} \right\} \right\}$	

Example of counting real roots

Counting the number of roots

- For a quadratic case, the discriminant D works. Then?
- Enumeration of complex roots of f(x), f(x)
 ✓Number of complex roots (with duplication) of f(x) is deg(f)
 - ✓ Number of different complex roots of f(x) is $deg(f) - deg(gcd(f, \frac{df}{dx}))$

$$f(x) = a \prod_{i=1}^{k} (x - \beta_i)^{ei} \Longrightarrow \gcd(f, \frac{df}{dx}) = \prod_{i=1}^{k} (x - \beta_i)^{ei-1}$$

 Remark. If they do not change, the number of real roots will not change (though do not know how many). Example: preservation of the number of real roots

•
$$f(x,y) = y^2 - (x^2 - 1)y + 1$$

 $\checkmark \deg(f_x(y)) = 2$
 $\checkmark f_x'(y) = 2y - x^2 + 1$
 $\checkmark \gcd(f_x(y), f_x'(y)) = (x^2 - 1)^2 - 4 = (x^2 - 3) (x^2 + 1)$
 $\rightarrow \deg(\gcd(f_x(y), f_x'(y))) = \int 0 \text{ if } x^2 \neq 3,$
 $1 \text{ if } x^2 = 3$

- \rightarrow For x² < 3, x²=3, x² > 3, the number of (real) roots are preserved.
- \rightarrow Cells are decomposed to x² < 3, x²=3, x² > 3, when the projection to x is applied.

Euclidian Algorithm to compute GCD

- Euclid: For $F_0(x) = f(x)$, $F_1(x) = g(x)$, repeat $\checkmark F_{i+1}(x) = F_{i-1}(x) - Q_i(x) F_i(x)$ until $F_k(x) = 0$. Then, $F_{k-1}(x) = gcd(f(x),g(x))$
- Note that this works also on $\mathbb{Q}(x_2,..,x_n)$, \checkmark i.e, By regarding $f(x_1,..,x_n) \in \mathbb{Q}[x_1,..,x_n]$ as $F(x_1) \in \mathbb{Q}(x_2,..,x_n)[x_1]$,

Extended Euclidian Algorithm

- Extended Euclid: For $F_0(x) = f(x)$, $F_1(x) = g(x)$, $(f \neq g)$ $U_0(x) = 1$, $U_1(x) = 0$, $V_0(x) = 0$, $V_1(x) = 1$, repeat $\checkmark F_{i+1}(x) = F_{i-1}(x) - Q_i(x) F_i(x)$ $\checkmark U_{i+1}(x) = U_{i-1}(x) - Q_i(x) U_i(x)$ $\checkmark V_{i+1}(x) = V_{i-1}(x) - Q_i(x) V_i(x)$ until $F_{k}(x) = 0$. Then, $F_{k-1}(x) = gcd(f(x),g(x))$ and $F_{k-1}(x) = U_{k-1}(x) f(x) + V_{k-1}(x) g(x)$ with $deg(U_{k-1}(x)) < deg(g(x)) - deg(F_{k-1}(x))$ $deg(V_{k_1}(x)) < deg(f(x)) - deg(F_{k_1}(x))$
- Remark. Under degree constraints, u(x), v(x) with gcd(f(x),g(x)) = u(x)f(x) + v(x)g(x) are unique.

(Sub)Resultant

• For $f(x) = a_m x^m + ... + a_1 x + a_0$, $g(x) = b_n x^n + ... + b_1 x + b_0$, u(x)f(x) + v(x)g(x) = h(x) are described by a matrix M_j , where $deg(u(x)) \leq n - j$, $deg(v(x)) \leq m - j$. \checkmark We know GCD h(x) is unique $\Leftrightarrow det(M_j) \neq 0$.

Starting from j = 0, try until det(M_j) $\neq 0$

M_j =

This j is deg(h(x))+1

The number of common roots

- Number of common roots (with duplication) of f(x) and g(x) is deg(gcd(f(x),g(x)))
- With higher differentials, the number of duplicated roots with higher multiplicity is computed by gcd.
- They are obtained by degree of gcd only.
 ⇒ Reduced to computation of resultants.
- During projections, boundary of decompositions is set at each point where the number of roots changes.

Example: enumerating common roots

•
$$f(x,y) = y^2 - (x^2 - 1)y + 1$$
, $g(x,y) = x^2 + y^2 - 4$
 $\checkmark gcd(f_x(y),g_x(y)) = x^6 - 5x^4 - x^2 + 21$
 $\rightarrow deg(gcd(f_x(y),g_x(y))) = \begin{bmatrix} 0 \text{ if } x^6 - 5x^4 - x^2 + 21 \neq 0 \\ 1 \text{ if } x^6 - 5x^4 - x^2 + 21 = 0 \end{bmatrix}$
 $\rightarrow For h(x) = x^6 - 5x^4 - x^2 + 21 = (x^2 - 3)(x^4 - 2x^2 - 7), h(\pm \sqrt{3}) = h(\pm \sqrt{1 + 2\sqrt{2}}) = 0$. There is a common real root at $x = \pm \sqrt{3}, \pm \sqrt{1 + 2\sqrt{2}}$
 $\rightarrow Cells$ are decomposed at $x = \pm \sqrt{3}, \pm \sqrt{1 + 2\sqrt{2}}$
when the projection to x is applied.

Example : Cylindrical decomposition

- For $f(x,y) = y^2 (x^2 1)y + 1$, $g(x,y) = x^2 + y^2 4$, $\exists x \exists y. f(x,y) < 0 \land g(x,y) < 0 ?$
 - Each cylindrical cell has stable signs (of f and g), we will decide them by sampling.

Base phase

Compute sampling points

- Each cylindrical cell is guaranteed to keep sings of constraints and their differentials.
 - ✓ Representatives by computing sample points.
 - ✓ Better to have small denominators and numerators, especially 2 power denominators for shift operation.
- For inequalities, we can choose suitable rationals as sample points. For equalities, we need algebraic numbers.

✓ Representation: (Defining polynomial, [I, h]) ✓ E.g., $\sqrt{3}$ is represented by (x² – 3, [1.7,1.8]))

Example: sampling

• For $f(x,y) = y^2 - (x^2 - 1)y + 1$, $g(x,y) = x^2 + y^2 - 4$, $\exists x \exists y. f(x,y) < 0 \land g(x,y) < 0 ?$

Finding sample points

- How to find sampling points
 - ✓ Estimation of upper / lower bounds of real roots.

→ For f(x) = x^m + $a_{m-1} x^{m-1} + ... + a_1 x + a_0$ and a real root α , $|\alpha| \leq \max(|a_0|, ..., |a_{m-1}|)$

- \checkmark Decide the number of real roots.
 - → Strum sequence (or, Fourier series)
- Then, by binary search, we can find sampling points, i.e., defining polynomial of (k real-)roots and

 $c_0 < \alpha_1 < c_1 < \dots < c_{k-1} < \alpha_k < c_k$

Extended Euclidian Algorithm (again)

- Extended Euclid: For $F_0(x) = f(x)$, $F_1(x) = f'(x)$ $U_0(x) = 1$, $U_1(x) = 0$, $V_0(x) = 0$, $V_1(x) = 1$, repeat $\checkmark F_{i+1}(x) = F_{i-1}(x) - Q_i(x) F_i(x)$ $\checkmark U_{i+1}(x) = U_{i-1}(x) - Q_i(x) U_i(x)$ $\checkmark V_{i+1}(x) = V_{i-1}(x) - Q_i(x) V_i(x)$ until $F_k(x) = 0$. Then, $F_{k-1}(x) = gcd(f(x),g(x))$ and $F_{\nu_{-1}}(x) = U_{k_{-1}}(x) f(x) + V_{k_{-1}}(x) g(x)$ with $deg(U_{k-1}(x)) < deg(g(x)) - deg(F_{k-1}(x))$ $deg(V_{k-1}(x)) < deg(f(x)) - deg(F_{k-1}(x))$
- Let $S_i(x) = -F_i(x)$ and $S_i(x) = S_i(x)/S_{k-1}(x)$ for $2 \le i \le k-1$.

Strum's theorem

- Notation. V_c(S) = var(S₀(c), S₁(c), ..., S_{k-1}(c)), where var(a₀, a₁, ..., a_{k-1}) is the number of the change of signs between neighborhoods (after removal of 0's).
 e.g., var(2,<u>1,0,-1</u>,3,5,0,<u>4,0,-2</u>) = 3
- Th. (Strum 1835) For a < b with f(a),f(b) ≠0, the number of different real roots in (a,b] is V_a(S) V_b(S).
- Remark. With a modified resultant, V_a(S) V_b(S) can be computed.

Lifting phase

Lifting

- Lifting is finding sampling points over algebraic extensions.
- Lifting is the most heavy
 ✓80-90% execution time devoted.
 - Numeric method: approximation by intervals with validated numerics (Adam W.Strzebonski, CAD using validated numerics, JSC 41, pp.1021-1038, 2006)

Algebraic extensions

 Computing an algebraic number is computing a quotient of an ideal.

✓ E.g., $Q(\sqrt{3})$ is equivalent to $Q[z]/(z^2 - 3)$

• For higher degree formulae, we may need to repeat algebraic extensions.

✓ E.g.,
$$f(x,y) = y^2 - (x^2 - 1)y + 1$$
, $g(x,y) = x^2 + y^2 - 4$,
adding to $x^2 - 3$, we have $x^6 - 5x^4 - x^2 + 21$ (from
 $f(x,y) = 0$ and $g(x,y) = 0$, erasing y with $y^2 = 4 - x^2$)
✓ Thus, $Q[z,w]/(z^2 - 3, w^6 - 5w^4 - w^2 + 21)$.

Groebner basis (Buchberger 65)

- Groebner basis is for computing quotient of ideals.
 - Starting from given basis of ideals (with WFO on monomials).
 - Completion for polynomial rewriting systems (PRS) until a confluent PRS (in which variables are not substituted and completion always succeed).
- Difference from Knuth-Bendix completion algorithm

✓ Polynomial rewriting is not closed wrt context, e.g., { $x^2 \rightarrow y$ }, s = $x^2 + xy$, t = xy + y, u = $x^2 - xy$. Then, s → t, but not s + u → t + u.

> A.Middeldorp, M.Starcevic, A rewrite approach to polynomial ideal theory, 1991

Groebner basis (Buchberger 65)

- Groebner basis is for computing quotient of ideals.
 - ✓ Starting from given basis of ideals (with WFO on monomials).
 - Completion for polynomials (in which variables are not substituted and completion always succeed).
- E.g., $\mathbb{Q}[z,w]/(z^2 3, zw^2 + 2w 3z)$ with w > z. \rightarrow Regard them $z^2 \rightarrow 3, zw^2 \rightarrow -2w + 3z$ \rightarrow Critical pair $(3w^2, -2zw + 3z^2)$ \rightarrow New rule $3w^2 \rightarrow -2zw + 9, ...$ \rightarrow Finally, we obtain $z^2 \rightarrow 3, 3w^2 \rightarrow -2zw + 9$ and $\mathbb{Q}[z,w]/(z^2 - 3, 3w^2 + 2zw - 9)$.

Middeldorp, Starcevic, A rewrite approach to polynomial ideal theory, 1991

Future of QE-CAD

- Hard to scale
 - ✓ Double exponential to the number of variables.
 The current limit is 7-8 variables (say, degree 10).
 - ✓ Groebner basis is not seriously used (rather by primitive elements).
 - Combination with (under/over) approximation by validated numerics.
- Applications

✓ Quite successful PID control design of HDD head.✓ Floating point roundoff errors