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Logic for software verification
•

 
As description language

Most of model checkers accepts temporal logic 
specification (e.g., LTL, CTL) 

•
 

As formal reasoning
Inductive reasoning in higher order logic

•
 

As automated reasoning
Approximate system behavior (e.g., SAT/SMT)
Limited class

•
 

Note. Theoretical complexity does not match practice.

Logic is useful in practice!



FOL proving in software verification

•
 

FOL formula for loop invariants
Craig interpolation is a strong strategy
Lots of FOL provers: Vampire, E, SPASS, …
–Based on resolution (refined as superposition)

•
 

FOL for quantitative properties
Solving linear (in)equality
–Presburger

 
arithmetic widely used as backend 

of SMT. 
Solving nonlinear (in)equality
–PID control design, though still limited to 7-8 

variables only. 



Solving (in)equality
 

with integer coefficients) 

•
 

Linear (in)equations
 

: addition and subtraction only
Both on integers and real numbers
Algorithms:
–(Existential) Quantifier elimination, 

e.g., ∃y. (x < y ∧ y < z+3) is equivalent  to 
x < (z+3) –

 
1 = z+2 (on integers) 

x <  z+3                  (on real numbers) 
–Linear programming (LP), e.g., simplex method

•
 

What happen if we add multiplication? 
Undecidable for integers (Hilbert’s 10th problem)
Decidable for real numbers (Tarski, 1930)



Entrance exam of Japanese University

•
 

Tohoku U. (2010) : Let f(x) = x3
 

+ 3 x2
 

–
 

9x. Find the 
condition for a

 
such that, for each x,y

 
with y < x < a, 

f(x) > 
(x –

 
y) f(a) + (a

 
– x) f(y)

a
 

– y  



Approaches 

•
 

For polynomial inequalities
Sandwitch by testing (under-approximation) and 
intervals arithmetic (over-approximation)
–There are no guarantee for termination. 
–Roundoff

 
error of floating point is worry.

•
 

QE-CAD (Cylindrical Algebraic Decomposition)
Exact solution.
Algebraic numbers are treated as an ideals (of 
defining polynomials).



Remark on roundoff
 

errors: Rump’s function

•
 

Tricky behavior when a=77617, b=33096 with 
IEEE 754  floating operations

Single precision  : 1.172604
Double precision : 1.1726039400531786
Fourfold precision : 
1.17260394005317863185883490452011838
Symbolic computation with rational number 
expressions (or, 140-150 bits) results 
-

 
54767 / 66192  (approx. -

 
0.8273960599).

b
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Can remedy by validiated
 

numerics



QE-CAD (Quantifier Elimination by 
Cylindrical Algebraic Decomposition)



Solving Tarski
 

sentences
•

 
Tarski

 
sentences 

Boolean combination of polynomial constraints 
(in prenex normal forms)

•
 

Tarski
 

set 
If a closed formula, decide its truth-false over real 
numbers.
If it has free variables, decide their conditions  
such that constraints hold, e.g., 

∀x y . (y < x < a) ⇒ f(x) > 
(x –

 
y) f(a) + (a

 
– x) f(y)

a
 

– y  
Answer. a+1≦0



Brief histroy
•

 
Tarski

 
sentenses

 
on real algebraic numbers is 

decidable (Tarsky
 

30) 
Complexity is non-elementary.

•
 

QE-CAD (Collins 75)
QE on polynomial constraints is double-exponential. 

•
 

Optimizations have been investigated
Partial CAD (Collins-Hong 85) 
Single-exponential
–Virtual substitution (for small degrees) 
–Sign-definite constraints on the single argument 
∀x>0. f(x)>0 (typically for mechanical control).



QE-CAD implementations

•
 

Open source tools
REDLOG (Weispfenning,et.al. 88) built on REDUCE
–latest 3.06 (2006, though REDUCE updated Oct 

2010, also on windows) 
–rlcad

 
(QE-CAD) not maintained, rlqe

 
(virtual 

substitution) has been developed. 
QEPCAD (Hong, et.al. 90) built on SACLIB
–latest 1.65 (May 2010, on UNIX only)

•
 

Commercial tools 
Mathematica (latest 8.0) 
SynRac (Anai@Fujitsu, et.al. 03) built on Maple



Reference

•
 

B.Mishra, Algorithmic Algebra, Springer, 1993
•

 
S.Basu, R.Pollack, M.-F. Roy, Algorithms in Real 
Algebraic Geometory, 2nd

 
edition, Springer, 2006.



CAD idea 
•

 
A cell C is a connected (genus 0) component such 
that signs of constraints in Q[x1

 

,…,xn
 

] are preserved.
As a computable finite refinement, cylindrical cells. 
Each cylindrical cell is a (semi-)algebraic set. 

•
 

Cylindrical algebraic decomposition is computed by 
classifying the number of (real) roots.

Projection: “Discriminant”, and projection to lower 
dimensions. ⇒ Counting roots + matrix operations
Base: Find sampling points 
Lifting: Algebraic extensions (as ideals). ]
⇒ Groebner basis



Projection phase
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QE-CAD example

3(      , 1)

f(1.8,0.9)= -0.566
g(1.8,0.9)= -0.45  

∃x∃y.f(x,y)<0∧g(x,y)<0? 

f(x,y) = y2
 

– (x2
 

– 1)y + 1
g(x,y) = x2

 
+ y2

 
– 4 

where

Yes



By REDLOG

Positive fraction (ε1

 

> ε2

 

> 0)



Example of counting real roots

x

y

3− 3

2

2 1 20 1

D>0 D>0D<0

f(x,y) < 0 f(x,y) < 0f(x,y) > 0

•
 

f(x,y) = y2
 

– (x2
 

–
 

1)y + 1 ⇒ fx
 

(y) = y2
 

– (x2
 

–
 

1)y + 1 
D = (x2 – 1)2 – 4 = x4 – 2x2 – 3 = (x2 – 3) (x2 + 1)  
⇔ D ≧ 0 is equivalent to existence of solutions.
fx‘(y) = 2y – x2 + 1 ⇒ fx’(y) 

fx
 

(y)=0, fｘ
 

’(y)>0
fx

 

(y)=0, fｘ
 

’(y)<0



Counting the number of roots
•

 
For a quadratic case, the discriminant

 
D works. Then?

•
 

Enumeration of complex roots of f(x), f’(x)
Number of complex roots (with duplication) of f(x) is 

Number of different complex roots of f(x) is

•
 

Remark. If they do not change, the number of real 
roots will not change

 
(though do not know how many).
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Example: preservation of the number of real roots

•
 

f(x,y) = y2
 

– (x2
 

– 1)y + 1
deg (fx(y)) = 2
fx’(y) = 2y – x2 +1 
gcd(fx(y),fx’(y)) = (x2 –1)2– 4 = (x2 – 3) (x2 + 1) 
→deg(gcd(fx

 

(y),fx
 

’(y))) =   0 if x2 ≠3, 
1 if x2

 
= 3

→
 

For x2 < 3, x2=3, x2
 

> 3, the number of (real) 
roots are preserved. 

→
 

Cells are decomposed to x2 < 3, x2=3, x2
 

> 3, 
when the projection to x is applied. 



Euclidian Algorithm to compute GCD

•
 

Euclid: For F0
 

(x) = f(x), F1
 

(x) = g(x), repeat 
Fi+1(x) = Fi-1(x) – Qi(x) Fi(x)

until Fk
 

(x) = 0. Then, Fk-1
 

(x) =
 

gcd(f(x),g(x))

•
 

Note that this works also on Q(x2
 

,..,xn
 

), 
i.e, By regarding f(x1,..,xn)∈Q[x1,..,xn] as 
F(x1)∈Q(x2,..,xn)[x1], 



Extended Euclidian Algorithm

•
 

Extended Euclid: For F0
 

(x) = f(x), F1
 

(x) = g(x), (f≠g)
U0

 

(x) = 1, U1
 

(x) = 0, V0
 

(x) = 0, V1
 

(x) = 1, repeat 
Fi+1(x) = Fi-1(x) – Qi(x) Fi(x)
Ui+1(x) = Ui-1(x) – Qi(x) Ui(x)
Vi+1(x) = Vi-1(x) – Qi(x) Vi(x)

until Fk
 

(x) = 0. Then, Fk-1
 

(x) = gcd(f(x),g(x)) and 
Fk-1

 

(x) = Uk-1
 

(x) f(x) + Vk-1
 

(x) g(x)
with deg(Uk-1

 

(x)) < deg(g(x)) –
 

deg(Fk-1
 

(x)) 
deg(Vk-1

 

(x)) < deg(f(x)) –
 

deg(Fk-1
 

(x))

•
 

Remark. Under degree constraints, u(x), v(x) with 
gcd(f(x),g(x)) = u(x)f(x) + v(x)g(x) are unique.



(Sub)Resultant

•
 

For f(x) = am
 

xm
 

+…+ a1
 

x + a0
 

, g(x) = bn
 

xn
 

+…+ b1x + b0
 

, 
u(x)f(x) + v(x)g(x) = h(x) are described by a matrix Mj

 

, 
where  deg(u(x))≦n – j, deg(v(x))≦m – j.

We know GCD h(x) is unique ⇔ det(Mj) ≠ 0. 

Mj

 

=

n –
 

j

m –
 

j

Starting from j = 0,
try until det(Mj

 

) ≠ 0

This j is deg(h(x))+1



The number of common roots 
•

 
Number of common roots (with duplication) of f(x) and 
g(x) is deg(gcd(f(x),g(x)))

•
 

With higher differentials, the number of duplicated 
roots with higher multiplicity is computed by gcd. 

•
 

They are obtained by degree of gcd
 

only.
⇒ Reduced to computation of resultants. 

•
 

During projections, boundary of decompositions is set 
at each point where the number of roots changes. 



Example: enumerating common roots

•
 

f(x,y) = y2
 

– (x2
 

–
 

1)y + 1,   g(x,y) = x2
 

+ y2
 

– 4
gcd(fx(y),gx(y)) = x6 – 5x4 – x2 + 21
→deg(gcd(fx

 

(y),gx
 

(y))) =  0 if x6
 

– 5x4
 

– x2
 

+ 21 ≠0
1 if x6

 
– 5x4

 
– x2

 
+ 21 = 0

→
 

For h(x) = x6
 

–5x4
 

– x2
 

+21= (x2 –
 

3)(x4
 

–2x2
 

–7), 
h(       ) = h(                ) = 0. There is a common 
real root at x =        , 

→Cells are decomposed at x =       , 
when the projection to x is applied. 

221+±3±
221+±3±

221+±3±



Example : Cylindrical decomposition

x

y

3− 3

2

(1.8,0.9): f(1.8,0.9)= -0.566<0
g(1.8,0.9)= -0.45<0  

(3,1): f(3,1)= –6 <0
g(3,1)=6>0    

•
 

For f(x,y) = y2
 

– (x2
 

–
 

1)y + 1,   g(x,y) = x2
 

+ y2
 

– 4,
 

 
∃x∃y. f(x,y)<0 ∧ g(x,y) < 0 ?

Each cylindrical cell has stable signs (of f and g), 
we will decide them by sampling.  

Each cell is a semi-
algebraic set.



Base phase



Compute sampling points

•
 

Each cylindrical cell is guaranteed to keep sings of 
constraints and their differentials. 

Representatives by computing sample points.
Better to have small denominators and numerators, 
especially 2 power denominators for shift operation.

•
 

For inequalities, we can choose suitable rationals
 

as 
sample points. For equalities, we need algebraic 
numbers.

Representation: (Defining polynomial, [ l, h ])
E.g.,        is represented by (x2 – 3, [1.7,1.8]))3



Example: sampling

x

y

3− 3

2

•
 

For f(x,y) = y2
 

– (x2
 

–
 

1)y + 1,   g(x,y) = x2
 

+ y2
 

– 4,
 

 
∃x∃y. f(x,y)<0 ∧ g(x,y) < 0 ?



Finding sample points

•
 

How to find sampling points
Estimation of upper / lower bounds of real roots.
→ For f(x) = xm

 
+ am-1

 

xm-1
 

+ …
 

+ a1
 

x + a0
 

and a 
real root α, |α| ≦ max( |a0

 

|, …, |am-1
 

|) 
Decide the number of real roots. 
→ Strum sequence (or, Fourier series) 

•
 

Then, by binary search, we can find sampling points, 
i.e., defining polynomial of (k real-)roots and 

c0 < α1
 

< c1
 

< …. < ck-1
 

< αk
 

< ck



Extended Euclidian Algorithm (again)

•
 

Extended Euclid: For F0
 

(x) = f(x), F1
 

(x) = f’(x)
U0

 

(x) = 1, U1
 

(x) = 0, V0
 

(x) = 0, V1
 

(x) = 1, repeat 
Fi+1(x) = Fi-1(x) – Qi(x) Fi(x)
Ui+1(x) = Ui-1(x) – Qi(x) Ui(x)
Vi+1(x) = Vi-1(x) – Qi(x) Vi(x)

until Fk
 

(x) = 0. Then, Fk-1
 

(x) = gcd(f(x),g(x)) and 
Fk-1

 

(x) = Uk-1
 

(x) f(x) + Vk-1
 

(x) g(x)
with deg(Uk-1

 

(x)) < deg(g(x)) –
 

deg(Fk-1
 

(x)) 
deg(Vk-1

 

(x)) < deg(f(x)) –
 

deg(Fk-1
 

(x))

•
 

Let Si
 

(x)= –
 

Fi
 

(x)
 

and Si
 

(x) = Si
 

(x)/Sk-1
 

(x)
 

for 2≦i≦k–1. 



Strum’s
 

theorem

•
 

Notation. Vc
 

(S) = var(S0
 

(c), S1
 

(c), …, Sk-1
 

(c)), where 
var(a0

 

, a1
 

, …, ak-1
 

) is the number of the change of 
signs between neighborhoods (after removal of 0’s).
e.g., var(2,1,0,-1,3,5,0,4,,0,-2) = 3

•
 

Th. (Strum 1835)  For a < b with f(a),f(b) ≠0, the 
number of different real roots in (a,b] is Va

 

(S) –
 

Vb
 

(S). 

•
 

Remark. With a modified resultant, Va
 

(S) –
 

Vb
 

(S) can 
be computed. 



Lifting phase



Lifting

•
 

Lifting is finding sampling points over algebraic 
extensions.

•
 

Lifting is the most heavy
80-90% execution time devoted. 
Numeric method: approximation by intervals with 
validated numerics (Adam W.Strzebonski, CAD 
using validated numerics, JSC 41, pp.1021-1038, 
2006)



Algebraic extensions
•

 
Computing an algebraic number is computing a 
quotient of an ideal. 

E.g., Q(     )  is equivalent to Q[z]/(z2 – 3)

•
 

For higher degree formulae, we may need to repeat 
algebraic extensions. 

E.g., f(x,y) = y2 – (x2 – 1)y + 1, g(x,y) = x2 + y2 – 4, 
adding to x2 – 3, we have x6 – 5x4 – x2 + 21 (from 
f(x,y) = 0 and g(x,y) = 0, erasing y with y2 = 4 – x2)
Thus, Q[z,w]/(z2 – 3, w6 – 5w4 – w2 + 21).

3



Groebner
 

basis (Buchberger
 

65)

•
 

Groebner
 

basis is for computing quotient of ideals. 
Starting from given basis of ideals (with WFO on 
monomials). 
Completion for polynomial rewriting systems (PRS) 
until a confluent PRS (in which variables are not 
substituted and completion always succeed). 

•
 

Difference from Knuth-Bendix
 

completion algorithm
Polynomial rewriting is not closed wrt context, e.g., 
{ x2 → y }, s = x2 + xy, t = xy + y, u = x2 – xy. Then, 
s → t, but not s + u → t + u.

A.Middeldorp, M.Starcevic, A rewrite approach 
to polynomial ideal theory, 1991



Groebner
 

basis (Buchberger
 

65)
•

 
Groebner

 
basis is for computing quotient of ideals. 

Starting from given basis of ideals (with WFO on 
monomials). 
Completion for polynomials (in which variables are 
not substituted and completion always succeed). 

•
 

E.g., Q[z,w]/(z2
 

– 3, zw2
 

+ 2w –
 

3z)  with w > z.
→Regard them z2

 
→ 3, zw2

 
→ –

 
2w + 3z

→Critical pair (3w2, –
 

2zw + 3z2)
→New rule 3w2

 
→ – 2zw + 9, …

→Finally, we obtain z2
 

→ 3, 3w2
 

→ –
 

2zw + 9 and 
Q[z,w]/(z2

 
– 3, 3w2

 
+ 2zw –

 
9).

Middeldorp, Starcevic, A rewrite approach to polynomial ideal theory, 1991



Future of QE-CAD

•
 

Hard to scale
Double exponential to the number of variables. 
The current limit is 7-8 variables (say, degree 10).
Groebner basis is not seriously used (rather by 
primitive elements). 
Combination with (under/over) approximation by 
validated numerics.

•
 

Applications
Quite successful PID control design of HDD head. 
Floating point roundoff errors 
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