
Decidable fragments of FOL
 ~ solving polynomial constraints by QE-CAD ~

Mizuhito Ogawa@JAIST

Logic for software verification
•

As description language

Most of model checkers accepts temporal logic
specification (e.g., LTL, CTL)

•

As formal reasoning
Inductive reasoning in higher order logic

•

As automated reasoning
Approximate system behavior (e.g., SAT/SMT)
Limited class

•

Note. Theoretical complexity does not match practice.

Logic is useful in practice!

FOL proving in software verification

•

FOL formula for loop invariants
Craig interpolation is a strong strategy
Lots of FOL provers: Vampire, E, SPASS, …
–Based on resolution (refined as superposition)

•

FOL for quantitative properties
Solving linear (in)equality
–Presburger

arithmetic widely used as backend

of SMT.
Solving nonlinear (in)equality
–PID control design, though still limited to 7-8

variables only.

Solving (in)equality

with integer coefficients)

•

Linear (in)equations

: addition and subtraction only
Both on integers and real numbers
Algorithms:
–(Existential) Quantifier elimination,

e.g., ∃y. (x < y ∧ y < z+3) is equivalent to
x < (z+3) –

1 = z+2 (on integers)

x < z+3 (on real numbers)
–Linear programming (LP), e.g., simplex method

•

What happen if we add multiplication?
Undecidable for integers (Hilbert’s 10th problem)
Decidable for real numbers (Tarski, 1930)

Entrance exam of Japanese University

•

Tohoku U. (2010) : Let f(x) = x3

+ 3 x2

–

9x. Find the
condition for a

such that, for each x,y

with y < x < a,

f(x) >
(x –

y) f(a) + (a

– x) f(y)

a

– y

Approaches

•

For polynomial inequalities
Sandwitch by testing (under-approximation) and
intervals arithmetic (over-approximation)
–There are no guarantee for termination.
–Roundoff

error of floating point is worry.

•

QE-CAD (Cylindrical Algebraic Decomposition)
Exact solution.
Algebraic numbers are treated as an ideals (of
defining polynomials).

Remark on roundoff

errors: Rump’s function

•

Tricky behavior when a=77617, b=33096 with
IEEE 754 floating operations

Single precision : 1.172604
Double precision : 1.1726039400531786
Fourfold precision :
1.17260394005317863185883490452011838
Symbolic computation with rational number
expressions (or, 140-150 bits) results
-

54767 / 66192 (approx. -

0.8273960599).

b
abbbaaba
2

5.5)212111()75.333(8422262 ++−−+−

Can remedy by validiated

numerics

QE-CAD (Quantifier Elimination by
Cylindrical Algebraic Decomposition)

Solving Tarski

sentences
•

Tarski

sentences

Boolean combination of polynomial constraints
(in prenex normal forms)

•

Tarski

set
If a closed formula, decide its truth-false over real
numbers.
If it has free variables, decide their conditions
such that constraints hold, e.g.,

∀x y . (y < x < a) ⇒ f(x) >
(x –

y) f(a) + (a

– x) f(y)

a

– y
Answer. a+1≦0

Brief histroy
•

Tarski

sentenses

on real algebraic numbers is

decidable (Tarsky

30)
Complexity is non-elementary.

•

QE-CAD (Collins 75)
QE on polynomial constraints is double-exponential.

•

Optimizations have been investigated
Partial CAD (Collins-Hong 85)
Single-exponential
–Virtual substitution (for small degrees)
–Sign-definite constraints on the single argument
∀x>0. f(x)>0 (typically for mechanical control).

QE-CAD implementations

•

Open source tools
REDLOG (Weispfenning,et.al. 88) built on REDUCE
–latest 3.06 (2006, though REDUCE updated Oct

2010, also on windows)
–rlcad

(QE-CAD) not maintained, rlqe

(virtual

substitution) has been developed.
QEPCAD (Hong, et.al. 90) built on SACLIB
–latest 1.65 (May 2010, on UNIX only)

•

Commercial tools
Mathematica (latest 8.0)
SynRac (Anai@Fujitsu, et.al. 03) built on Maple

Reference

•

B.Mishra, Algorithmic Algebra, Springer, 1993
•

S.Basu, R.Pollack, M.-F. Roy, Algorithms in Real
Algebraic Geometory, 2nd

edition, Springer, 2006.

CAD idea
•

A cell C is a connected (genus 0) component such
that signs of constraints in Q[x1

,…,xn

] are preserved.
As a computable finite refinement, cylindrical cells.
Each cylindrical cell is a (semi-)algebraic set.

•

Cylindrical algebraic decomposition is computed by
classifying the number of (real) roots.

Projection: “Discriminant”, and projection to lower
dimensions. ⇒ Counting roots + matrix operations
Base: Find sampling points
Lifting: Algebraic extensions (as ideals).]
⇒ Groebner basis

Projection phase

(,)221+ 12 −
x

y

2

2-2

-2

QE-CAD example

3(, 1)

f(1.8,0.9)= -0.566
g(1.8,0.9)= -0.45

∃x∃y.f(x,y)<0∧g(x,y)<0?

f(x,y) = y2

– (x2

– 1)y + 1
g(x,y) = x2

+ y2

– 4

where

Yes

By REDLOG

Positive fraction (ε1

> ε2

> 0)

Example of counting real roots

x

y

3− 3

2

2 1 20 1

D>0 D>0D<0

f(x,y) < 0 f(x,y) < 0f(x,y) > 0

•

f(x,y) = y2

– (x2

–

1)y + 1 ⇒ fx

(y) = y2

– (x2

–

1)y + 1
D = (x2 – 1)2 – 4 = x4 – 2x2 – 3 = (x2 – 3) (x2 + 1)
⇔ D ≧ 0 is equivalent to existence of solutions.
fx‘(y) = 2y – x2 + 1 ⇒ fx’(y)

fx

(y)=0, fｘ

’(y)>0
fx

(y)=0, fｘ

’(y)<0

Counting the number of roots
•

For a quadratic case, the discriminant

D works. Then?

•

Enumeration of complex roots of f(x), f’(x)
Number of complex roots (with duplication) of f(x) is

Number of different complex roots of f(x) is

•

Remark. If they do not change, the number of real
roots will not change

(though do not know how many).

)),deg(gcd()deg(
dx
dfff −

)deg(f

1
11)(),gcd()()(−
== −∏=⇒−∏= ei

i
k
i

ei
i

k
i x

dx
dffxaxf ββ

Example: preservation of the number of real roots

•

f(x,y) = y2

– (x2

– 1)y + 1
deg (fx(y)) = 2
fx’(y) = 2y – x2 +1
gcd(fx(y),fx’(y)) = (x2 –1)2– 4 = (x2 – 3) (x2 + 1)
→deg(gcd(fx

(y),fx

’(y))) = 0 if x2 ≠3,
1 if x2

= 3

→

For x2 < 3, x2=3, x2

> 3, the number of (real)
roots are preserved.

→

Cells are decomposed to x2 < 3, x2=3, x2

> 3,
when the projection to x is applied.

Euclidian Algorithm to compute GCD

•

Euclid: For F0

(x) = f(x), F1

(x) = g(x), repeat
Fi+1(x) = Fi-1(x) – Qi(x) Fi(x)

until Fk

(x) = 0. Then, Fk-1

(x) =

gcd(f(x),g(x))

•

Note that this works also on Q(x2

,..,xn

),
i.e, By regarding f(x1,..,xn)∈Q[x1,..,xn] as
F(x1)∈Q(x2,..,xn)[x1],

Extended Euclidian Algorithm

•

Extended Euclid: For F0

(x) = f(x), F1

(x) = g(x), (f≠g)
U0

(x) = 1, U1

(x) = 0, V0

(x) = 0, V1

(x) = 1, repeat
Fi+1(x) = Fi-1(x) – Qi(x) Fi(x)
Ui+1(x) = Ui-1(x) – Qi(x) Ui(x)
Vi+1(x) = Vi-1(x) – Qi(x) Vi(x)

until Fk

(x) = 0. Then, Fk-1

(x) = gcd(f(x),g(x)) and
Fk-1

(x) = Uk-1

(x) f(x) + Vk-1

(x) g(x)
with deg(Uk-1

(x)) < deg(g(x)) –

deg(Fk-1

(x))
deg(Vk-1

(x)) < deg(f(x)) –

deg(Fk-1

(x))

•

Remark. Under degree constraints, u(x), v(x) with
gcd(f(x),g(x)) = u(x)f(x) + v(x)g(x) are unique.

(Sub)Resultant

•

For f(x) = am

xm

+…+ a1

x + a0

, g(x) = bn

xn

+…+ b1x + b0

,
u(x)f(x) + v(x)g(x) = h(x) are described by a matrix Mj

,
where deg(u(x))≦n – j, deg(v(x))≦m – j.

We know GCD h(x) is unique ⇔ det(Mj) ≠ 0.

Mj

=

n –

j

m –

j

Starting from j = 0,
try until det(Mj

) ≠ 0

This j is deg(h(x))+1

The number of common roots
•

Number of common roots (with duplication) of f(x) and
g(x) is deg(gcd(f(x),g(x)))

•

With higher differentials, the number of duplicated
roots with higher multiplicity is computed by gcd.

•

They are obtained by degree of gcd

only.
⇒ Reduced to computation of resultants.

•

During projections, boundary of decompositions is set
at each point where the number of roots changes.

Example: enumerating common roots

•

f(x,y) = y2

– (x2

–

1)y + 1, g(x,y) = x2

+ y2

– 4
gcd(fx(y),gx(y)) = x6 – 5x4 – x2 + 21
→deg(gcd(fx

(y),gx

(y))) = 0 if x6

– 5x4

– x2

+ 21 ≠0
1 if x6

– 5x4

– x2

+ 21 = 0

→

For h(x) = x6

–5x4

– x2

+21= (x2 –

3)(x4

–2x2

–7),
h() = h() = 0. There is a common
real root at x = ,

→Cells are decomposed at x = ,
when the projection to x is applied.

221+±3±
221+±3±

221+±3±

Example : Cylindrical decomposition

x

y

3− 3

2

(1.8,0.9): f(1.8,0.9)= -0.566<0
g(1.8,0.9)= -0.45<0

(3,1): f(3,1)= –6 <0
g(3,1)=6>0

•

For f(x,y) = y2

– (x2

–

1)y + 1, g(x,y) = x2

+ y2

– 4,

∃x∃y. f(x,y)<0 ∧ g(x,y) < 0 ?

Each cylindrical cell has stable signs (of f and g),
we will decide them by sampling.

Each cell is a semi-
algebraic set.

Base phase

Compute sampling points

•

Each cylindrical cell is guaranteed to keep sings of
constraints and their differentials.

Representatives by computing sample points.
Better to have small denominators and numerators,
especially 2 power denominators for shift operation.

•

For inequalities, we can choose suitable rationals

as
sample points. For equalities, we need algebraic
numbers.

Representation: (Defining polynomial, [l, h])
E.g., is represented by (x2 – 3, [1.7,1.8]))3

Example: sampling

x

y

3− 3

2

•

For f(x,y) = y2

– (x2

–

1)y + 1, g(x,y) = x2

+ y2

– 4,

∃x∃y. f(x,y)<0 ∧ g(x,y) < 0 ?

Finding sample points

•

How to find sampling points
Estimation of upper / lower bounds of real roots.
→ For f(x) = xm

+ am-1

xm-1

+ …

+ a1

x + a0

and a
real root α, |α| ≦ max(|a0

|, …, |am-1

|)
Decide the number of real roots.
→ Strum sequence (or, Fourier series)

•

Then, by binary search, we can find sampling points,
i.e., defining polynomial of (k real-)roots and

c0 < α1

< c1

< …. < ck-1

< αk

< ck

Extended Euclidian Algorithm (again)

•

Extended Euclid: For F0

(x) = f(x), F1

(x) = f’(x)
U0

(x) = 1, U1

(x) = 0, V0

(x) = 0, V1

(x) = 1, repeat
Fi+1(x) = Fi-1(x) – Qi(x) Fi(x)
Ui+1(x) = Ui-1(x) – Qi(x) Ui(x)
Vi+1(x) = Vi-1(x) – Qi(x) Vi(x)

until Fk

(x) = 0. Then, Fk-1

(x) = gcd(f(x),g(x)) and
Fk-1

(x) = Uk-1

(x) f(x) + Vk-1

(x) g(x)
with deg(Uk-1

(x)) < deg(g(x)) –

deg(Fk-1

(x))
deg(Vk-1

(x)) < deg(f(x)) –

deg(Fk-1

(x))

•

Let Si

(x)= –

Fi

(x)

and Si

(x) = Si

(x)/Sk-1

(x)

for 2≦i≦k–1.

Strum’s

theorem

•

Notation. Vc

(S) = var(S0

(c), S1

(c), …, Sk-1

(c)), where
var(a0

, a1

, …, ak-1

) is the number of the change of
signs between neighborhoods (after removal of 0’s).
e.g., var(2,1,0,-1,3,5,0,4,,0,-2) = 3

•

Th. (Strum 1835) For a < b with f(a),f(b) ≠0, the
number of different real roots in (a,b] is Va

(S) –

Vb

(S).

•

Remark. With a modified resultant, Va

(S) –

Vb

(S) can
be computed.

Lifting phase

Lifting

•

Lifting is finding sampling points over algebraic
extensions.

•

Lifting is the most heavy
80-90% execution time devoted.
Numeric method: approximation by intervals with
validated numerics (Adam W.Strzebonski, CAD
using validated numerics, JSC 41, pp.1021-1038,
2006)

Algebraic extensions
•

Computing an algebraic number is computing a
quotient of an ideal.

E.g., Q() is equivalent to Q[z]/(z2 – 3)

•

For higher degree formulae, we may need to repeat
algebraic extensions.

E.g., f(x,y) = y2 – (x2 – 1)y + 1, g(x,y) = x2 + y2 – 4,
adding to x2 – 3, we have x6 – 5x4 – x2 + 21 (from
f(x,y) = 0 and g(x,y) = 0, erasing y with y2 = 4 – x2)
Thus, Q[z,w]/(z2 – 3, w6 – 5w4 – w2 + 21).

3

Groebner

basis (Buchberger

65)

•

Groebner

basis is for computing quotient of ideals.
Starting from given basis of ideals (with WFO on
monomials).
Completion for polynomial rewriting systems (PRS)
until a confluent PRS (in which variables are not
substituted and completion always succeed).

•

Difference from Knuth-Bendix

completion algorithm
Polynomial rewriting is not closed wrt context, e.g.,
{ x2 → y }, s = x2 + xy, t = xy + y, u = x2 – xy. Then,
s → t, but not s + u → t + u.

A.Middeldorp, M.Starcevic, A rewrite approach
to polynomial ideal theory, 1991

Groebner

basis (Buchberger

65)
•

Groebner

basis is for computing quotient of ideals.

Starting from given basis of ideals (with WFO on
monomials).
Completion for polynomials (in which variables are
not substituted and completion always succeed).

•

E.g., Q[z,w]/(z2

– 3, zw2

+ 2w –

3z) with w > z.
→Regard them z2

→ 3, zw2

→ –

2w + 3z

→Critical pair (3w2, –

2zw + 3z2)
→New rule 3w2

→ – 2zw + 9, …

→Finally, we obtain z2

→ 3, 3w2

→ –

2zw + 9 and
Q[z,w]/(z2

– 3, 3w2

+ 2zw –

9).

Middeldorp, Starcevic, A rewrite approach to polynomial ideal theory, 1991

Future of QE-CAD

•

Hard to scale
Double exponential to the number of variables.
The current limit is 7-8 variables (say, degree 10).
Groebner basis is not seriously used (rather by
primitive elements).
Combination with (under/over) approximation by
validated numerics.

•

Applications
Quite successful PID control design of HDD head.
Floating point roundoff errors

	Decidable fragments of FOL�~ solving polynomial constraints by QE-CAD ~
	Logic for software verification
	FOL proving in software verification
	Solving (in)equality with integer coefficients)
	Entrance exam of Japanese University
	Approaches
	Remark on roundoff errors: Rump’s function
	QE-CAD (Quantifier Elimination by �Cylindrical Algebraic Decomposition)
	Solving Tarski sentences
	Brief histroy
	QE-CAD implementations
	Reference
	CAD idea
	Projection phase
	QE-CAD example
	By REDLOG
	Example of counting real roots
	Counting the number of roots
	Example: preservation of the number of real roots
	Euclidian Algorithm to compute GCD
	Extended Euclidian Algorithm
	(Sub)Resultant
	The number of common roots
	Example: enumerating common roots
	Example : Cylindrical decomposition
	Base phase
	Compute sampling points
	Example: sampling
	Finding sample points
	Extended Euclidian Algorithm (again)
	Strum’s theorem
	Lifting phase
	Lifting
	Algebraic extensions
	Groebner basis (Buchberger 65)
	Groebner basis (Buchberger 65)
	Future of QE-CAD

