SAT and Termination

Nao Hirokawa

Japan Advanced Institute of Science and Technology

SAT and Termination

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

given 9×9 -grid like

	1	8				7		
			3			2		
	7							
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

fill out numbers from 1 to 9 that each number appears exactly once in each {row, column, $3\times3\text{-subgrid}\}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

given 9×9 -grid like

	1	8				7		
			3			2		
	7							
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

fill out numbers from 1 to 9 that each number appears exactly once in each {row, column, $3\times3\text{-subgrid}\}$

how to solve?

SAT and Termination

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

given 9×9 -grid like

	1	8				7		
			3			2		
	7							
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

fill out numbers from 1 to 9 that each number appears exactly once in each {row, column, $3\times3\text{-subgrid}\}$

how to solve? — difficult?

SAT and Termination

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

given 9×9 -grid like

	1	8				7		
			3			2		
	7							
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

fill out numbers from 1 to 9 that each number appears exactly once in each {row, column, $3\times3\text{-subgrid}\}$

how to solve? — difficult? — NP-complete

SAT and Termination

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

x_{11}	1	8				7		
x_{21}	x_{22}	x_{23}	3			2		
x_{31}	7	x_{33}						
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

Lemma

 $x_{33} = 3$

Proof

- $\{x_{11}, x_{21}, x_{22}, x_{23}, x_{31}, \textbf{x_{33}}\} = \{2, 3, 4, 5, 6, 9\}$ by subgrid constraint
- $\{x_{11}, x_{21}, x_{22}, x_{23}, x_{31}\} = \{2, 4, 5, 6, 9\}$ by row & column constraint

how about x_{26} ?

SAT and Termination

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

	1	8				7		
x_{21}	x_{22}	x_{23}	3	x_{25}	x_{26}	2	x_{28}	x_{29}
	7	3						
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

	1	8				7		
x_{21}	x_{22}	x_{23}	3	x_{25}	x_{26}	2	x_{28}	x_{29}
	7	3						
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

Proof

• { $x_{21}, x_{22}, x_{23}, x_{25}, \frac{x_{26}}{x_{28}}, x_{29}$ } = {1, 4, 5, 6, 7, 8, 9}

by row constraint

・ロト・日本・モート モー うくぐ

•
$$7 \notin \{x_{21}, x_{22}, x_{23}, x_{25}, x_{28}, x_{29}\}$$

by column & subgrid constraint

Overview

SAT

• encoding techniques

SAT and Termination

Overview

SAT

• encoding techniques

• termination analysis

SAT and Termination

SAT

DEFINITION

• syntax

$\ell ::= x \mid \neg x$	literal
$C ::= \ell_1 \vee \cdots \vee \ell_n$	clause
$\phi ::= C_1 \wedge \dots \wedge C_n$	CNF

SAT

DEFINITION

syntax

$\ell ::= x \mid \neg x$	literal
$C ::= \ell_1 \vee \cdots \vee \ell_n$	clause
$\phi ::= C_1 \wedge \dots \wedge C_n$	CNF

• SAT problem is decision problem of scheme:

instance: CNF ϕ question: is ϕ satisfiable ?

SAT

DEFINITION

syntax

$\ell ::= x \mid \neg x$	literal
$C ::= \ell_1 \vee \cdots \vee \ell_n$	clause
$\phi ::= C_1 \wedge \dots \wedge C_n$	CNF

• SAT problem is decision problem of scheme:

instance: CNF ϕ question: is ϕ satisfiable ?

<u>THEOREM</u> Cook and Levin SAT is NP-complete

SAT and Termination

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

is next CNF ϕ satisfiable?

$$\left. \bigwedge \left\{ \begin{array}{ccc} x_1 \lor \neg x_2, \\ \neg x_1 \lor & x_2 \lor & x_3, \\ \neg x_2 \lor & x_3, \\ \neg x_3 & & \end{array} \right\}$$

is next CNF ϕ satisfiable?

$$\left. \bigwedge \left\{ \begin{array}{ccc} x_1 \lor \neg x_2, \\ \neg x_1 \lor & x_2 \lor & x_3, \\ \neg x_2 \lor & x_3, \\ \neg x_3 \end{array} \right\}$$

 ϕ is satisfiable

is next CNF ϕ satisfiable?

$$\left. \bigwedge \left\{ \begin{array}{ccc} x_1 \lor \neg x_2, \\ \neg x_1 \lor & x_2 \lor & x_3, \\ \neg x_2 \lor & x_3, \\ \neg x_3 & \end{array} \right\}$$

 ϕ is satisfiable because of next satisfiable assignment

$$x_1 \mapsto F$$
 $x_2 \mapsto F$ $x_3 \mapsto F$

SAT and Termination

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

is next CNF ϕ satisfiable?

$$\left. \bigwedge \left\{ \begin{array}{ccc} x_1 \lor \neg x_2, \\ \neg x_1 \lor \neg x_2 \lor & x_3, \\ \neg x_2 \lor & x_3, \\ \neg x_3 & \end{array} \right\}$$

is next CNF ϕ satisfiable?

$$\left. \bigwedge \left\{ \begin{array}{ccc} x_1 \lor \neg x_2, \\ \neg x_1 \lor \neg x_2 \lor & x_3, \\ \neg x_2 \lor & x_3, \\ \neg x_3 & \end{array} \right\}$$

ϕ is unsatisfiable. why?

is next CNF ϕ satisfiable?

$$\left. \bigwedge \left\{ \begin{array}{ccc} x_1 \lor \neg x_2, \\ \neg x_1 \lor \neg x_2 \lor & x_3, \\ \neg x_2 \lor & x_3, \\ \neg x_3 & \end{array} \right\}$$

 ϕ is unsatisfiable. why?

because

• exhaustive search shows that any assignment is unsatisfiable, or

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

is next CNF ϕ satisfiable?

$$\left. \left. \left. \begin{array}{ccc} x_1 \lor \neg x_2, \\ \neg x_1 \lor \neg x_2 \lor & x_3, \\ \neg x_2 \lor & x_3, \\ \neg x_3 & \end{array} \right. \right\}$$

 ϕ is unsatisfiable. why?

because

- exhaustive search shows that any assignment is unsatisfiable, or
- deduction derives ϕ is \perp

SAT and Termination

SAT Solver and DIMACS Format

$$\text{is } \bigwedge \left\{ \begin{array}{c} x_1 \lor \neg x_2, \\ \neg x_1 \lor x_2 \lor \neg x_3, \\ x_2 \lor \neg x_3, \\ \neg x_3 \end{array} \right\} \text{ satisfial}$$

ble ?

SAT Solver and DIMACS Format

$$\text{is } \bigwedge \left\{ \begin{array}{c} x_1 \lor \neg x_2, \\ \neg x_1 \lor x_2 \lor \neg x_3, \\ x_2 \lor \neg x_3, \\ \neg x_3 \end{array} \right\} \text{ satisfiable } ?$$

```
$ minisat a.cnf a.ans
$ cat a.ans
SAT
1 -2 -3 0
```

Sudoku Constraints

constraints

- each cell is number from 1 to 9
- each number appears at most once in each row
- each number appears at most once in each column
- each number appears at most once in each 3×3 subgrid

Sudoku Constraints

constraints

- each cell is number from 1 to 9
- each number appears at most once in each row
- each number appears at most once in each column
- each number appears at most once in each 3×3 subgrid

so use
$$s_{111}, \ldots, s_{999}$$
 with $s_{ijk} = T \iff x_{ij} = k$

SAT and Termination

 $\bullet\,$ each cell is number from 1 to 9

$$\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} (s_{ij1} \vee \cdots \vee s_{ij9})$$

 $\bullet\,$ each cell is number from 1 to 9

$$\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} (s_{ij1} \vee \cdots \vee s_{ij9})$$

• each number appears at most once in each row

$$\bigwedge_{j=1}^9 \bigwedge_{k=1}^9 \bigwedge_{i=1}^9 \bigwedge_{i'=i+1}^9 (\neg s_{ijk} \vee \neg s_{i'jk})$$

 $\bullet\,$ each cell is number from 1 to 9

$$\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} (s_{ij1} \vee \cdots \vee s_{ij9})$$

• each number appears at most once in each row

$$\bigwedge_{j=1}^9 \bigwedge_{k=1}^9 \bigwedge_{i=1}^9 \bigwedge_{i'=i+1}^9 (\neg s_{ijk} \vee \neg s_{i'jk})$$

• each number appears at most once in each column

$$\bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigwedge_{j=1}^{9} \bigwedge_{j'=j+1}^{9} (\neg s_{ijk} \lor \neg s_{ij'k})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• each cell is number from $1 \mbox{ to } 9$

$$\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} (s_{ij1} \vee \cdots \vee s_{ij9})$$

• each number appears at most once in each row

$$\bigwedge_{j=1}^9 \bigwedge_{k=1}^9 \bigwedge_{i=1}^9 \bigwedge_{i'=i+1}^9 (\neg s_{ijk} \vee \neg s_{i'jk})$$

• each number appears at most once in each column

$$\bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigwedge_{j=1}^{9} \bigwedge_{j'=j+1}^{9} (\neg s_{ijk} \lor \neg s_{ij'k})$$

• each number appears at most once in each 3×3 subgrid

$$\bigwedge_{G: \text{subgrid}} \bigwedge_{(i,j) \neq (i',j')} \bigwedge_{k=1}^{9} \neg s_{ijk} \vee \neg s_{i'j'k}$$

SAT and Termination

Uniqueness of Solution

QUESTION

how to check whether there is exactly one solution

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Uniqueness of Solution

QUESTION

how to check whether there is exactly one solution

SOLUTION

check whether there is no other solution

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Uniqueness of Solution

QUESTION

how to check whether there is exactly one solution

SOLUTION

check whether there is no other solution

Theorem

let ϕ be CNF encoding, and α its satisfiable assignment solution is unique if and only if

$$\phi \wedge \left(ig(igvee_{lpha(x) = T} \neg x ig) \lor ig(igvee_{lpha(x) = F} x ig)
ight)$$

is satisfiable

SAT and Termination

Encoding Techniques

SAT Encoding

• modern SAT solvers are extremely fast

SAT Encoding

• modern SAT solvers are extremely fast

• how to translate problem to CNF?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Quiz

find equivalent CNFs

• $(x \wedge y) \vee \neg (u \wedge v)$

Quiz

find equivalent CNFs

- $\bullet \ (x \wedge y) \ \lor \ \neg(u \wedge v)$
- $\bigvee_{i=1}^{n} (x_i \wedge y_i)$

Quiz

find equivalent CNFs

- $(x \wedge y) \vee \neg (u \wedge v)$
- $\bigvee_{i=1}^{n} (x_i \wedge y_i)$

how to avoid exponential blow up? Seitin conversion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Tseitin's transformation

$$x \leftrightarrow (y \wedge z) = (\neg x \lor y) \land (\neg x \lor z) \land (\neg y \lor \neg z \lor x) \qquad \mathsf{CNF}$$

$$x \leftrightarrow (y \lor z) = (x \lor \neg y) \land (x \lor \neg z) \land (y \lor z \lor \neg x)$$
 CNF

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tseitin's transformation

$$\begin{aligned} x \leftrightarrow (y \wedge z) &= (\neg x \lor y) \land (\neg x \lor z) \land (\neg y \lor \neg z \lor x) \\ x \leftrightarrow (y \lor z) &= (x \lor \neg y) \land (x \lor \neg z) \land (y \lor z \lor \neg x) \end{aligned}$$
CNF

$$\models (x \land \neg y) \lor (\neg x \land y)$$

$$\Leftrightarrow \quad \models z \text{ where } \begin{cases} z = u \lor v \\ u = x \land \neg y \\ v = \neg x \land y \end{cases}$$

$$\Leftrightarrow \quad \models z \land \bigwedge \begin{cases} z \leftrightarrow (u \lor v), \\ u \leftrightarrow (x \land \neg y), \\ v \leftrightarrow (\neg x \land y) \end{cases}$$

Tseitin's transformation

$$\begin{aligned} x \leftrightarrow (y \wedge z) &= (\neg x \lor y) \land (\neg x \lor z) \land (\neg y \lor \neg z \lor x) \\ x \leftrightarrow (y \lor z) &= (x \lor \neg y) \land (x \lor \neg z) \land (y \lor z \lor \neg x) \end{aligned}$$

NOTE

given formula of size n, converted formula is of size O(n)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Arithmetic

 $\vec{x}_k = (a_k, \dots, a_1)$ is binary representation of $x < 2^k$ Definition bit encoding

$$\begin{split} \vec{x}_k &= \vec{y}_k \quad = \quad \bigwedge_{i=1}^k (x_k \leftrightarrow y_k) \\ \vec{x}_k &> \vec{y}_k \quad = \quad \begin{cases} x_1 \wedge y_1 & \text{if } k = 1 \\ (x_k \wedge \neg y_k) \lor \left((x_k \leftrightarrow y_k) \wedge \vec{x}_{k-1} > \vec{y}_{k-1} \right) & \text{if } k > 1 \end{cases} \\ \vec{x}_k + \vec{y}_k &= \quad (c_k, s_k, \dots, s_1) \end{split}$$

where

$$c_0 = \bot \qquad c_i = (x_i \land y_i) \lor (x_i \land c_{i-1}) \lor (y_i \land c_{i-1}) \qquad \text{for } i \ge 1$$
$$s_i = x_i \oplus y_i \oplus c_{i-1} \qquad \qquad \text{for } i \ge 1$$

SAT and Termination

many encodable mathematical objects:

finite sets

many encodable mathematical objects:

- finite sets
- order > on finite set

many encodable mathematical objects:

- finite sets
- order > on finite set
- graphs

many encodable mathematical objects:

- finite sets
- order > on finite set
- graphs
- ...

DPLL Algorithm

many SAT solvers use DPLL algorithm

many SAT solvers use DPLL algorithm

• decision, BCP, conflict analysis, clause learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

many SAT solvers use DPLL algorithm

• decision, BCP, conflict analysis, clause learning

• two-watched literal (for BCP)

current assignment:

 $x \mapsto T, y \mapsto F$

current decision: $z \mapsto T$

 $\begin{array}{l} \neg x \lor z \lor b \lor c \\ \neg x \lor y \lor \neg z \lor \neg w \\ w \lor y \lor a \\ \neg a \lor z \lor b \lor y \\ \neg x \lor c \lor d \lor e \end{array}$

SAT and Termination

current assignment:

 $x \mapsto T, y \mapsto F$

current decision: $z \mapsto T$

 $\neg x \lor z \lor b \lor c$ $\neg x \lor y \lor \neg z \lor \neg w$ $w \lor y \lor a$ $\neg a \lor z \lor b \lor y$ $\neg x \lor c \lor d \lor e$

SAT and Termination

1

current assignment:

$$x \mapsto T, y \mapsto F$$

current decision: $z \mapsto T$

 $\neg x \lor z \lor b \lor c \qquad \checkmark \\ \neg x \lor y \lor \neg z \lor \neg w \qquad \qquad w \mapsto F \\ w \lor y \lor a \\ \neg a \lor z \lor b \lor y \\ \neg x \lor c \lor d \lor e$

current assignment:

$$x \mapsto T, y \mapsto F$$

current decision: $z \mapsto T$

$\neg x \lor z \lor b \lor c$	 Image: A set of the set of the
$\neg x \lor y \lor \neg z \lor \neg w$	$w\mapsto F$
$w \vee y \vee a$	—
$\neg a \lor z \lor b \lor y$	—
$\neg x \lor c \lor d \lor e$	_

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Two Watch Literals

current assignment:

$$x \mapsto T, y \mapsto F$$

current decision: $z \mapsto T$

$$\neg x \lor z \lor b \lor c$$
$$\neg x \lor y \lor \neg z \lor \neg w$$
$$w \lor y \lor a$$
$$\neg a \lor z \lor b \lor y$$
$$\neg x \lor c \lor d \lor e$$

SAT and Termination

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Conflict-Directed Backtracking

current decision: $x_1 \mapsto T@6$ (T is assigned to x_1 at 6th decision)

SAT and Termination

many SAT solvers use DPLL algorithm

many SAT solvers use DPLL algorithm

• restart rather than backtrack

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

many SAT solvers use DPLL algorithm

• restart rather than backtrack

• quick restart with e.g. 32 decisions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

many SAT solvers use DPLL algorithm

• restart rather than backtrack

• quick restart with e.g. 32 decisions

• glue clauses (generalisation of unit clauses)

Termination

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• pair of terms $\ell \to r$ is rewrite rule if ℓ is non-variable and $Var(r) \subseteq Var(\ell)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- pair of terms $\ell \to r$ is rewrite rule if ℓ is non-variable and $Var(r) \subseteq Var(\ell)$
- term rewrite system (TRS) is set of rewrite rules

- pair of terms $\ell \to r$ is rewrite rule if ℓ is non-variable and $\operatorname{Var}(r) \subseteq \operatorname{Var}(\ell)$
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation) $s \to_{\mathcal{R}} t$ if $\exists \ell \to r \in \mathcal{R}$, context C, substitution σ : $s = C[\ell\sigma] \land t = C[r\sigma]$

- pair of terms $\ell \to r$ is rewrite rule if ℓ is non-variable and $\operatorname{Var}(r) \subseteq \operatorname{Var}(\ell)$
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation) $s \to_{\mathcal{R}} t$ if $\exists \ell \to r \in \mathcal{R}$, context C, substitution σ : $s = C[\ell\sigma] \land t = C[r\sigma]$

Example

TRS \mathcal{R}

$$\begin{array}{ll} x + \mathbf{0} \to x & x + \mathbf{s}(y) \to \mathbf{s}(x + y) \\ x \times \mathbf{0} \to \mathbf{0} & x \times \mathbf{s}(y) \to x \times y + x \end{array}$$

rewriting

$$\begin{aligned} \mathsf{s}(0) \times \mathsf{s}(0) &\to_{\mathcal{R}} \mathsf{s}(0) \times 0 + \mathsf{s}(0) \\ &\to_{\mathcal{R}} 0 + \mathsf{s}(0) \\ &\to_{\mathcal{R}} \mathsf{s}(0+0) \\ &\to_{\mathcal{R}} \mathsf{s}(0) \quad \text{normal form} \end{aligned}$$

APPLICATIONS

- verification for functional programming
- theorem proving
- code optimization in compilers
- symbolic computation in mathematics

• ...

Implementation of Termination Tools

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Precedence Termination

precedence > is strict order on function symbols

Precedence Termination

precedence > is strict order on function symbols

DEFINITION

 $\ell >_{\mathsf{prec}} r \text{ if } \mathsf{Var}(\ell) \supseteq \mathsf{Var}(r), \ \ell = f(\ldots), \text{ and } \frac{f}{f} > g \text{ for all functions } g \text{ in } r$

Precedence Termination

precedence > is strict order on function symbols

DEFINITION

 $\ell >_{\mathsf{prec}} r$ if $\mathsf{Var}(\ell) \supseteq \mathsf{Var}(r)$, $\ell = f(\ldots)$, and f > g for all functions g in r

Theorem

finite TRS ${\mathcal R}$ is terminating if ${\mathcal R}\subseteq >_{{\sf prec}}$ for some precedence >

Encoding of Precedence Termination Problem

Encoding of Precedence Termination Problem

COROLLARY

assume f > g stands for propositional variable.

finite TRS $\mathcal R$ is terminating if $\vDash O \land I \land T$, where

$$\begin{split} O &= \bigwedge_{\ell \to r \in \mathcal{R}} (\ell >_{\mathsf{prec}} r) \\ I &= \bigwedge_{f \in \mathcal{F}} \neg (f > f) \\ T &= \bigwedge_{f,g,h \in \mathcal{F}} ((f > g) \land (g > h) \to (f > h)) \end{split}$$

Encoding of Precedence Termination Problem

COROLLARY

assume f > g stands for propositional variable.

finite TRS \mathcal{R} is terminating if $\models O \land I \land T$, where

$$\begin{split} O &= \bigwedge_{\ell \to r \in \mathcal{R}} (\ell >_{\mathsf{prec}} r) \\ I &= \bigwedge_{f \in \mathcal{F}} \neg (f > f) \\ T &= \bigwedge_{f,g,h \in \mathcal{F}} ((f > g) \land (g > h) \to (f > h)) \end{split}$$

NOTE

size of T is $O(n^3)$, where $n = |\mathcal{F}|$ (number of function symbols)

SAT and Termination

Example

prove termination of TRS

 $\begin{aligned} \mathsf{not}(x) &\to \mathsf{if}(x,\mathsf{false},\mathsf{true}) \\ \mathsf{and}(x,y) &\to \mathsf{if}(x,y,\mathsf{false}) \\ \mathsf{or}(x,y) &\to \mathsf{if}(x,\mathsf{true},y) \\ \mathsf{equiv}(x,y) &\to \mathsf{if}(x,y,\mathsf{not}(y)) \end{aligned}$

 $\begin{aligned} & \text{if}(\mathsf{true}, x, y) \to x \\ & \text{if}(\mathsf{false}, x, y) \to y \end{aligned}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

$$\begin{split} O = \bigwedge \left\{ \begin{array}{ll} \mathsf{not}(x) \ >_{\mathsf{prec}} \mathsf{if}(x,\mathsf{false},\mathsf{true}), & \mathsf{if}(\mathsf{true},x,y) \ >_{\mathsf{prec}} x, \\ \mathsf{and}(x,y) \ >_{\mathsf{prec}} \mathsf{if}(x,y,\mathsf{false}), & \mathsf{if}(\mathsf{false},x,y) \ >_{\mathsf{prec}} y, \\ \mathsf{or}(x,y) \ >_{\mathsf{prec}} \mathsf{if}(x,\mathsf{true},y), \\ \mathsf{equiv}(x,y) \ >_{\mathsf{prec}} \mathsf{if}(x,y,\mathsf{not}(y)) \\ \end{array} \right\} \\ = \left(\begin{array}{ccc} \mathsf{not} > \mathsf{if} \ \land & \mathsf{not} > \mathsf{false} \ \land & \mathsf{not} > \mathsf{true} \ \land \\ \mathsf{and} > \mathsf{if} \ \land & \mathsf{and} > \mathsf{false} \ \land \\ \mathsf{or} > \mathsf{if} \ \land & \mathsf{or} > \mathsf{true} \ \land \\ \mathsf{equiv} > \mathsf{if} \ \land & \mathsf{equiv} > \mathsf{not} \end{array} \right) \end{split} \end{split}$$

$$\begin{split} O = \bigwedge \left\{ \begin{array}{ll} \mathsf{not}(x) \ >_{\mathsf{prec}} \mathsf{if}(x,\mathsf{false},\mathsf{true}), & \mathsf{if}(\mathsf{true},x,y) \ >_{\mathsf{prec}} x, \\ \mathsf{and}(x,y) \ >_{\mathsf{prec}} \mathsf{if}(x,y,\mathsf{false}), & \mathsf{if}(\mathsf{false},x,y) \ >_{\mathsf{prec}} y, \\ \mathsf{or}(x,y) \ >_{\mathsf{prec}} \mathsf{if}(x,\mathsf{true},y), \\ \mathsf{equiv}(x,y) \ >_{\mathsf{prec}} \mathsf{if}(x,y,\mathsf{not}(y)) \\ \end{array} \right\} \\ = \left(\begin{array}{ccc} \mathsf{not} > \mathsf{if} \ \land & \mathsf{not} > \mathsf{false} \ \land & \mathsf{not} > \mathsf{true} \ \land \\ \mathsf{and} > \mathsf{if} \ \land & \mathsf{and} > \mathsf{false} \ \land \\ \mathsf{or} > \mathsf{if} \ \land & \mathsf{or} > \mathsf{true} \ \land \\ \mathsf{equiv} > \mathsf{if} \ \land & \mathsf{equiv} > \mathsf{not} \end{array} \right) \end{split}$$

 $O \wedge I \wedge T$ is satisfiable:

and > or > equiv > not > false > true > if

hence TRS is terminating

SAT and Termination

Example

prove termination of TRS ${\cal R}$

Example

prove termination of TRS ${\cal R}$

precedence termination does not hold:

$$\mathcal{R} \subseteq >_{\mathsf{prec}} \\ \Leftrightarrow \ \mathsf{s}(x) + y >_{\mathsf{prec}} \mathsf{s}(x+y) \land \cdots \\ \Leftrightarrow \ + > \mathsf{s} \land + > + \land \cdots$$

is unsatisfiable

SAT and Termination

Lexicographic Path Order

<u>DEFINITION</u> given precedence >

 $s >_{lpo} t$ if $s = f(s_1, \ldots, s_m)$, and either $t \in Var(s)$ or $t = g(t_1, \ldots, t_n)$ and

- $s_i >_{\mathsf{lpo}} t$ or $s_i = t$ for all $1 \leq i \leq m$,
- f > g and $s >_{\mathsf{Ipo}} t_i$ for all $1 \leqslant i \leqslant n$, or
- f = g and there is $1 \leq i \leq n$ with

 $s_1 = t_1, \dots, s_{i-1} = t_{i-1}, \ s_i >_{\mathsf{Ipo}} t_i, \ \mathsf{and} \ s >_{\mathsf{Ipo}} t_{i+1}, \dots s >_{\mathsf{Ipo}} t_n$

Lexicographic Path Order

<u>DEFINITION</u> given precedence >

 $s >_{lpo} t$ if $s = f(s_1, \ldots, s_m)$, and either $t \in Var(s)$ or $t = g(t_1, \ldots, t_n)$ and

- $s_i >_{\mathsf{lpo}} t$ or $s_i = t$ for all $1 \leq i \leq m$,
- f > g and $s >_{\mathsf{Ipo}} t_i$ for all $1 \leqslant i \leqslant n$, or
- f = g and there is $1 \leq i \leq n$ with

 $s_1 = t_1, \dots, s_{i-1} = t_{i-1}, \ s_i >_{\mathsf{lpo}} t_i, \ \mathsf{and} \ s >_{\mathsf{lpo}} t_{i+1}, \dots s >_{\mathsf{lpo}} t_n$

<u>THEOREM</u> Kamin and Levy, 1980

finite TRS \mathcal{R} is terminating if $\mathcal{R} \subseteq >_{\mathsf{lpo}}$ for some precedence >

Lexicographic Path Order

<u>DEFINITION</u> given precedence >

 $s >_{lpo} t$ if $s = f(s_1, \ldots, s_m)$, and either $t \in Var(s)$ or $t = g(t_1, \ldots, t_n)$ and

- $s_i >_{\mathsf{lpo}} t$ or $s_i = t$ for all $1 \leqslant i \leqslant m$,
- f > g and $s >_{\mathsf{Ipo}} t_i$ for all $1 \leqslant i \leqslant n$, or
- f = g and there is $1 \leq i \leq n$ with

 $s_1 = t_1, \dots, s_{i-1} = t_{i-1}, s_i >_{\mathsf{Ipo}} t_i, \text{ and } s >_{\mathsf{Ipo}} t_{i+1}, \dots s >_{\mathsf{Ipo}} t_n$

SAT encoding is similar to precedence termination

SAT and Termination

Example

TRS ${\cal R}$

SAT and Termination

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

TRS ${\cal R}$

SAT solver finds precedence that fulfils $\mathcal{R} \subseteq >_{\mathsf{lpo}}$:

 $\times > + > s > 0$

hence \mathcal{R} is terminating

Annov, Codish, and Stuckey, RTA 2006

Annov, Codish, and Stuckey, RTA 2006

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

FACT

transitivity constraint is $O(n^3)$

Annov, Codish, and Stuckey, RTA 2006

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

FACT

transitivity constraint is $O(n^3)$

LEMMA

two statements are equivalent

 $\bullet \ \mathcal{R} \subseteq >_{\mathsf{lpo}} \text{ for some precedence} >$

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is $O(n^3)$

LEMMA

two statements are equivalent

- $\mathcal{R} \subseteq >_{\mathsf{lpo}}$ for some precedence >
- $\bullet \ \mathcal{R} \subseteq >_{\mathsf{lpo}}$ for some total precedence >

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is $O(n^3)$

LEMMA

two statements are equivalent

- $\mathcal{R} \subseteq >_{\mathsf{lpo}}$ for some precedence >
- $\mathcal{R} \subseteq >_{\mathsf{Ipo}}$ for some total precedence >

IDEA

total precedence > can be represented by weight assignment

• each function f is variable over $\{0, \ldots, n\}$; use bit-encoding

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is $O(n^3)$

LEMMA

two statements are equivalent

- $\mathcal{R} \subseteq >_{\mathsf{lpo}}$ for some precedence >
- $\mathcal{R} \subseteq >_{\mathsf{lpo}}$ for some total precedence >

IDEA

total precedence > can be represented by weight assignment

- each function f is variable over $\{0, \ldots, n\}$; use bit-encoding
- size of constraint is $O(N \log n)$, where N is size of TRS

SAT and Termination

Knuth-Bendix Orders

DEFINITION

• weight assignment (w_0, w_f, w_g, \ldots) is tuple of real numbers where $f, g, \ldots \in \mathcal{F}$

Knuth-Bendix Orders

DEFINITION

- weight assignment (w_0, w_f, w_g, \ldots) is tuple of real numbers where $f, g, \ldots \in \mathcal{F}$
- weight of term t is

$$w(t) = \begin{cases} w_0 & \text{if } t \text{ is variable} \\ w_f + w(t_1) + \dots + w(t_n) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Knuth-Bendix Orders

DEFINITION

- weight assignment (w_0, w_f, w_g, \ldots) is tuple of real numbers where $f, g, \ldots \in \mathcal{F}$
- weight of term t is

$$w(t) = \begin{cases} w_0 & \text{if } t \text{ is variable} \\ w_f + w(t_1) + \dots + w(t_n) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

• weight assignment is admissible for precedence > if

 $w_f > 0$ or $f \geqslant g$

for all unary functions f and all functions g

SAT and Termination

 $\bullet \ w(s) > w(t) \text{, or }$

- $\bullet \ w(s) > w(t) \text{, or }$
- w(s) = w(t) and

- $\bullet \ w(s) > w(t) \text{, or }$
- $\bullet \ w(s) = w(t) \text{ and }$
 - $s = f^n(t)$ and t is variable for some unary f and $n \ge 1$; or

- $\bullet \ w(s) > w(t) \text{, or }$
- $\bullet \ w(s) = w(t) \text{ and }$
 - $s = f^n(t)$ and t is variable for some unary f and $n \ge 1$; or

•
$$s = f(s_1, \ldots, s_{i-1}, s_i, \ldots, s_n)$$
, $t = f(s_1, \ldots, s_{i-1}, t_i, \ldots, t_n)$, and $s_i >_{kbo} t_i$; or

- w(s) > w(t), or
- $\bullet \ w(s) = w(t) \text{ and }$
 - $s = f^n(t)$ and t is variable for some unary f and $n \ge 1$; or
 - $s = f(s_1, \ldots, s_{i-1}, s_i, \ldots, s_n)$, $t = f(s_1, \ldots, s_{i-1}, t_i, \ldots, t_n)$, and $s_i >_{kbo} t_i$; or
 - $s = f(s_1, \ldots, s_n)$, $t = g(t_1, \ldots, t_m)$, and f > g

- w(s) > w(t), or
- $\bullet \ w(s) = w(t) \text{ and }$
 - $s = f^n(t)$ and t is variable for some unary f and $n \ge 1$; or
 - $s = f(s_1, \ldots, s_{i-1}, s_i, \ldots, s_n)$, $t = f(s_1, \ldots, s_{i-1}, t_i, \ldots, t_n)$, and $s_i >_{kbo} t_i$; or

•
$$s = f(s_1, \ldots, s_n)$$
, $t = g(t_1, \ldots, t_m)$, and $f > g$

THEOREM

Knuth and Bendix, 1970; Dershowitz, 1979

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

finite TRS \mathcal{R} is terminating if $\mathcal{R} \subseteq >_{\mathsf{kbo}}$ for some weight (w_0, w_f, w_a, \ldots) over \mathbb{R} and precedence >

SAT and Termination

Theorem

Hirokawa, Zankl, Middeldorp, JAR 2010

next statements are equivalent

• $\mathcal{R} \subseteq >_{\mathsf{kbo}}$ for some weight w over \mathbb{R} and precedence >

• $\mathcal{R} \subseteq >_{kbo}$ for some weight w over $\{0, 1, \dots, 2^{2^N}\}$ and precedence > here N is size of \mathcal{R}

Theorem

Hirokawa, Zankl, Middeldorp, JAR 2010

next statements are equivalent

• $\mathcal{R} \subseteq >_{\mathsf{kbo}}$ for some weight w over \mathbb{R} and precedence >

• $\mathcal{R} \subseteq >_{kbo}$ for some weight w over $\{0, 1, \dots, 2^{2^N}\}$ and precedence > here N is size of \mathcal{R}

NOTE

large weights (> 15) are hardly required

Termination Tools

 termination tools (AProVE, Matchbox, μ-Term, TTT2, VMTL, ...) use SAT/SMT solvers

Termination Tools

 termination tools (AProVE, Matchbox, μ-Term, TTT2, VMTL, ...) use SAT/SMT solvers

 to increase power, termination tools employ transformations dependency pair method by Arts and Giesl, TCS 2000

Termination Tools

 termination tools (AProVE, Matchbox, μ-Term, TTT2, VMTL, ...) use SAT/SMT solvers

 to increase power, termination tools employ transformations dependency pair method by Arts and Giesl, TCS 2000

• complexity analysers (AProVE, CaT, TCT, ...) use same way POP* by Avanzini and Moser (2008)

くしゃ 本理 アメヨア オヨア しゅうぐう

• SAT solver and basic encoding techniques

• SAT solver and basic encoding techniques

• termination analysis

• SAT solver and basic encoding techniques

termination analysis

• often SAT encoding approach outperforms dedicated algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シへの

• SAT solver and basic encoding techniques

termination analysis

• often SAT encoding approach outperforms dedicated algorithm

thank you for your kind attention!