SAT and Termination

Nao Hirokawa

Japan Advanced Institute of Science and Technology

Sudoku Puzzle

given 9×9-grid like

	1	8				7		
			3			2		
	7							
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

fill out numbers from 1 to 9 that each number appears exactly once in each $\{$ row, column, 3×3-subgrid $\}$

Sudoku Puzzle

given 9×9-grid like

	1	8				7		
			3			2		
	7							
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

fill out numbers from 1 to 9 that each number appears exactly once in each $\{$ row, column, 3×3-subgrid $\}$
how to solve?

Sudoku Puzzle

given 9×9-grid like

	1	8				7		
			3			2		
	7							
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

fill out numbers from 1 to 9 that each number appears exactly once in each $\{$ row, column, 3×3-subgrid $\}$
how to solve? - difficult?

Sudoku Puzzle

given 9×9-grid like

	1	8				7		
			3			2		
	7							
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

fill out numbers from 1 to 9 that each number appears exactly once in each $\{$ row, column, 3×3-subgrid $\}$
how to solve? - difficult? - NP-complete

Solving Sudoku

x_{11}	1	8				7		
x_{21}	x_{22}	x_{23}	3			2		
x_{31}	7	x_{33}						
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

Solving Sudoku

LEMMA
$x_{33}=3$

x_{11}	1	8				7		
x_{21}	x_{22}	x_{23}	3			2		
x_{31}	7	x_{33}						
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

PROOF

- $\left\{x_{11}, x_{21}, x_{22}, x_{23}, x_{31}, x_{33}\right\}=\{2,3,4,5,6,9\} \quad$ by subgrid constraint
- $\left\{x_{11}, x_{21}, x_{22}, x_{23}, x_{31}\right\}=\{2,4,5,6,9\} \quad$ by row $\&$ column constraint
how about x_{26} ?

Solving Sudoku

	1	8				7		
x_{21}	x_{22}	x_{23}	3	x_{25}	x_{26}	2	x_{28}	x_{29}
	7	3						
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

Solving Sudoku

LEMMA
$x_{26}=7$

	1	8				7		
x_{21}	x_{22}	x_{23}	3	x_{25}	x_{26}	2	x_{28}	x_{29}
	7	3						
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

Solving Sudoku

LEMMA
$x_{26}=7$

	1	8				7		
x_{21}	x_{22}	x_{23}	3	x_{25}	x_{26}	2	x_{28}	x_{29}
	7	3						
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

$\underline{\text { PROOF }}$

- $\left\{x_{21}, x_{22}, x_{23}, x_{25}, x_{26}, x_{28}, x_{29}\right\}=\{1,4,5,6,7,8,9\}$
by row constraint
- $7 \notin\left\{x_{21}, x_{22}, x_{23}, x_{25}, x_{28}, x_{29}\right\}$
by column \& subgrid constraint

Overview

- SAT

Overview

- SAT
- encoding techniques

Overview

- SAT
- encoding techniques
- termination analysis

SAT

Definition

- syntax

$$
\begin{array}{rlrl}
\ell & ::=x \mid \neg x & & \text { literal } \\
C & :=\ell_{1} \vee \cdots \vee \ell_{n} & & \text { clause } \\
\phi & : & =C_{1} \wedge \cdots \wedge C_{n} & \\
\text { CNF }
\end{array}
$$

SAT

Definition

- syntax

$$
\begin{array}{rlrl}
\ell & ::=x \mid \neg x & & \text { literal } \\
C & :=\ell_{1} \vee \cdots \vee \ell_{n} & & \text { clause } \\
\phi & : & =C_{1} \wedge \cdots \wedge C_{n} & \\
\text { CNF }
\end{array}
$$

- SAT problem is decision problem of scheme:

$$
\begin{array}{ll}
\text { instance: } & \text { CNF } \phi \\
\text { question: } & \text { is } \phi \text { satisfiable ? }
\end{array}
$$

SAT

$\underline{\text { DEFINITION }}$

- syntax

$$
\begin{array}{rlrl}
\ell & ::=x \mid \neg x & & \text { literal } \\
C & :=\ell_{1} \vee \cdots \vee \ell_{n} & & \text { clause } \\
\phi & : & =C_{1} \wedge \cdots \wedge C_{n} & \\
\text { CNF }
\end{array}
$$

- SAT problem is decision problem of scheme:

$$
\begin{array}{ll}
\text { instance: } & \text { CNF } \phi \\
\text { question: } & \text { is } \phi \text { satisfiable ? }
\end{array}
$$

Theorem Cook and Levin
SAT is NP-complete

Quiz

is next CNF ϕ satisfiable?

$$
\bigwedge\left\{\begin{array}{lll}
x_{1} \vee & \neg x_{2}, & \\
\neg x_{1} \vee & x_{2} \vee & x_{3} \\
\neg x_{2} \vee & x_{3}, & \\
\neg x_{3} & &
\end{array}\right\}
$$

Quiz

is next CNF ϕ satisfiable?

$$
\bigwedge\left\{\begin{array}{lll}
x_{1} \vee & \neg x_{2}, & \\
\neg x_{1} \vee & x_{2} \vee & x_{3} \\
\neg x_{2} \vee & x_{3}, & \\
\neg x_{3} & &
\end{array}\right\}
$$

ϕ is satisfiable

Quiz

is next CNF ϕ satisfiable?

$$
\bigwedge\left\{\begin{array}{lll}
x_{1} \vee & \neg x_{2}, & \\
\neg x_{1} \vee & x_{2} \vee & x_{3}, \\
\neg x_{2} \vee & x_{3}, & \\
\neg x_{3} & &
\end{array}\right\}
$$

ϕ is satisfiable because of next satisfiable assignment

$$
x_{1} \mapsto F \quad x_{2} \mapsto F \quad x_{3} \mapsto F
$$

Quiz

is next CNF ϕ satisfiable?

$$
\bigwedge\left\{\begin{array}{lll}
x_{1} \vee \neg x_{2}, & \\
\neg x_{1} \vee \neg x_{2} \vee & x_{3}, \\
\neg x_{2} \vee & x_{3}, & \\
\neg x_{3} &
\end{array}\right\}
$$

Quiz

is next CNF ϕ satisfiable?

$$
\bigwedge\left\{\begin{array}{l}
x_{1} \vee \neg x_{2}, \\
\neg x_{1} \vee \neg x_{2} \vee \\
\neg x_{2} \vee \\
\neg x_{3}
\end{array}\right\}
$$

ϕ is unsatisfiable. why?

Quiz

is next CNF ϕ satisfiable?

$$
\bigwedge\left\{\begin{array}{l}
x_{1} \vee \neg x_{2}, \\
\neg x_{1} \vee \neg x_{2} \vee \quad x_{3}, \\
\neg x_{2} \vee \quad x_{3}, \\
\neg x_{3}
\end{array}\right\}
$$

ϕ is unsatisfiable. why?
because

- exhaustive search shows that any assignment is unsatisfiable, or

Quiz

is next CNF ϕ satisfiable?

$$
\bigwedge\left\{\begin{array}{l}
x_{1} \vee \neg x_{2}, \\
\neg x_{1} \vee \neg x_{2} \vee \quad x_{3}, \\
\neg x_{2} \vee \quad x_{3}, \\
\neg x_{3}
\end{array}\right\}
$$

ϕ is unsatisfiable. why?
because

- exhaustive search shows that any assignment is unsatisfiable, or
- deduction derives ϕ is \perp

SAT Solver and DIMACS Format

is $\Lambda\left\{\begin{array}{l}x_{1} \vee \neg x_{2}, \\ \neg x_{1} \vee x_{2} \vee \neg x_{3}, \\ x_{2} \vee \neg x_{3}, \\ \neg x_{3}\end{array}\right\}$ satisfiable ?

SAT Solver and DIMACS Format

$$
\begin{aligned}
& \text { is } \bigwedge\left\{\begin{array}{l}
x_{1} \vee \neg x_{2}, \\
\neg x_{1} \vee x_{2} \vee \neg x_{3}, \\
x_{2} \vee \neg x_{3}, \\
\neg x_{3}
\end{array}\right\} \text { satisfiable ? } \\
& \text { \$ cat a.cnf }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
-1 & 2 & -3 & 0
\end{array} \\
& 3-20 \\
& \text {-3 } 0 \\
& \text { \$ minisat a.cnf a.ans } \\
& \text { \$ cat a.ans } \\
& \text { SAT } \\
& 1-2-30
\end{aligned}
$$

Sudoku Constraints

	1	8				7		
			3			2		
	7							
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

constraints

- each cell is number from 1 to 9
- each number appears at most once in each row
- each number appears at most once in each column
- each number appears at most once in each 3×3 subgrid

Sudoku Constraints

	1	8				7		
			3			2		
	7							
				7	1			
6							4	
3								
4			5					3
	2			8				
							6	

constraints

- each cell is number from 1 to 9
- each number appears at most once in each row
- each number appears at most once in each column
- each number appears at most once in each 3×3 subgrid

$$
\text { use } s_{111}, \ldots, s_{999} \text { with } s_{i j k}=T \Longleftrightarrow x_{i j}=k
$$

Sudoku Constraints in Boolean

- each cell is number from 1 to 9

$$
\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9}\left(s_{i j 1} \vee \cdots \vee s_{i j 9}\right)
$$

Sudoku Constraints in Boolean

- each cell is number from 1 to 9

$$
\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9}\left(s_{i j 1} \vee \cdots \vee s_{i j 9}\right)
$$

- each number appears at most once in each row

$$
\bigwedge_{j=1}^{9} \bigwedge_{k=1}^{9} \bigwedge_{i=1}^{9} \bigwedge_{i^{\prime}=i+1}^{9}\left(\neg s_{i j k} \vee \neg s_{i^{\prime} j k}\right)
$$

Sudoku Constraints in Boolean

- each cell is number from 1 to 9

$$
\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9}\left(s_{i j 1} \vee \cdots \vee s_{i j 9}\right)
$$

- each number appears at most once in each row

$$
\bigwedge_{j=1}^{9} \bigwedge_{k=1}^{9} \bigwedge_{i=1}^{9} \bigwedge_{i^{\prime}=i+1}^{9}\left(\neg s_{i j k} \vee \neg s_{i^{\prime} j k}\right)
$$

- each number appears at most once in each column

$$
\bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigwedge_{j=1}^{9} \bigwedge_{j^{\prime}=j+1}^{9}\left(\neg s_{i j k} \vee \neg s_{i j^{\prime} k}\right)
$$

Sudoku Constraints in Boolean

- each cell is number from 1 to 9

$$
\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9}\left(s_{i j 1} \vee \cdots \vee s_{i j 9}\right)
$$

- each number appears at most once in each row

$$
\bigwedge_{j=1}^{9} \bigwedge_{k=1}^{9} \bigwedge_{i=1}^{9} \bigwedge_{i^{\prime}=i+1}^{9}\left(\neg s_{i j k} \vee \neg s_{i^{\prime} j k}\right)
$$

- each number appears at most once in each column

$$
\bigwedge_{i=1}^{9} \bigwedge_{k=1}^{9} \bigwedge_{j=1}^{9} \bigwedge_{j^{\prime}=j+1}^{9}\left(\neg s_{i j k} \vee \neg s_{i j^{\prime} k}\right)
$$

- each number appears at most once in each 3×3 subgrid

$$
\bigwedge_{G: \text { subgrid }(i, j) \neq\left(i^{\prime}, j^{\prime}\right)} \bigwedge_{k=1}^{9} \neg s_{i j k} \vee \neg s_{i^{\prime} j^{\prime} k}
$$

Uniqueness of Solution

QUESTION

how to check whether there is exactly one solution

Uniqueness of Solution

QUESTION

how to check whether there is exactly one solution

SOLUTION

check whether there is no other solution

Uniqueness of Solution

QUESTION

how to check whether there is exactly one solution

SOLUTION

check whether there is no other solution

Theorem
let ϕ be CNF encoding, and α its satisfiable assignment solution is unique if and only if

$$
\phi \wedge\left(\left(\bigvee_{\alpha(x)=T} \neg x\right) \vee\left(\bigvee_{\alpha(x)=F} x\right)\right)
$$

is satisfiable

Encoding Techniques

SAT Encoding

- modern SAT solvers are extremely fast

SAT Encoding

- modern SAT solvers are extremely fast
- how to translate problem to CNF?

Quiz

find equivalent CNFs

$$
\text { - }(x \wedge y) \vee \neg(u \wedge v)
$$

Quiz

find equivalent CNFs

- $(x \wedge y) \vee \neg(u \wedge v)$
- $\bigvee_{i=1}^{n}\left(x_{i} \wedge y_{i}\right)$

Quiz

find equivalent CNFs

- $(x \wedge y) \vee \neg(u \wedge v)$
- $\bigvee_{i=1}^{n}\left(x_{i} \wedge y_{i}\right)$
how to avoid exponential blow up? Tseitin conversion

Tseitin's transformation

$$
\begin{align*}
& x \leftrightarrow(y \wedge z)=(\neg x \vee y) \wedge(\neg x \vee z) \wedge(\neg y \vee \neg z \vee x) \tag{CNF}\\
& x \leftrightarrow(y \vee z)=(x \vee \neg y) \wedge(x \vee \neg z) \wedge(y \vee z \vee \neg x) \tag{CNF}
\end{align*}
$$

Tseitin's transformation

$$
\begin{align*}
& x \leftrightarrow(y \wedge z)=(\neg x \vee y) \wedge(\neg x \vee z) \wedge(\neg y \vee \neg z \vee x) \tag{CNF}\\
& x \leftrightarrow(y \vee z)=(x \vee \neg y) \wedge(x \vee \neg z) \wedge(y \vee z \vee \neg x) \tag{CNF}
\end{align*}
$$

$$
\begin{aligned}
& \quad \vDash(x \wedge \neg y) \vee(\neg x \wedge y) \\
& \Leftrightarrow \quad \vDash z \text { where }\left\{\begin{array}{l}
z=u \vee v \\
u=x \wedge \neg y \\
v=\neg x \wedge y
\end{array}\right. \\
& \Leftrightarrow \quad \vDash z \wedge \wedge\left\{\begin{array}{l}
z \leftrightarrow(u \vee v) \\
u \leftrightarrow(x \wedge \neg y), \\
v \leftrightarrow(\neg x \wedge y)
\end{array}\right\}
\end{aligned}
$$

Tseitin's transformation

$$
\begin{align*}
& x \leftrightarrow(y \wedge z)=(\neg x \vee y) \wedge(\neg x \vee z) \wedge(\neg y \vee \neg z \vee x) \tag{CNF}\\
& x \leftrightarrow(y \vee z)=(x \vee \neg y) \wedge(x \vee \neg z) \wedge(y \vee z \vee \neg x) \tag{CNF}
\end{align*}
$$

$$
\begin{aligned}
& \quad \vDash(x \wedge \neg y) \vee(\neg x \wedge y) \\
& \Leftrightarrow \quad \vDash z \text { where }\left\{\begin{array}{l}
z=u \vee v \\
u=x \wedge \neg y \\
v=\neg x \wedge y
\end{array}\right. \\
& \Leftrightarrow \quad \vDash z \wedge \wedge\left\{\begin{array}{l}
z \leftrightarrow(u \vee v) \\
u \leftrightarrow(x \wedge \neg y), \\
v \leftrightarrow(\neg x \wedge y)
\end{array}\right\}
\end{aligned}
$$

NOTE

given formula of size n, converted formula is of size $O(n)$

Arithmetic

$\vec{x}_{k}=\left(a_{k}, \ldots, a_{1}\right)$ is binary representation of $x<2^{k}$
Definition bit encoding

$$
\begin{aligned}
& \vec{x}_{k}=\vec{y}_{k}=\bigwedge_{i=1}^{k}\left(x_{k} \leftrightarrow y_{k}\right) \\
& \vec{x}_{k}>\vec{y}_{k}= \begin{cases}x_{1} \wedge y_{1} \\
\left(x_{k} \wedge \neg y_{k}\right) \vee\left(\left(x_{k} \leftrightarrow y_{k}\right) \wedge \vec{x}_{k-1}>\vec{y}_{k-1}\right) & \text { if } k>1\end{cases} \\
& \vec{x}_{k}+\vec{y}_{k}=\left(c_{k}, s_{k}, \ldots, s_{1}\right)
\end{aligned}
$$

where

$$
\begin{array}{llr}
c_{0}=\perp & c_{i}=\left(x_{i} \wedge y_{i}\right) \vee\left(x_{i} \wedge c_{i-1}\right) \vee\left(y_{i} \wedge c_{i-1}\right) & \text { for } i \geqslant 1 \\
& s_{i}=x_{i} \oplus y_{i} \oplus c_{i-1} & \\
\text { for } i \geqslant 1
\end{array}
$$

More...

many encodable mathematical objects:

- finite sets

More...

many encodable mathematical objects:

- finite sets
- order $>$ on finite set

More...

many encodable mathematical objects:

- finite sets
- order $>$ on finite set
- graphs

More...

many encodable mathematical objects:

- finite sets
- order $>$ on finite set
- graphs
- ...

DPLL Algorithm

Implementation

many SAT solvers use DPLL algorithm

Implementation

many SAT solvers use DPLL algorithm

- decision, BCP, conflict analysis, clause learning

Implementation

many SAT solvers use DPLL algorithm

- decision, BCP, conflict analysis, clause learning
- two-watched literal (for BCP)

Boolean Constraint Propagation

current assignment:

$$
x \mapsto T, y \mapsto F
$$

current decision: $z \mapsto T$

$$
\begin{aligned}
& \neg x \vee z \vee b \vee c \\
& \neg x \vee y \vee \neg z \vee \neg w \\
& w \vee y \vee a \\
& \neg a \vee z \vee b \vee y \\
& \neg x \vee c \vee d \vee e
\end{aligned}
$$

Boolean Constraint Propagation

current assignment:

$$
x \mapsto T, y \mapsto F
$$

current decision: $z \mapsto T$

$$
\begin{aligned}
& \neg x \vee z \vee b \vee c \\
& \neg x \vee y \vee \neg z \vee \neg w \\
& w \vee y \vee a \\
& \neg a \vee z \vee b \vee y \\
& \neg x \vee c \vee d \vee e
\end{aligned}
$$

Boolean Constraint Propagation

current assignment:

$$
x \mapsto T, y \mapsto F
$$

current decision: $z \mapsto T$

$$
\begin{aligned}
& \neg x \vee z \vee b \vee c \\
& \neg x \vee y \vee \neg z \vee \neg w \\
& w \vee y \vee a \\
& \neg a \vee z \vee b \vee y \\
& \neg x \vee c \vee d \vee e
\end{aligned}
$$

Boolean Constraint Propagation

current assignment:

$$
x \mapsto T, y \mapsto F
$$

current decision: $z \mapsto T$

$$
\begin{aligned}
& \neg x \vee z \vee b \vee c \\
& \neg x \vee y \vee \neg z \vee \neg w \\
& w \vee y \vee a \\
& \neg a \vee z \vee b \vee y \\
& \neg x \vee c \vee d \vee e
\end{aligned}
$$

Two Watch Literals

current assignment:

$$
x \mapsto T, y \mapsto F
$$

current decision: $z \mapsto T$

$$
\begin{aligned}
& \neg x \vee z \vee \boxed{b} \vee \boxed{c} \\
& \neg x \vee y \vee \boxed{\neg z} \vee \boxed{\neg w} \\
& \square \vee \vee y \vee a \\
& \neg a \vee z \vee \boxed{b} \vee y \\
& \neg x \vee \square \vee \square d \vee e
\end{aligned}
$$

Conflict-Directed Backtracking

current decision: $x_{1} \mapsto T @ 6$ (T is assigned to x_{1} at 6 th decision)

- if $x_{1} \neq \perp$, back to level 3
- learned clause: $\neg x_{1} \vee x_{9} \vee x_{10} \vee x_{11}$

Implementation II

many SAT solvers use DPLL algorithm

Implementation II

many SAT solvers use DPLL algorithm

- restart rather than backtrack

Implementation II

many SAT solvers use DPLL algorithm

- restart rather than backtrack
- quick restart with e.g. 32 decisions

Implementation II

many SAT solvers use DPLL algorithm

- restart rather than backtrack
- quick restart with e.g. 32 decisions
- glue clauses (generalisation of unit clauses)

Termination

Term Rewriting

- pair of terms $\ell \rightarrow r$ is rewrite rule if ℓ is non-variable and $\operatorname{Var}(r) \subseteq \operatorname{Var}(\ell)$

Term Rewriting

- pair of terms $\ell \rightarrow r$ is rewrite rule if ℓ is non-variable and $\operatorname{Var}(r) \subseteq \operatorname{Var}(\ell)$
- term rewrite system (TRS) is set of rewrite rules

Term Rewriting

- pair of terms $\ell \rightarrow r$ is rewrite rule if ℓ is non-variable and $\operatorname{Var}(r) \subseteq \operatorname{Var}(\ell)$
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation) $s \rightarrow_{\mathcal{R}} t$ if $\exists \ell \rightarrow r \in \mathcal{R}$, context C, substitution σ : $s=C[\ell \sigma] \wedge t=C[r \sigma]$

Term Rewriting

- pair of terms $\ell \rightarrow r$ is rewrite rule if ℓ is non-variable and $\operatorname{Var}(r) \subseteq \operatorname{Var}(\ell)$
- term rewrite system (TRS) is set of rewrite rules
- (rewrite relation) $s \rightarrow_{\mathcal{R}} t$ if $\exists \ell \rightarrow r \in \mathcal{R}$, context C, substitution σ : $s=C[\ell \sigma] \wedge t=C[r \sigma]$

Example
TRS \mathcal{R}

$$
\begin{array}{ll}
x+0 \rightarrow x & x+\mathrm{s}(y) \rightarrow \mathbf{s}(x+y) \\
x \times 0 \rightarrow 0 & x \times \mathrm{s}(y) \rightarrow x \times y+x
\end{array}
$$

rewriting

$$
\begin{aligned}
\mathrm{s}(0) \times \mathrm{s}(0) & \rightarrow_{\mathcal{R}} \mathrm{s}(0) \times 0+\mathrm{s}(0) \\
& \rightarrow_{\mathcal{R}} 0+\mathrm{s}(0) \\
& \rightarrow_{\mathcal{R}} \mathrm{s}(0+0) \\
& \rightarrow_{\mathcal{R}} \mathrm{s}(0) \quad \text { normal form }
\end{aligned}
$$

APPLICATIONS

- verification for functional programming
- theorem proving
- code optimization in compilers
- symbolic computation in mathematics
- ...

Implementation of Termination Tools

Precedence Termination

precedence $>$ is strict order on function symbols

Precedence Termination

precedence $>$ is strict order on function symbols

DEFINITION
$\ell>_{\text {prec }} r$ if $\operatorname{Var}(\ell) \supseteq \operatorname{Var}(r), \ell=f(\ldots)$, and $f>g$ for all functions g in r

Precedence Termination

precedence $>$ is strict order on function symbols

Definition
$\ell>_{\text {prec }} r$ if $\operatorname{Var}(\ell) \supseteq \operatorname{Var}(r), \ell=f(\ldots)$, and $f>g$ for all functions g in r

Theorem
finite TRS \mathcal{R} is terminating if $\mathcal{R} \subseteq>_{\text {prec }}$ for some precedence $>$

Encoding of Precedence Termination Problem

Encoding of Precedence Termination Problem

COROLLARY

assume $f>g$ stands for propositional variable.
finite TRS \mathcal{R} is terminating if $\vDash O \wedge I \wedge T$, where

$$
\begin{aligned}
O & =\bigwedge_{\ell \rightarrow r \in \mathcal{R}}\left(\ell>_{\text {prec }} r\right) \\
I & =\bigwedge_{f \in \mathcal{F}} \neg(f>f) \\
T & =\bigwedge_{f, g, h \in \mathcal{F}}((f>g) \wedge(g>h) \rightarrow(f>h))
\end{aligned}
$$

Encoding of Precedence Termination Problem

Corollary

assume $f>g$ stands for propositional variable.
finite TRS \mathcal{R} is terminating if $\vDash O \wedge I \wedge T$, where

$$
\begin{aligned}
O & =\bigwedge_{\ell \rightarrow r \in \mathcal{R}}\left(\ell>_{\text {prec }} r\right) \\
I & =\bigwedge_{f \in \mathcal{F}} \neg(f>f) \\
T & =\bigwedge_{f, g, h \in \mathcal{F}}((f>g) \wedge(g>h) \rightarrow(f>h))
\end{aligned}
$$

NOTE

size of T is $O\left(n^{3}\right)$, where $n=|\mathcal{F}|$ (number of function symbols)

Example

prove termination of TRS

$$
\begin{aligned}
\operatorname{not}(x) & \rightarrow \text { if }(x, \text { false, true }) & \text { if }(\text { true }, x, y) & \rightarrow x \\
\text { and }(x, y) & \rightarrow \text { if }(x, y, \text { false }) & & \text { if }(\text { false, } x, y) \rightarrow y \\
\text { or }(x, y) & \rightarrow \text { if }(x, \text { true, } y) & & \\
\text { equiv }(x, y) & \rightarrow \text { if }(x, y, \text { not }(y)) & &
\end{aligned}
$$

$$
\begin{aligned}
& O=\bigwedge\left\{\begin{array}{rlll}
\operatorname{not}(x) & >_{\text {prec }} \text { if }(x, \text { false, true }), & \text { if }(\text { true }, x, y) & >_{\text {prec }} x, \\
\operatorname{and}(x, y) & >_{\text {prec }} \text { if }(x, y, \text { false }), & \text { if }(\text { false }, x, y) & >_{\text {prec }} y, \\
\operatorname{or}(x, y) & >_{\text {prec }} \text { if }(x, \text { true } y), & & \\
\text { equiv }(x, y) & >_{\text {prec }} \text { if }(x, y, \operatorname{not}(y)) & &
\end{array}\right\} \\
& =\left(\begin{array}{ccccc}
\text { not }> & \text { if } & \wedge & \text { not }>\text { false } & \wedge \\
\text { not }>\text { true } & \wedge \\
\text { and }> & >\text { if } & \wedge & \text { and }>\text { false } & \wedge \\
\text { or }> & \text { if } & \wedge & \text { or }>\text { true } & \wedge \\
\text { equiv }> & \text { if } & \wedge & \text { equiv }>\text { not } & \\
& &
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& O=\bigwedge\left\{\begin{array}{rlll}
\operatorname{not}(x) & >_{\text {prec }} \text { if }(x, \text { false, true }), & \text { if }(\text { true }, x, y) & >_{\text {prec }} x, \\
\operatorname{and}(x, y) & >_{\text {prec }} \text { if }(x, y, \text { false }), & \text { if }(\text { false }, x, y) & >_{\text {prec }} y, \\
\operatorname{or}(x, y) & >_{\text {prec }} \text { if }(x, \text { true }, y), & & \\
\text { equiv }(x, y) & >_{\text {prec }} \text { if }(x, y, \operatorname{not}(y)) & &
\end{array}\right\}
\end{aligned}
$$

$O \wedge I \wedge T$ is satisfiable:

$$
\text { and }>\text { or }>\text { equiv }>\text { not }>\text { false }>\text { true }>\text { if }
$$

hence TRS is terminating

Example

prove termination of TRS \mathcal{R}

$$
\begin{aligned}
& x+0 \rightarrow x \\
& x \times 0 \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& x+\mathrm{s}(y) \rightarrow \mathrm{s}(x+y) \\
& x \times \mathrm{s}(y) \rightarrow x \times y+x
\end{aligned}
$$

Example

prove termination of TRS \mathcal{R}

$$
\begin{array}{ll}
x+0 \rightarrow x & x+\mathrm{s}(y) \\
x \times 0 \rightarrow \mathbf{s}(x+y) \\
x \times \mathrm{s}(y) & \rightarrow x \times y+x
\end{array}
$$

precedence termination does not hold:

$$
\begin{aligned}
& \mathcal{R} \subseteq>_{\text {prec }} \\
\Leftrightarrow & \mathrm{s}(x)+y>_{\text {prec }} \mathrm{s}(x+y) \wedge \cdots \\
\Leftrightarrow & +>\mathrm{s} \wedge+>+\wedge \cdots
\end{aligned}
$$

is unsatisfiable

Lexicographic Path Order

DEFINITION given precedence $>$
$s>_{\text {Ipo }} t$ if $s=f\left(s_{1}, \ldots, s_{m}\right)$, and either $t \in \operatorname{Var}(s)$ or $t=g\left(t_{1}, \ldots, t_{n}\right)$ and

- $s_{i}>_{\text {lpo }} t$ or $s_{i}=t$ for all $1 \leqslant i \leqslant m$,
- $f>g$ and $s>_{\text {lpo }} t_{i}$ for all $1 \leqslant i \leqslant n$, or
- $f=g$ and there is $1 \leqslant i \leqslant n$ with

$$
s_{1}=t_{1}, \ldots, s_{i-1}=t_{i-1}, s_{i}>_{\text {Ipo }} t_{i}, \text { and } s>_{\text {Ipo }} t_{i+1}, \ldots s>_{\text {Ipo }} t_{n}
$$

Lexicographic Path Order

DEFINITION given precedence $>$
$s>_{\text {Ipo }} t$ if $s=f\left(s_{1}, \ldots, s_{m}\right)$, and either $t \in \operatorname{Var}(s)$ or $t=g\left(t_{1}, \ldots, t_{n}\right)$ and

- $s_{i}>_{\text {Ipo }} t$ or $s_{i}=t$ for all $1 \leqslant i \leqslant m$,
- $f>g$ and $s>_{\text {lpo }} t_{i}$ for all $1 \leqslant i \leqslant n$, or
- $f=g$ and there is $1 \leqslant i \leqslant n$ with

$$
s_{1}=t_{1}, \ldots, s_{i-1}=t_{i-1}, s_{i}>_{\text {Ipo }} t_{i}, \text { and } s>_{\text {Ipo }} t_{i+1}, \ldots s>_{\text {Ipo }} t_{n}
$$

Theorem Kamin and Levy, 1980
finite $T R S \mathcal{R}$ is terminating if $\mathcal{R} \subseteq>_{\text {Ipo }}$ for some precedence $>$

Lexicographic Path Order

DEfinition given precedence $>$
$s>_{\text {Ipo }} t$ if $s=f\left(s_{1}, \ldots, s_{m}\right)$, and either $t \in \operatorname{Var}(s)$ or $t=g\left(t_{1}, \ldots, t_{n}\right)$ and

- $s_{i}>_{\text {Ipo }} t$ or $s_{i}=t$ for all $1 \leqslant i \leqslant m$,
- $f>g$ and $s>_{\text {lpo }} t_{i}$ for all $1 \leqslant i \leqslant n$, or
- $f=g$ and there is $1 \leqslant i \leqslant n$ with

$$
s_{1}=t_{1}, \ldots, s_{i-1}=t_{i-1}, s_{i}>_{\text {Ipo }} t_{i}, \text { and } s>_{\text {Ipo }} t_{i+1}, \ldots s>_{\text {Ipo }} t_{n}
$$

Theorem Kamin and Levy, 1980
finite $T R S \mathcal{R}$ is terminating if $\mathcal{R} \subseteq>_{\text {Ipo }}$ for some precedence $>$

SAT encoding is similar to precedence termination

Example

TRS \mathcal{R}

$$
\begin{aligned}
& x+0 \rightarrow x \\
& x \times 0 \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& x+\mathrm{s}(y) \rightarrow \mathrm{s}(x+y) \\
& x \times \mathrm{s}(y) \rightarrow x \times y+x
\end{aligned}
$$

Example

TRS \mathcal{R}

$$
\begin{array}{ll}
x+0 \rightarrow x & x+\mathrm{s}(y) \rightarrow \mathrm{s}(x+y) \\
x \times 0 \rightarrow 0 & x \times \mathrm{s}(y) \rightarrow x \times y+x
\end{array}
$$

SAT solver finds precedence that fulfils $\mathcal{R} \subseteq>_{\text {lpo }}$:

$$
x>+>\mathrm{s}>0
$$

hence \mathcal{R} is terminating

Optimization

Annov, Codish, and Stuckey, RTA 2006

Optimization

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is $O\left(n^{3}\right)$

Optimization

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is $O\left(n^{3}\right)$
$\underline{\text { LEMMA }}$
two statements are equivalent

- $\mathcal{R} \subseteq>_{\text {Ipo }}$ for some precedence $>$

Optimization

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is $O\left(n^{3}\right)$
$\underline{\text { LEMMA }}$
two statements are equivalent

- $\mathcal{R} \subseteq>_{\text {Ipo }}$ for some precedence $>$
- $\mathcal{R} \subseteq>_{\text {Ipo }}$ for some total precedence $>$

Optimization

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is $O\left(n^{3}\right)$

Lemma
two statements are equivalent

- $\mathcal{R} \subseteq>_{\text {Ipo }}$ for some precedence $>$
- $\mathcal{R} \subseteq>_{\text {Ipo }}$ for some total precedence $>$

IDEA

total precedence $>$ can be represented by weight assignment

- each function f is variable over $\{0, \ldots, n\}$; use bit-encoding

Optimization

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is $O\left(n^{3}\right)$

Lemma
two statements are equivalent

- $\mathcal{R} \subseteq>_{\text {Ipo }}$ for some precedence $>$
- $\mathcal{R} \subseteq>_{\text {Ipo }}$ for some total precedence $>$

IDEA

total precedence $>$ can be represented by weight assignment

- each function f is variable over $\{0, \ldots, n\}$; use bit-encoding
- size of constraint is $O(N \log n)$, where N is size of TRS

Knuth-Bendix Orders

$\underline{\text { DEFINITION }}$

- weight assignment $\left(w_{0}, w_{f}, w_{g}, \ldots\right)$ is tuple of real numbers where $f, g, \ldots \in \mathcal{F}$

Knuth-Bendix Orders

$\underline{\text { DEFINITION }}$

- weight assignment $\left(w_{0}, w_{f}, w_{g}, \ldots\right)$ is tuple of real numbers where $f, g, \ldots \in \mathcal{F}$
- weight of term t is

$$
w(t)= \begin{cases}w_{0} & \text { if } t \text { is variable } \\ w_{f}+w\left(t_{1}\right)+\cdots+w\left(t_{n}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Knuth-Bendix Orders

DEFINITION

- weight assignment $\left(w_{0}, w_{f}, w_{g}, \ldots\right)$ is tuple of real numbers where $f, g, \ldots \in \mathcal{F}$
- weight of term t is

$$
w(t)= \begin{cases}w_{0} & \text { if } t \text { is variable } \\ w_{f}+w\left(t_{1}\right)+\cdots+w\left(t_{n}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

- weight assignment is admissible for precedence $>$ if

$$
w_{f}>0 \quad \text { or } \quad f \geqslant g
$$

for all unary functions f and all functions g

Definition Knuth-Bendix order; given weight w and precedence $>$ $s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all variables x and either

Definition Knuth-Bendix order; given weight w and precedence $>$ $s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all variables x and either

- $w(s)>w(t)$, or

Definition Knuth-Bendix order; given weight w and precedence $>$ $s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all variables x and either

- $w(s)>w(t)$, or
- $w(s)=w(t)$ and

DEFINITION Knuth-Bendix order; given weight w and precedence $>$ $s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all variables x and either

- $w(s)>w(t)$, or
- $w(s)=w(t)$ and
- $s=f^{n}(t)$ and t is variable for some unary f and $n \geqslant 1$; or

Definition Knuth-Bendix order; given weight w and precedence $>$ $s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all variables x and either

- $w(s)>w(t)$, or
- $w(s)=w(t)$ and
- $s=f^{n}(t)$ and t is variable for some unary f and $n \geqslant 1$; or
- $s=f\left(s_{1}, \ldots, s_{i-1}, s_{i}, \ldots, s_{n}\right), t=f\left(s_{1}, \ldots, s_{i-1}, t_{i}, \ldots, t_{n}\right)$, and $s_{i}>{ }_{\text {kbo }} t_{i}$; or

Definition Knuth-Bendix order; given weight w and precedence $>$ $s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all variables x and either

- $w(s)>w(t)$, or
- $w(s)=w(t)$ and
- $s=f^{n}(t)$ and t is variable for some unary f and $n \geqslant 1$; or
- $s=f\left(s_{1}, \ldots, s_{i-1}, s_{i}, \ldots, s_{n}\right), t=f\left(s_{1}, \ldots, s_{i-1}, t_{i}, \ldots, t_{n}\right)$, and $s_{i}>$ kbo t_{i}; or
- $s=f\left(s_{1}, \ldots, s_{n}\right), t=g\left(t_{1}, \ldots, t_{m}\right)$, and $f>g$

DEFINITION Knuth-Bendix order; given weight w and precedence $>$ $s>_{\text {kbo }} t$ if $|s|_{x} \geqslant|t|_{x}$ for all variables x and either

- $w(s)>w(t)$, or
- $w(s)=w(t)$ and
- $s=f^{n}(t)$ and t is variable for some unary f and $n \geqslant 1$; or
- $s=f\left(s_{1}, \ldots, s_{i-1}, s_{i}, \ldots, s_{n}\right), t=f\left(s_{1}, \ldots, s_{i-1}, t_{i}, \ldots, t_{n}\right)$, and $s_{i}>_{\text {kbo }} t_{i}$; or
- $s=f\left(s_{1}, \ldots, s_{n}\right), t=g\left(t_{1}, \ldots, t_{m}\right)$, and $f>g$

Theorem

Knuth and Bendix, 1970; Dershowitz, 1979
finite TRS \mathcal{R} is terminating if $\mathcal{R} \subseteq>_{\text {kbo }}$ for some weight $\left(w_{0}, w_{f}, w_{g}, \ldots\right)$ over \mathbb{R} and precedence $>$
next statements are equivalent

- $\mathcal{R} \subseteq>_{\text {kbo }}$ for some weight w over \mathbb{R} and precedence $>$
- $\mathcal{R} \subseteq>_{\text {kbo }}$ for some weight w over $\left\{0,1, \ldots, 2^{2^{N}}\right\}$ and precedence $>$ here N is size of \mathcal{R}
next statements are equivalent
- $\mathcal{R} \subseteq>_{\text {kbo }}$ for some weight w over \mathbb{R} and precedence $>$
- $\mathcal{R} \subseteq>_{\text {kbo }}$ for some weight w over $\left\{0,1, \ldots, 2^{2^{N}}\right\}$ and precedence $>$ here N is size of \mathcal{R}

NOTE

large weights (>15) are hardly required

Termination Tools

- termination tools (AProVE, Matchbox, μ-Term, TTT2, VMTL, ...) use SAT/SMT solvers

Termination Tools

- termination tools (AProVE, Matchbox, μ-Term, TTT2, VMTL, ...) use SAT/SMT solvers
- to increase power, termination tools employ transformations
dependency pair method by Arts and Giesl, TCS 2000

Termination Tools

- termination tools (AProVE, Matchbox, μ-Term, TTT2, VMTL, ...) use SAT/SMT solvers
- to increase power, termination tools employ transformations dependency pair method by Arts and Giesl, TCS 2000
- complexity analysers (AProVE, CaT, TCT, ...) use same way POP* by Avanzini and Moser (2008)

Summary

- SAT solver and basic encoding techniques

Summary

- SAT solver and basic encoding techniques
- termination analysis

Summary

- SAT solver and basic encoding techniques
- termination analysis
- often SAT encoding approach outperforms dedicated algorithm

Summary

- SAT solver and basic encoding techniques
- termination analysis
- often SAT encoding approach outperforms dedicated algorithm
thank you for your kind attention!

