
SAT and Termination

Nao Hirokawa

Japan Advanced Institute of Science and Technology

SAT and Termination 1/41

Sudoku Puzzle

given 9× 9-grid like

1 8 7

3 2

7

7 1

6 4

3

4 5 3

2 8

6

fill out numbers from 1 to 9 that each number appears exactly once in
each {row, column, 3× 3-subgrid}

how to solve? — difficult? — NP-complete

SAT and Termination 2/41

Sudoku Puzzle

given 9× 9-grid like

1 8 7

3 2

7

7 1

6 4

3

4 5 3

2 8

6

fill out numbers from 1 to 9 that each number appears exactly once in
each {row, column, 3× 3-subgrid}

how to solve?

— difficult? — NP-complete

SAT and Termination 2/41

Sudoku Puzzle

given 9× 9-grid like

1 8 7

3 2

7

7 1

6 4

3

4 5 3

2 8

6

fill out numbers from 1 to 9 that each number appears exactly once in
each {row, column, 3× 3-subgrid}

how to solve? — difficult?

— NP-complete

SAT and Termination 2/41

Sudoku Puzzle

given 9× 9-grid like

1 8 7

3 2

7

7 1

6 4

3

4 5 3

2 8

6

fill out numbers from 1 to 9 that each number appears exactly once in
each {row, column, 3× 3-subgrid}

how to solve? — difficult? — NP-complete

SAT and Termination 2/41

Solving Sudoku

1 8 7

2

7

7 1

6 4

4 5 3

2 8

6

3

3

x11

x21x22x23

x31 x33

Lemma

x33 = 3

Proof

{x11, x21, x22, x23, x31, x33} = {2, 3, 4, 5, 6, 9} by subgrid constraint

{x11, x21, x22, x23, x31} = {2, 4, 5, 6, 9} by row & column constraint

how about x26 ?

SAT and Termination 3/41

Solving Sudoku

1 8 7

2

7

7 1

6 4

4 5 3

2 8

6

3

3

x11

x21x22x23

x31 x33

Lemma

x33 = 3

Proof

{x11, x21, x22, x23, x31, x33} = {2, 3, 4, 5, 6, 9} by subgrid constraint

{x11, x21, x22, x23, x31} = {2, 4, 5, 6, 9} by row & column constraint

how about x26 ?

SAT and Termination 3/41

Solving Sudoku

1 8 7

23

7 3

7 1

6 4

3

4 5 3

2 8

6

7

7

7

x21x22x23 x25 x28x29x26

Lemma

x26 = 7

Proof

{x21, x22, x23, x25, x26, x28, x29} = {1, 4, 5, 6, 7, 8, 9}
by row constraint

7 6∈ {x21, x22, x23, x25, x28, x29} by column & subgrid constraint

SAT and Termination 4/41

Solving Sudoku

1 8 7

23

7 3

7 1

6 4

3

4 5 3

2 8

6

7

7

7

x21x22x23 x25 x28x29x26

Lemma

x26 = 7

Proof

{x21, x22, x23, x25, x26, x28, x29} = {1, 4, 5, 6, 7, 8, 9}
by row constraint

7 6∈ {x21, x22, x23, x25, x28, x29} by column & subgrid constraint

SAT and Termination 4/41

Solving Sudoku

1 8 7

23

7 3

7 1

6 4

3

4 5 3

2 8

6

7

7

7

x21x22x23 x25 x28x29x26

Lemma

x26 = 7

Proof

{x21, x22, x23, x25, x26, x28, x29} = {1, 4, 5, 6, 7, 8, 9}
by row constraint

7 6∈ {x21, x22, x23, x25, x28, x29} by column & subgrid constraint

SAT and Termination 4/41

Overview

SAT

encoding techniques

termination analysis

SAT and Termination 5/41

Overview

SAT

encoding techniques

termination analysis

SAT and Termination 5/41

Overview

SAT

encoding techniques

termination analysis

SAT and Termination 5/41

SAT

Definition

syntax

` ::= x | ¬x literal

C ::= `1 ∨ · · · ∨ `n clause

φ ::= C1 ∧ · · · ∧ Cn CNF

SAT problem is decision problem of scheme:

instance: CNF φ

question: is φ satisfiable ?

Theorem Cook and Levin

SAT is NP-complete

SAT and Termination 6/41

SAT

Definition

syntax

` ::= x | ¬x literal

C ::= `1 ∨ · · · ∨ `n clause

φ ::= C1 ∧ · · · ∧ Cn CNF

SAT problem is decision problem of scheme:

instance: CNF φ

question: is φ satisfiable ?

Theorem Cook and Levin

SAT is NP-complete

SAT and Termination 6/41

SAT

Definition

syntax

` ::= x | ¬x literal

C ::= `1 ∨ · · · ∨ `n clause

φ ::= C1 ∧ · · · ∧ Cn CNF

SAT problem is decision problem of scheme:

instance: CNF φ

question: is φ satisfiable ?

Theorem Cook and Levin

SAT is NP-complete

SAT and Termination 6/41

Quiz

is next CNF φ satisfiable?

∧
x1 ∨ ¬x2,
¬x1 ∨ x2 ∨ x3,
¬x2 ∨ x3,
¬x3

φ is satisfiable because of next satisfiable assignment

x1 7→ F x2 7→ F x3 7→ F

SAT and Termination 7/41

Quiz

is next CNF φ satisfiable?

∧
x1 ∨ ¬x2,
¬x1 ∨ x2 ∨ x3,
¬x2 ∨ x3,
¬x3

φ is satisfiable

because of next satisfiable assignment

x1 7→ F x2 7→ F x3 7→ F

SAT and Termination 7/41

Quiz

is next CNF φ satisfiable?

∧
x1 ∨ ¬x2,
¬x1 ∨ x2 ∨ x3,
¬x2 ∨ x3,
¬x3

φ is satisfiable because of next satisfiable assignment

x1 7→ F x2 7→ F x3 7→ F

SAT and Termination 7/41

Quiz

is next CNF φ satisfiable?

∧
x1 ∨ ¬x2,
¬x1 ∨ ¬x2 ∨ x3,
¬x2 ∨ x3,
¬x3

φ is unsatisfiable. why?

because

exhaustive search shows that any assignment is unsatisfiable, or

deduction derives φ is ⊥

SAT and Termination 8/41

Quiz

is next CNF φ satisfiable?

∧
x1 ∨ ¬x2,
¬x1 ∨ ¬x2 ∨ x3,
¬x2 ∨ x3,
¬x3

φ is unsatisfiable. why?

because

exhaustive search shows that any assignment is unsatisfiable, or

deduction derives φ is ⊥

SAT and Termination 8/41

Quiz

is next CNF φ satisfiable?

∧
x1 ∨ ¬x2,
¬x1 ∨ ¬x2 ∨ x3,
¬x2 ∨ x3,
¬x3

φ is unsatisfiable. why?

because

exhaustive search shows that any assignment is unsatisfiable, or

deduction derives φ is ⊥

SAT and Termination 8/41

Quiz

is next CNF φ satisfiable?

∧
x1 ∨ ¬x2,
¬x1 ∨ ¬x2 ∨ x3,
¬x2 ∨ x3,
¬x3

φ is unsatisfiable. why?

because

exhaustive search shows that any assignment is unsatisfiable, or

deduction derives φ is ⊥

SAT and Termination 8/41

SAT Solver and DIMACS Format

is
∧

x1 ∨ ¬x2,
¬x1 ∨ x2 ∨ ¬x3,
x2 ∨ ¬x3,
¬x3

 satisfiable ?

$ cat a.cnf

p cnf 3
#variables

4
#clauses

1 -2 0

-1 2 -3 0

3 -2 0

-3 0

$ minisat a.cnf a.ans

$ cat a.ans

SAT

1 -2 -3 0

SAT and Termination 9/41

SAT Solver and DIMACS Format

is
∧

x1 ∨ ¬x2,
¬x1 ∨ x2 ∨ ¬x3,
x2 ∨ ¬x3,
¬x3

 satisfiable ?

$ cat a.cnf

p cnf 3
#variables

4
#clauses

1 -2 0

-1 2 -3 0

3 -2 0

-3 0

$ minisat a.cnf a.ans

$ cat a.ans

SAT

1 -2 -3 0

SAT and Termination 9/41

Sudoku Constraints

1 8 7

3 2

7

7 1

6 4

3

4 5 3

2 8

6

constraints

each cell is number from 1 to 9
each number appears at most once in each row
each number appears at most once in each column
each number appears at most once in each 3× 3 subgrid

+ use s111, . . . , s999 with sijk = T ⇐⇒ xij = k

SAT and Termination 10/41

Sudoku Constraints

1 8 7

3 2

7

7 1

6 4

3

4 5 3

2 8

6

constraints

each cell is number from 1 to 9
each number appears at most once in each row
each number appears at most once in each column
each number appears at most once in each 3× 3 subgrid

+ use s111, . . . , s999 with sijk = T ⇐⇒ xij = k

SAT and Termination 10/41

Sudoku Constraints in Boolean

each cell is number from 1 to 9
9∧
i=1

9∧
j=1

(sij1 ∨ · · · ∨ sij9)

each number appears at most once in each row

9∧
j=1

9∧
k=1

9∧
i=1

9∧
i′=i+1

(¬sijk ∨ ¬si′jk)

each number appears at most once in each column

9∧
i=1

9∧
k=1

9∧
j=1

9∧
j′=j+1

(¬sijk ∨ ¬sij′k)

each number appears at most once in each 3× 3 subgrid∧
G:subgrid

∧
(i,j)6=(i′,j′)

9∧
k=1

¬sijk ∨ ¬si′j′k

SAT and Termination 11/41

Sudoku Constraints in Boolean

each cell is number from 1 to 9
9∧
i=1

9∧
j=1

(sij1 ∨ · · · ∨ sij9)

each number appears at most once in each row

9∧
j=1

9∧
k=1

9∧
i=1

9∧
i′=i+1

(¬sijk ∨ ¬si′jk)

each number appears at most once in each column

9∧
i=1

9∧
k=1

9∧
j=1

9∧
j′=j+1

(¬sijk ∨ ¬sij′k)

each number appears at most once in each 3× 3 subgrid∧
G:subgrid

∧
(i,j)6=(i′,j′)

9∧
k=1

¬sijk ∨ ¬si′j′k

SAT and Termination 11/41

Sudoku Constraints in Boolean

each cell is number from 1 to 9
9∧
i=1

9∧
j=1

(sij1 ∨ · · · ∨ sij9)

each number appears at most once in each row

9∧
j=1

9∧
k=1

9∧
i=1

9∧
i′=i+1

(¬sijk ∨ ¬si′jk)

each number appears at most once in each column

9∧
i=1

9∧
k=1

9∧
j=1

9∧
j′=j+1

(¬sijk ∨ ¬sij′k)

each number appears at most once in each 3× 3 subgrid∧
G:subgrid

∧
(i,j)6=(i′,j′)

9∧
k=1

¬sijk ∨ ¬si′j′k

SAT and Termination 11/41

Sudoku Constraints in Boolean

each cell is number from 1 to 9
9∧
i=1

9∧
j=1

(sij1 ∨ · · · ∨ sij9)

each number appears at most once in each row

9∧
j=1

9∧
k=1

9∧
i=1

9∧
i′=i+1

(¬sijk ∨ ¬si′jk)

each number appears at most once in each column

9∧
i=1

9∧
k=1

9∧
j=1

9∧
j′=j+1

(¬sijk ∨ ¬sij′k)

each number appears at most once in each 3× 3 subgrid∧
G:subgrid

∧
(i,j)6=(i′,j′)

9∧
k=1

¬sijk ∨ ¬si′j′k

SAT and Termination 11/41

Uniqueness of Solution

QUESTION

how to check whether there is exactly one solution

SOLUTION

check whether there is no other solution

Theorem

let φ be CNF encoding, and α its satisfiable assignment

solution is unique if and only if

φ ∧

(∨
α(x)=T

¬x
)
∨
(∨
α(x)=F

x
)

is satisfiable

SAT and Termination 12/41

Uniqueness of Solution

QUESTION

how to check whether there is exactly one solution

SOLUTION

check whether there is no other solution

Theorem

let φ be CNF encoding, and α its satisfiable assignment

solution is unique if and only if

φ ∧

(∨
α(x)=T

¬x
)
∨
(∨
α(x)=F

x
)

is satisfiable

SAT and Termination 12/41

Uniqueness of Solution

QUESTION

how to check whether there is exactly one solution

SOLUTION

check whether there is no other solution

Theorem

let φ be CNF encoding, and α its satisfiable assignment

solution is unique if and only if

φ ∧

(∨
α(x)=T

¬x
)
∨
(∨
α(x)=F

x
)

is satisfiable

SAT and Termination 12/41

Encoding Techniques

SAT and Termination 13/41

SAT Encoding

modern SAT solvers are extremely fast

how to translate problem to CNF?

SAT and Termination 14/41

SAT Encoding

modern SAT solvers are extremely fast

how to translate problem to CNF?

SAT and Termination 14/41

Quiz

find equivalent CNFs

(x ∧ y) ∨ ¬(u ∧ v)

∨n
i=1(xi ∧ yi)

how to avoid exponential blow up? + Tseitin conversion

SAT and Termination 15/41

Quiz

find equivalent CNFs

(x ∧ y) ∨ ¬(u ∧ v)

∨n
i=1(xi ∧ yi)

how to avoid exponential blow up? + Tseitin conversion

SAT and Termination 15/41

Quiz

find equivalent CNFs

(x ∧ y) ∨ ¬(u ∧ v)

∨n
i=1(xi ∧ yi)

how to avoid exponential blow up? + Tseitin conversion

SAT and Termination 15/41

Tseitin’s transformation

x↔ (y ∧ z) = (¬x ∨ y) ∧ (¬x ∨ z) ∧ (¬y ∨ ¬z ∨ x) CNF

x↔ (y ∨ z) = (x ∨ ¬y) ∧ (x ∨ ¬z) ∧ (y ∨ z ∨ ¬x) CNF

� (x ∧ ¬y) ∨ (¬x ∧ y)

⇔ � z where

z = u ∨ v
u = x ∧ ¬y
v = ¬x ∧ y

⇔ � z ∧
∧ z ↔ (u ∨ v),

u↔ (x ∧ ¬y),
v ↔ (¬x ∧ y)

NOTE

given formula of size n, converted formula is of size O(n)

SAT and Termination 16/41

Tseitin’s transformation

x↔ (y ∧ z) = (¬x ∨ y) ∧ (¬x ∨ z) ∧ (¬y ∨ ¬z ∨ x) CNF

x↔ (y ∨ z) = (x ∨ ¬y) ∧ (x ∨ ¬z) ∧ (y ∨ z ∨ ¬x) CNF

� (x ∧ ¬y) ∨ (¬x ∧ y)

⇔ � z where

z = u ∨ v
u = x ∧ ¬y
v = ¬x ∧ y

⇔ � z ∧
∧ z ↔ (u ∨ v),

u↔ (x ∧ ¬y),
v ↔ (¬x ∧ y)

NOTE

given formula of size n, converted formula is of size O(n)

SAT and Termination 16/41

Tseitin’s transformation

x↔ (y ∧ z) = (¬x ∨ y) ∧ (¬x ∨ z) ∧ (¬y ∨ ¬z ∨ x) CNF

x↔ (y ∨ z) = (x ∨ ¬y) ∧ (x ∨ ¬z) ∧ (y ∨ z ∨ ¬x) CNF

� (x ∧ ¬y) ∨ (¬x ∧ y)

⇔ � z where

z = u ∨ v
u = x ∧ ¬y
v = ¬x ∧ y

⇔ � z ∧
∧ z ↔ (u ∨ v),

u↔ (x ∧ ¬y),
v ↔ (¬x ∧ y)

NOTE

given formula of size n, converted formula is of size O(n)

SAT and Termination 16/41

Arithmetic

~xk = (ak, . . . , a1) is binary representation of x < 2k

Definition bit encoding

~xk = ~yk =

k∧
i=1

(xk ↔ yk)

~xk > ~yk =

{
x1 ∧ y1 if k = 1

(xk ∧ ¬yk) ∨
(
(xk ↔ yk) ∧ ~xk−1 > ~yk−1

)
if k > 1

~xk + ~yk = (ck, sk, . . . , s1)

where

c0 = ⊥ ci = (xi ∧ yi) ∨ (xi ∧ ci−1) ∨ (yi ∧ ci−1) for i > 1

si = xi ⊕ yi ⊕ ci−1 for i > 1

SAT and Termination 17/41

More...

many encodable mathematical objects:

finite sets

order > on finite set

graphs

...

SAT and Termination 18/41

More...

many encodable mathematical objects:

finite sets

order > on finite set

graphs

...

SAT and Termination 18/41

More...

many encodable mathematical objects:

finite sets

order > on finite set

graphs

...

SAT and Termination 18/41

More...

many encodable mathematical objects:

finite sets

order > on finite set

graphs

...

SAT and Termination 18/41

DPLL Algorithm

SAT and Termination 19/41

Implementation

many SAT solvers use DPLL algorithm

decision, BCP, conflict analysis, clause learning

two-watched literal (for BCP)

SAT and Termination 20/41

Implementation

many SAT solvers use DPLL algorithm

decision, BCP, conflict analysis, clause learning

two-watched literal (for BCP)

SAT and Termination 20/41

Implementation

many SAT solvers use DPLL algorithm

decision, BCP, conflict analysis, clause learning

two-watched literal (for BCP)

SAT and Termination 20/41

Boolean Constraint Propagation

current assignment:
x 7→ T, y 7→ F

current decision: z 7→ T

¬x ∨ z ∨ b ∨ c

3

¬x ∨ y ∨ ¬z ∨ ¬w

w 7→ F

w ∨ y ∨ a

−

¬a ∨ z ∨ b ∨ y

−

¬x ∨ c ∨ d ∨ e

−

SAT and Termination 21/41

Boolean Constraint Propagation

current assignment:
x 7→ T, y 7→ F

current decision: z 7→ T

¬x ∨ z ∨ b ∨ c 3

¬x ∨ y ∨ ¬z ∨ ¬w

w 7→ F

w ∨ y ∨ a

−

¬a ∨ z ∨ b ∨ y

−

¬x ∨ c ∨ d ∨ e

−

SAT and Termination 21/41

Boolean Constraint Propagation

current assignment:
x 7→ T, y 7→ F

current decision: z 7→ T

¬x ∨ z ∨ b ∨ c 3

¬x ∨ y ∨ ¬z ∨ ¬w w 7→ F

w ∨ y ∨ a

−

¬a ∨ z ∨ b ∨ y

−

¬x ∨ c ∨ d ∨ e

−

SAT and Termination 21/41

Boolean Constraint Propagation

current assignment:
x 7→ T, y 7→ F

current decision: z 7→ T

¬x ∨ z ∨ b ∨ c 3

¬x ∨ y ∨ ¬z ∨ ¬w w 7→ F

w ∨ y ∨ a −
¬a ∨ z ∨ b ∨ y −
¬x ∨ c ∨ d ∨ e −

SAT and Termination 21/41

Two Watch Literals

current assignment:
x 7→ T, y 7→ F

current decision: z 7→ T

¬x ∨ z ∨ b ∨ c

¬x ∨ y ∨ ¬z ∨ ¬w
w ∨ y ∨ a

¬a ∨ z ∨ b ∨ y

¬x ∨ c ∨ d ∨ e

SAT and Termination 22/41

Conflict-Directed Backtracking

current decision: x1 7→ T@6 (T is assigned to x1 at 6th decision)

x1 7→ T@6

x2 7→ T@6

x3 7→ T@6

x4 7→ T@6

x5 7→ T@6

x5 7→ F@6

x9 7→ F@1

x10 7→ F@3

x11 7→ F@3

⊥

if x1 6= ⊥, back to level 3

learned clause: ¬x1 ∨ x9 ∨ x10 ∨ x11

SAT and Termination 23/41

Implementation II

many SAT solvers use DPLL algorithm

restart rather than backtrack

quick restart with e.g. 32 decisions

glue clauses (generalisation of unit clauses)

SAT and Termination 24/41

Implementation II

many SAT solvers use DPLL algorithm

restart rather than backtrack

quick restart with e.g. 32 decisions

glue clauses (generalisation of unit clauses)

SAT and Termination 24/41

Implementation II

many SAT solvers use DPLL algorithm

restart rather than backtrack

quick restart with e.g. 32 decisions

glue clauses (generalisation of unit clauses)

SAT and Termination 24/41

Implementation II

many SAT solvers use DPLL algorithm

restart rather than backtrack

quick restart with e.g. 32 decisions

glue clauses (generalisation of unit clauses)

SAT and Termination 24/41

Termination

SAT and Termination 25/41

Term Rewriting

pair of terms `→ r is rewrite rule if ` is non-variable and
Var(r) ⊆ Var(`)

term rewrite system (TRS) is set of rewrite rules
(rewrite relation) s→R t if ∃`→ r ∈ R, context C, substitution σ :
s = C[`σ] ∧ t = C[rσ]

Example

TRS R

x+ 0→ x x+ s(y)→ s(x+ y)

x× 0→ 0 x× s(y)→ x× y + x

rewriting

s(0)× s(0)→R s(0)× 0 + s(0)

→R 0 + s(0)

→R s(0 + 0)

→R s(0) normal form

SAT and Termination 26/41

Term Rewriting

pair of terms `→ r is rewrite rule if ` is non-variable and
Var(r) ⊆ Var(`)
term rewrite system (TRS) is set of rewrite rules

(rewrite relation) s→R t if ∃`→ r ∈ R, context C, substitution σ :
s = C[`σ] ∧ t = C[rσ]

Example

TRS R

x+ 0→ x x+ s(y)→ s(x+ y)

x× 0→ 0 x× s(y)→ x× y + x

rewriting

s(0)× s(0)→R s(0)× 0 + s(0)

→R 0 + s(0)

→R s(0 + 0)

→R s(0) normal form

SAT and Termination 26/41

Term Rewriting

pair of terms `→ r is rewrite rule if ` is non-variable and
Var(r) ⊆ Var(`)
term rewrite system (TRS) is set of rewrite rules
(rewrite relation) s→R t if ∃`→ r ∈ R, context C, substitution σ :
s = C[`σ] ∧ t = C[rσ]

Example

TRS R

x+ 0→ x x+ s(y)→ s(x+ y)

x× 0→ 0 x× s(y)→ x× y + x

rewriting

s(0)× s(0)→R s(0)× 0 + s(0)

→R 0 + s(0)

→R s(0 + 0)

→R s(0) normal form

SAT and Termination 26/41

Term Rewriting

pair of terms `→ r is rewrite rule if ` is non-variable and
Var(r) ⊆ Var(`)
term rewrite system (TRS) is set of rewrite rules
(rewrite relation) s→R t if ∃`→ r ∈ R, context C, substitution σ :
s = C[`σ] ∧ t = C[rσ]

Example

TRS R

x+ 0→ x x+ s(y)→ s(x+ y)

x× 0→ 0 x× s(y)→ x× y + x

rewriting

s(0)× s(0)→R s(0)× 0 + s(0)

→R 0 + s(0)

→R s(0 + 0)

→R s(0) normal form

SAT and Termination 26/41

APPLICATIONS

verification for functional programming

theorem proving

code optimization in compilers

symbolic computation in mathematics

...

SAT and Termination 27/41

Implementation of Termination Tools

TRS constraint

CNF

solution

assignment

proof

encode decode

SAT solver

SAT and Termination 28/41

Precedence Termination

precedence > is strict order on function symbols

Definition

` >prec r if Var(`) ⊇ Var(r), ` = f(. . .), and f > g for all functions g in r

Theorem

finite TRS R is terminating if R ⊆ >prec for some precedence >

SAT and Termination 29/41

Precedence Termination

precedence > is strict order on function symbols

Definition

` >prec r if Var(`) ⊇ Var(r), ` = f(. . .), and f > g for all functions g in r

Theorem

finite TRS R is terminating if R ⊆ >prec for some precedence >

SAT and Termination 29/41

Precedence Termination

precedence > is strict order on function symbols

Definition

` >prec r if Var(`) ⊇ Var(r), ` = f(. . .), and f > g for all functions g in r

Theorem

finite TRS R is terminating if R ⊆ >prec for some precedence >

SAT and Termination 29/41

Encoding of Precedence Termination Problem

Corollary

assume f > g stands for propositional variable.

finite TRS R is terminating if � O ∧ I ∧ T , where

O =
∧

`→r∈R

(` >prec r)

I =
∧
f∈F

¬(f > f)

T =
∧

f,g,h∈F

((f > g) ∧ (g > h)→ (f > h))

NOTE

size of T is O(n3), where n = |F| (number of function symbols)

SAT and Termination 30/41

Encoding of Precedence Termination Problem

Corollary

assume f > g stands for propositional variable.

finite TRS R is terminating if � O ∧ I ∧ T , where

O =
∧

`→r∈R

(` >prec r)

I =
∧
f∈F

¬(f > f)

T =
∧

f,g,h∈F

((f > g) ∧ (g > h)→ (f > h))

NOTE

size of T is O(n3), where n = |F| (number of function symbols)

SAT and Termination 30/41

Encoding of Precedence Termination Problem

Corollary

assume f > g stands for propositional variable.

finite TRS R is terminating if � O ∧ I ∧ T , where

O =
∧

`→r∈R

(` >prec r)

I =
∧
f∈F

¬(f > f)

T =
∧

f,g,h∈F

((f > g) ∧ (g > h)→ (f > h))

NOTE

size of T is O(n3), where n = |F| (number of function symbols)

SAT and Termination 30/41

Example

prove termination of TRS

not(x)→ if(x, false, true) if(true, x, y)→ x

and(x, y)→ if(x, y, false) if(false, x, y)→ y

or(x, y)→ if(x, true, y)

equiv(x, y)→ if(x, y, not(y))

SAT and Termination 31/41

O =
∧

not(x) >prec if(x, false, true), if(true, x, y) >prec x,
and(x, y) >prec if(x, y, false), if(false, x, y) >prec y,

or(x, y) >prec if(x, true, y),
equiv(x, y) >prec if(x, y, not(y))

=

not > if ∧ not > false ∧ not > true ∧
and > if ∧ and > false ∧

or > if ∧ or > true ∧
equiv > if ∧ equiv > not

O ∧ I ∧ T is satisfiable:

and > or > equiv > not > false > true > if

hence TRS is terminating

SAT and Termination 32/41

O =
∧

not(x) >prec if(x, false, true), if(true, x, y) >prec x,
and(x, y) >prec if(x, y, false), if(false, x, y) >prec y,

or(x, y) >prec if(x, true, y),
equiv(x, y) >prec if(x, y, not(y))

=

not > if ∧ not > false ∧ not > true ∧
and > if ∧ and > false ∧

or > if ∧ or > true ∧
equiv > if ∧ equiv > not

O ∧ I ∧ T is satisfiable:

and > or > equiv > not > false > true > if

hence TRS is terminating

SAT and Termination 32/41

Example

prove termination of TRS R

x+ 0 → x x+ s(y) → s(x+ y)

x× 0 → 0 x× s(y) → x× y + x

precedence termination does not hold:

R ⊆ >prec

⇔ s(x) + y >prec s(x+ y) ∧ · · ·
⇔ + > s ∧ + > + ∧ · · ·

is unsatisfiable

SAT and Termination 33/41

Example

prove termination of TRS R

x+ 0 → x x+ s(y) → s(x+ y)

x× 0 → 0 x× s(y) → x× y + x

precedence termination does not hold:

R ⊆ >prec

⇔ s(x) + y >prec s(x+ y) ∧ · · ·
⇔ + > s ∧ + > + ∧ · · ·

is unsatisfiable

SAT and Termination 33/41

Lexicographic Path Order

Definition given precedence >

s >lpo t if s = f(s1, . . . , sm), and either t ∈ Var(s) or t = g(t1, . . . , tn)
and

si >lpo t or si = t for all 1 6 i 6 m,

f > g and s >lpo ti for all 1 6 i 6 n, or

f = g and there is 1 6 i 6 n with

s1 = t1, . . . , si−1 = ti−1, si >lpo ti, and s >lpo ti+1, . . . s >lpo tn

Theorem Kamin and Levy, 1980

finite TRS R is terminating if R ⊆ >lpo for some precedence >

SAT encoding is similar to precedence termination

SAT and Termination 34/41

Lexicographic Path Order

Definition given precedence >

s >lpo t if s = f(s1, . . . , sm), and either t ∈ Var(s) or t = g(t1, . . . , tn)
and

si >lpo t or si = t for all 1 6 i 6 m,

f > g and s >lpo ti for all 1 6 i 6 n, or

f = g and there is 1 6 i 6 n with

s1 = t1, . . . , si−1 = ti−1, si >lpo ti, and s >lpo ti+1, . . . s >lpo tn

Theorem Kamin and Levy, 1980

finite TRS R is terminating if R ⊆ >lpo for some precedence >

SAT encoding is similar to precedence termination

SAT and Termination 34/41

Lexicographic Path Order

Definition given precedence >

s >lpo t if s = f(s1, . . . , sm), and either t ∈ Var(s) or t = g(t1, . . . , tn)
and

si >lpo t or si = t for all 1 6 i 6 m,

f > g and s >lpo ti for all 1 6 i 6 n, or

f = g and there is 1 6 i 6 n with

s1 = t1, . . . , si−1 = ti−1, si >lpo ti, and s >lpo ti+1, . . . s >lpo tn

Theorem Kamin and Levy, 1980

finite TRS R is terminating if R ⊆ >lpo for some precedence >

SAT encoding is similar to precedence termination

SAT and Termination 34/41

Example

TRS R

x+ 0 → x x+ s(y) → s(x+ y)

x× 0 → 0 x× s(y) → x× y + x

SAT solver finds precedence that fulfils R ⊆ >lpo:

× > + > s > 0

hence R is terminating

SAT and Termination 35/41

Example

TRS R

x+ 0 → x x+ s(y) → s(x+ y)

x× 0 → 0 x× s(y) → x× y + x

SAT solver finds precedence that fulfils R ⊆ >lpo:

× > + > s > 0

hence R is terminating

SAT and Termination 35/41

Optimization

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is O(n3)

Lemma

two statements are equivalent

R ⊆ >lpo for some precedence >

R ⊆ >lpo for some total precedence >

IDEA

total precedence > can be represented by weight assignment

each function f is variable over {0, . . . , n}; use bit-encoding

size of constraint is O(N log n), where N is size of TRS

SAT and Termination 36/41

Optimization

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is O(n3)

Lemma

two statements are equivalent

R ⊆ >lpo for some precedence >

R ⊆ >lpo for some total precedence >

IDEA

total precedence > can be represented by weight assignment

each function f is variable over {0, . . . , n}; use bit-encoding

size of constraint is O(N log n), where N is size of TRS

SAT and Termination 36/41

Optimization

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is O(n3)

Lemma

two statements are equivalent

R ⊆ >lpo for some precedence >

R ⊆ >lpo for some total precedence >

IDEA

total precedence > can be represented by weight assignment

each function f is variable over {0, . . . , n}; use bit-encoding

size of constraint is O(N log n), where N is size of TRS

SAT and Termination 36/41

Optimization

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is O(n3)

Lemma

two statements are equivalent

R ⊆ >lpo for some precedence >

R ⊆ >lpo for some total precedence >

IDEA

total precedence > can be represented by weight assignment

each function f is variable over {0, . . . , n}; use bit-encoding

size of constraint is O(N log n), where N is size of TRS

SAT and Termination 36/41

Optimization

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is O(n3)

Lemma

two statements are equivalent

R ⊆ >lpo for some precedence >

R ⊆ >lpo for some total precedence >

IDEA

total precedence > can be represented by weight assignment

each function f is variable over {0, . . . , n}; use bit-encoding

size of constraint is O(N log n), where N is size of TRS

SAT and Termination 36/41

Optimization

Annov, Codish, and Stuckey, RTA 2006

FACT

transitivity constraint is O(n3)

Lemma

two statements are equivalent

R ⊆ >lpo for some precedence >

R ⊆ >lpo for some total precedence >

IDEA

total precedence > can be represented by weight assignment

each function f is variable over {0, . . . , n}; use bit-encoding

size of constraint is O(N log n), where N is size of TRS

SAT and Termination 36/41

Knuth-Bendix Orders

Definition

weight assignment (w0, wf , wg, . . .) is tuple of real numbers where
f, g, . . . ∈ F

weight of term t is

w(t) =

{
w0 if t is variable

wf + w(t1) + · · ·+ w(tn) if t = f(t1, . . . , tn)

weight assignment is admissible for precedence > if

wf > 0 or f > g

for all unary functions f and all functions g

SAT and Termination 37/41

Knuth-Bendix Orders

Definition

weight assignment (w0, wf , wg, . . .) is tuple of real numbers where
f, g, . . . ∈ F

weight of term t is

w(t) =

{
w0 if t is variable

wf + w(t1) + · · ·+ w(tn) if t = f(t1, . . . , tn)

weight assignment is admissible for precedence > if

wf > 0 or f > g

for all unary functions f and all functions g

SAT and Termination 37/41

Knuth-Bendix Orders

Definition

weight assignment (w0, wf , wg, . . .) is tuple of real numbers where
f, g, . . . ∈ F

weight of term t is

w(t) =

{
w0 if t is variable

wf + w(t1) + · · ·+ w(tn) if t = f(t1, . . . , tn)

weight assignment is admissible for precedence > if

wf > 0 or f > g

for all unary functions f and all functions g

SAT and Termination 37/41

Definition Knuth-Bendix order; given weight w and precedence >

s >kbo t if |s|x > |t|x for all variables x and either

w(s) > w(t), or

w(s) = w(t) and

s = fn(t) and t is variable for some unary f and n > 1; or

s = f(s1, . . . , si−1, si, . . . , sn), t = f(s1, . . . , si−1, ti, . . . , tn), and
si >kbo ti; or

s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g

Theorem Knuth and Bendix, 1970; Dershowitz, 1979

finite TRS R is terminating if R ⊆ >kbo for some weight
(w0, wf , wg, . . .) over R and precedence >

SAT and Termination 38/41

Definition Knuth-Bendix order; given weight w and precedence >

s >kbo t if |s|x > |t|x for all variables x and either

w(s) > w(t), or

w(s) = w(t) and

s = fn(t) and t is variable for some unary f and n > 1; or

s = f(s1, . . . , si−1, si, . . . , sn), t = f(s1, . . . , si−1, ti, . . . , tn), and
si >kbo ti; or

s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g

Theorem Knuth and Bendix, 1970; Dershowitz, 1979

finite TRS R is terminating if R ⊆ >kbo for some weight
(w0, wf , wg, . . .) over R and precedence >

SAT and Termination 38/41

Definition Knuth-Bendix order; given weight w and precedence >

s >kbo t if |s|x > |t|x for all variables x and either

w(s) > w(t), or

w(s) = w(t) and

s = fn(t) and t is variable for some unary f and n > 1; or

s = f(s1, . . . , si−1, si, . . . , sn), t = f(s1, . . . , si−1, ti, . . . , tn), and
si >kbo ti; or

s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g

Theorem Knuth and Bendix, 1970; Dershowitz, 1979

finite TRS R is terminating if R ⊆ >kbo for some weight
(w0, wf , wg, . . .) over R and precedence >

SAT and Termination 38/41

Definition Knuth-Bendix order; given weight w and precedence >

s >kbo t if |s|x > |t|x for all variables x and either

w(s) > w(t), or

w(s) = w(t) and

s = fn(t) and t is variable for some unary f and n > 1; or

s = f(s1, . . . , si−1, si, . . . , sn), t = f(s1, . . . , si−1, ti, . . . , tn), and
si >kbo ti; or

s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g

Theorem Knuth and Bendix, 1970; Dershowitz, 1979

finite TRS R is terminating if R ⊆ >kbo for some weight
(w0, wf , wg, . . .) over R and precedence >

SAT and Termination 38/41

Definition Knuth-Bendix order; given weight w and precedence >

s >kbo t if |s|x > |t|x for all variables x and either

w(s) > w(t), or

w(s) = w(t) and

s = fn(t) and t is variable for some unary f and n > 1; or

s = f(s1, . . . , si−1, si, . . . , sn), t = f(s1, . . . , si−1, ti, . . . , tn), and
si >kbo ti; or

s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g

Theorem Knuth and Bendix, 1970; Dershowitz, 1979

finite TRS R is terminating if R ⊆ >kbo for some weight
(w0, wf , wg, . . .) over R and precedence >

SAT and Termination 38/41

Definition Knuth-Bendix order; given weight w and precedence >

s >kbo t if |s|x > |t|x for all variables x and either

w(s) > w(t), or

w(s) = w(t) and

s = fn(t) and t is variable for some unary f and n > 1; or

s = f(s1, . . . , si−1, si, . . . , sn), t = f(s1, . . . , si−1, ti, . . . , tn), and
si >kbo ti; or

s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g

Theorem Knuth and Bendix, 1970; Dershowitz, 1979

finite TRS R is terminating if R ⊆ >kbo for some weight
(w0, wf , wg, . . .) over R and precedence >

SAT and Termination 38/41

Definition Knuth-Bendix order; given weight w and precedence >

s >kbo t if |s|x > |t|x for all variables x and either

w(s) > w(t), or

w(s) = w(t) and

s = fn(t) and t is variable for some unary f and n > 1; or

s = f(s1, . . . , si−1, si, . . . , sn), t = f(s1, . . . , si−1, ti, . . . , tn), and
si >kbo ti; or

s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g

Theorem Knuth and Bendix, 1970; Dershowitz, 1979

finite TRS R is terminating if R ⊆ >kbo for some weight
(w0, wf , wg, . . .) over R and precedence >

SAT and Termination 38/41

Theorem Hirokawa, Zankl, Middeldorp, JAR 2010

next statements are equivalent

R ⊆ >kbo for some weight w over R and precedence >

R ⊆ >kbo for some weight w over {0, 1, . . . , 22N } and precedence >

here N is size of R

NOTE

large weights (> 15) are hardly required

SAT and Termination 39/41

Theorem Hirokawa, Zankl, Middeldorp, JAR 2010

next statements are equivalent

R ⊆ >kbo for some weight w over R and precedence >

R ⊆ >kbo for some weight w over {0, 1, . . . , 22N } and precedence >

here N is size of R

NOTE

large weights (> 15) are hardly required

SAT and Termination 39/41

Termination Tools

termination tools (AProVE, Matchbox, µ-Term, TTT2, VMTL, ...)
use SAT/SMT solvers

to increase power, termination tools employ transformations

dependency pair method by Arts and Giesl, TCS 2000

complexity analysers (AProVE, CaT, TCT, ...) use same way

POP* by Avanzini and Moser (2008)

SAT and Termination 40/41

Termination Tools

termination tools (AProVE, Matchbox, µ-Term, TTT2, VMTL, ...)
use SAT/SMT solvers

to increase power, termination tools employ transformations

dependency pair method by Arts and Giesl, TCS 2000

complexity analysers (AProVE, CaT, TCT, ...) use same way

POP* by Avanzini and Moser (2008)

SAT and Termination 40/41

Termination Tools

termination tools (AProVE, Matchbox, µ-Term, TTT2, VMTL, ...)
use SAT/SMT solvers

to increase power, termination tools employ transformations

dependency pair method by Arts and Giesl, TCS 2000

complexity analysers (AProVE, CaT, TCT, ...) use same way

POP* by Avanzini and Moser (2008)

SAT and Termination 40/41

Summary

SAT solver and basic encoding techniques

termination analysis

often SAT encoding approach outperforms dedicated algorithm

thank you for your kind attention!

SAT and Termination 41/41

Summary

SAT solver and basic encoding techniques

termination analysis

often SAT encoding approach outperforms dedicated algorithm

thank you for your kind attention!

SAT and Termination 41/41

Summary

SAT solver and basic encoding techniques

termination analysis

often SAT encoding approach outperforms dedicated algorithm

thank you for your kind attention!

SAT and Termination 41/41

Summary

SAT solver and basic encoding techniques

termination analysis

often SAT encoding approach outperforms dedicated algorithm

thank you for your kind attention!

SAT and Termination 41/41

