Constructive and Classical Reasonings

Hajime Ishihara

School of Information Science
Japan Advanced Institute of Science and Technology
Nomi, Ishikawa 923-1292, Japan
JAIST Spring School 2012

- Formal Reasoning: Theorey and Application -

March 5-9, 2012

Contents

- Minimal, intuitionistic and classical logics
- The Gödel-Gentzen negative translation
- The conservative extension result with respect to negative formulas
- Leivant's conservative extension result
- A variant of the Gödel-Gentzen translation
- Another conservative extension result
- Intuitionistic and classical sequent calculi
- Some conservative extension results based on the sequent calculi

Language

We use the standard language of (many-sorted) first-order predicate logic based on

- (individual) variables v_{0}, v_{1}, \ldots;
- (individual) constants c_{0}, c_{1}, \ldots;
- predicate (relation) symbols R_{0}, R_{1}, \ldots;
- function symbols f_{0}, f_{1}, \ldots;
- primitive logical operators $\wedge, \vee, \rightarrow, \perp, \forall, \exists$.

Terms

Terms are defined inductively by

- variables and constants are terms;
- if t_{1}, \ldots, t_{n} are terms and f is an (n-ary) function symbol, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
The set $\mathrm{FV}(t)$ of free variables of a term t is defined inductively by
- $\operatorname{FV}(x):=\{x\}$ and $\mathrm{FV}(c):=\emptyset$;
- $\operatorname{FV}\left(f\left(t_{1}, \ldots, t_{n}\right)\right):=\mathrm{FV}\left(t_{1}\right) \cup \ldots \cup \mathrm{FV}\left(t_{n}\right)$.

Formulas

Formulas are defined inductively by

- \perp is a formula;
- if t_{1}, \ldots, t_{n} are terms and R is an (n-ary) predicate symbol, then $R\left(t_{1}, \ldots, t_{n}\right)$ is an (atomic) formula;
- if A and B are formulas, then $(A \wedge B),(A \vee B)$ and $(A \rightarrow B)$ are formulas;
- if A is a formula and x is a variable, then $(\forall x A)$ and $(\exists x A)$ are formulas.

We introduce the abbreviations

- $\neg A \equiv A \rightarrow \perp$;
- $A \leftrightarrow B \equiv(A \rightarrow B) \wedge(B \rightarrow A)$.

Formulas

The set $\mathrm{FV}(A)$ of free variables of a formula A is defined inductively by

- $\mathrm{FV}(\perp):=\emptyset$;
- $\operatorname{FV}\left(R\left(t_{1}, \ldots, t_{n}\right)\right):=\mathrm{FV}\left(t_{1}\right) \cup \ldots \cup \mathrm{FV}\left(t_{n}\right)$;
- $\mathrm{FV}(A \circ B):=\mathrm{FV}(A) \cup \mathrm{FV}(B)$, where $\circ \in\{\wedge, \vee, \rightarrow\}$;
- $\operatorname{FV}(\forall x A):=\mathrm{FV}(\exists x A):=\mathrm{FV}(A) \backslash\{x\}$.

For a set Γ of formulas, let $\mathrm{FV}(\Gamma):=\bigcup\{\mathrm{FV}(A) \mid A \in \Gamma\}$.

Substitution (1)

Let s and t be terms, and let x be a variable. Then define a term $s[x / t]$ by

- $x[x / t] \equiv t, y[x / t] \equiv y(x \not \equiv y)$, and $c[x / t] \equiv c$;
- $\left(f\left(t_{1}, \ldots, t_{n}\right)\right)[x / t] \equiv f\left(t_{1}[x / t], \ldots, t_{n}[x / t]\right)$.

Let A be a formula, let t be a term, and let x be a variable. Then define a formula $A[x / t]$ by

- $\perp[x / t] \equiv \perp$;
- $R\left(t_{1}, \ldots, t_{n}\right)[x / t] \equiv R\left(t_{1}[x / t], \ldots, t_{n}[x / t]\right)$;
- $(A \circ B)[x / t] \equiv(A[x / t] \circ B[x / t])$, where $\circ \in\{\wedge, \vee, \rightarrow\}$;
- $(\forall y A)[x / t] \equiv \forall y(A[x / t])$ and $(\exists y A)[x / t] \equiv \exists y(A[x / t])$, if $x \not \equiv y$, and $(\forall y A)[x / t] \equiv \forall y A$ and $(\exists y A)[x / t] \equiv \exists y A$, otherwise.

Free for (1)

Let A be a formula, let t be a term, and let x be a variable. Then define a predicate t is free for x in A by

- t is free for x in \perp;
- t is free for x in $R\left(t_{1}, \ldots, t_{n}\right)$;
- if t is free for x in A and B, then t is free for x in $(A \circ B)$, where $\circ \in\{\wedge, \vee, \rightarrow\}$;
- if t is free for x in $A, x \not \equiv y$ and $y \notin \mathrm{FV}(t)$, then t is free for x in $\forall y A$ and $\exists y A$.

Substitution (2)

We introduce

- a proposition symbol (0-ary predicate symbol) $*$ acting as a place holder.
- an abbreviation $\neg_{*} A \equiv A \rightarrow *$.

Let A and C be formulas. Then define a formula $A[* / C]$ by

- $\perp[* / C] \equiv \perp$;
- $*[* / C] \equiv C$ and $\left(R\left(t_{1}, \ldots, t_{n}\right)\right)[* / C] \equiv R\left(t_{1}, \ldots, t_{n}\right)$;
- $(A \circ B)[* / C] \equiv(A[* / C] \circ B[* / C])$, where $\circ \in\{\wedge, \vee, \rightarrow\}$;
- $(\forall x A)[* / C] \equiv \forall x(A[* / C])$ and $(\exists x A)[* / C] \equiv \exists x(A[* / C])$,

Free for (2)

Let A and C be formulas. Then define a predicate C is free for $*$ in A by

- C is free for $*$ in \perp;
- C is free for $*$ in $*$ and $R\left(t_{1}, \ldots, t_{n}\right)$;
- if C is free for $*$ in A and B, then C is free for $*$ in $(A \circ B)$, where $\circ \in\{\wedge, \vee, \rightarrow\}$;
- if C is free for $*$ in A and $x \notin \mathrm{FV}(C)$, then C is free for $*$ in $\forall x A$ and $\exists x A$.

Natural Deduction System

We shall use \mathcal{D}, possibly with a subscript, for arbitrary deduction.
We write

$$
\begin{aligned}
& \Gamma \\
& \mathcal{D} \\
& A
\end{aligned}
$$

to indicate that \mathcal{D} is deduction with conclusion A and assumptions Γ.

Minimal logic

Deductions are inductively defined as follows.
Basis: For each formula A,

$$
A
$$

is a deduction with conclusion A and assumptions $\{A\}$.
Induction step:

Minimal logic

- if ${ }^{\Gamma_{1}}{ }_{A}$ and $\stackrel{\Gamma_{2}}{\mathcal{D}_{2}}{ }_{B}$ are deductions, then

$$
\begin{array}{ll}
\Gamma_{1} & \Gamma_{2} \\
\mathcal{D}_{1} & \mathcal{D}_{2} \\
A & B \\
\hline A \wedge B
\end{array} \mathrm{I}
$$

is a deduction with conclusion $A \wedge B$ and assumptions $\Gamma_{1} \cup \Gamma_{2}$;

Minimal logic

- if $\stackrel{\Gamma}{\mathcal{D}}$ is a deduction, then $A \wedge B$
are deductions with conclusions A and B, respectively, and assumptions 「;

Minimal logic

- if ${ }^{\Gamma}$ 긍 is a deduction, then A

$$
\begin{array}{cc}
\stackrel{\Gamma}{\mathcal{D}} & \stackrel{\Gamma}{\mathcal{D}} \\
\frac{A}{A \vee B} \vee \mathrm{I}_{r} & \frac{A}{B \vee A} \vee \mathrm{I}_{l}
\end{array}
$$

are deductions with conclusions $A \vee B$ and $B \vee A$, respectively, and assumptions Γ;

Minimal logic

- if \quad| Γ_{1} |
| :---: |
| \mathcal{D}_{1} |,$\Gamma_{2}, \stackrel{\Gamma}{\mathcal{D}_{2}}$ and ${ }_{\mathcal{D}_{3}}$ are deductions, then $A \vee B \quad C \quad C$

is a deduction with conclusion C and assumptions $\Gamma_{1} \cup\left(\Gamma_{2} \backslash\{A\}\right) \cup\left(\Gamma_{3} \backslash\{B\}\right) ;$

Minimal logic

- if ${ }_{B}^{\Gamma}$ is a deduction, then

$$
\begin{gathered}
\begin{array}{c}
\Gamma \\
\mathcal{D} \\
B
\end{array} \\
\hline A \rightarrow B
\end{gathered} \rightarrow \mathrm{I}
$$

is a deduction with conclusion $A \rightarrow B$ and assumptions $\Gamma \backslash\{A\}$.

Minimal logic

- if $\underset{A \rightarrow B}{\stackrel{\Gamma}{\mathcal{D}_{1}}} \stackrel{\stackrel{\Gamma}{\Gamma_{2}}}{\mathcal{D}_{2}}$ and are deductions, then

$$
\begin{array}{cc}
\begin{array}{cc}
\Gamma_{1} & \Gamma_{2} \\
\mathcal{D}_{1} & \mathcal{D}_{2} \\
A \rightarrow B & A
\end{array} \rightarrow \mathrm{E} \\
\hline B &
\end{array}
$$

is a deduction with conclusion B and assumptions $\Gamma_{1} \cup \Gamma_{2}$.

Minimal logic

- if ${ }_{A}^{\Gamma}$ is a deduction, $x \notin \mathrm{FV}(\Gamma)$, and $y \equiv x$ or $y \notin \mathrm{FV}(A)$, then

$$
\begin{gathered}
\stackrel{\Gamma}{\mathcal{D}} \\
\frac{A}{\forall y A[x / y]} \forall \mathrm{I}
\end{gathered}
$$

is a deduction with conclusion $\forall y A[x / y]$ and assumptions Γ.

Minimal logic

$$
\begin{gathered}
\stackrel{\Gamma}{\mathcal{D}} \\
\frac{\forall x A}{A[x / t]} \forall \mathrm{E}
\end{gathered}
$$

is a deduction with conclusion $A[x / t]$ and assumptions Γ.

Minimal logic

- if ${ }^{\Gamma}{ }_{A}^{\mathcal{D}}$ (x/t] is a deduction, then

$$
\begin{gathered}
\stackrel{\Gamma}{\mathcal{D}} \\
\frac{A[x / t]}{\exists x A} \exists \mathrm{I}
\end{gathered}
$$

is a deduction with conclusion $\exists x A$ and assumptions Γ.

Minimal logic

$$
\begin{aligned}
& \quad \Gamma_{1} \quad \stackrel{\Gamma_{2}}{\mathcal{D}_{1}} \text { and } \mathcal{D}_{2} \text { are deductions, } x \notin \mathrm{FV}(C) \text {, } \\
& \begin{array}{l}
\exists y A[x / y] \\
x \notin \mathrm{FV}\left(\Gamma_{2} \backslash\{A\}\right), \text { and } y \equiv x \text { or } y \notin \mathrm{FV}(A) \text {, then }
\end{array}
\end{aligned}
$$

is a deduction with conclusion C and assumptions $\Gamma_{1} \cup\left(\Gamma_{2} \backslash\{A\}\right)$.

Minimal logic

We denote by

$$
\Gamma \vdash_{m} A
$$

that there is a deduction in minimal logic with conclusion A and assumptions Δ which is a subset of Γ.

Example (1)

$$
\begin{aligned}
& \stackrel{\perp}{\perp} \rightarrow \mathrm{E} \\
& {[\neg \neg] \frac{[\neg \neg(A \rightarrow B)] \quad \frac{\perp}{\neg(A \rightarrow B)} \rightarrow \mathrm{I}}{\frac{\perp}{\neg A} \rightarrow \mathrm{I}} \rightarrow \mathrm{E}}
\end{aligned}
$$

Example (2)

$$
\begin{gathered}
\frac{\left[\neg_{*} B\right] \frac{[A \rightarrow B][A]}{B}}{\frac{\left[\neg_{*} \neg_{*}(A \rightarrow B)\right]}{\neg_{*}(A \rightarrow B)} \rightarrow \mathrm{E}} \rightarrow \mathrm{E} \\
\frac{\mathrm{E}^{*}}{\neg_{*} A} \rightarrow \mathrm{I} \\
\frac{\left[\neg_{*} \neg_{*} A\right] \quad \mathrm{E}}{\frac{*}{\neg_{*} \neg_{*} B} \rightarrow \mathrm{I}} \rightarrow \mathrm{E} \\
\frac{\neg_{*} \neg_{*} A \rightarrow \neg_{*} \neg_{*} B}{\neg_{*} \neg_{*}(A \rightarrow B) \rightarrow\left(\neg_{*} \neg_{*} A \rightarrow \neg_{*} \neg_{*} B\right)} \rightarrow \mathrm{I}
\end{gathered}
$$

Example (3)

Intuitionistc logic

Intuitionistic logic is obtained from minimal logic by adding the intuitionistic absurdity rule.

- if $\stackrel{\Gamma}{\mathcal{D}}$ is a deduction, then \perp

$$
\begin{aligned}
& \Gamma \\
& \mathcal{D} \\
& \stackrel{\perp}{A} \perp_{i}
\end{aligned}
$$

is a deduction with conclusion A and assumptions Γ.

Intuitionistc logic

We denote by

$$
\Gamma \vdash_{i} A
$$

that there is a deduction in intuitionistic logic with conclusion A and assumptions in Γ.

Note that

$$
\Gamma \vdash_{m} A \Rightarrow \Gamma \vdash_{i} A
$$

Example (4)

Example (5)

$$
\begin{gathered}
\frac{[\neg A][A]}{\frac{\perp}{\bar{B} \perp_{i}}} \\
\frac{\left[\neg * \neg A \rightarrow \neg_{*} \neg_{*} B\right] \quad \frac{\left[\neg_{*}(A \rightarrow B)\right]}{A \rightarrow B}}{\frac{\neg_{*} \neg_{*} B}{\neg_{*} \neg A}} \\
\frac{\left.\neg_{*}(A \rightarrow B)\right] \frac{[B]}{A \rightarrow B}}{\left(\neg \neg^{\prime} \neg A \rightarrow \neg_{*} \neg_{*} B\right) \rightarrow \neg_{*} \neg_{*}(A \rightarrow B)}
\end{gathered}
$$

Classical logic

Classical logic is obtained from intuitionistic logic by strengthening the absurdity rule to the classical absurdity rule.

- if $\stackrel{\Gamma}{\mathcal{D}}$ is a deduction, then

$$
\begin{aligned}
& \Gamma \\
& \mathcal{D} \\
& \stackrel{\perp}{A} \perp_{c}
\end{aligned}
$$

is a deduction with conclusion A and assumption $\Gamma \backslash\{\neg A\}$.

Classical logic

We denote by

$$
\Gamma \vdash_{c} A
$$

that there is a deduction in classical logic with the conclusion A and the assumptions in Γ.

Note that

$$
\Gamma \vdash_{i} A \Rightarrow \Gamma \vdash_{c} A .
$$

Examples (6)

$$
\begin{gathered}
\frac{[\neg \neg A] \quad[\neg A]}{\frac{\perp}{A} \perp_{c}} \rightarrow \mathrm{E} \\
\neg \neg A \rightarrow A
\end{gathered} \rightarrow \mathrm{I}
$$

The Gödel-Gentzen negative translation

Definition

The Gödel-Gentzen negative translation $(\cdot)^{g}$ on the formulas of predicate logic is defined inductively by

- $\perp^{g} \equiv \perp$;
- $P^{g} \equiv \neg \neg P$ for P atomic;
- $(A \wedge B)^{g} \equiv A^{g} \wedge B^{g}$;
- $(A \vee B)^{g} \equiv \neg\left(\neg A^{g} \wedge \neg B^{g}\right)$;
- $(A \rightarrow B)^{g} \equiv A^{g} \rightarrow B^{g}$;
- $(\forall x A)^{g} \equiv \forall x A^{g}$;
- $(\exists x A)^{g} \equiv \neg \forall x \neg A^{g}$.

The Gödel-Gentzen negative translation

Lemma

$-\vdash_{m} \neg A \leftrightarrow \neg \neg \neg A$,

- $\vdash_{m} \neg \neg A \wedge \neg \neg B \leftrightarrow \neg \neg(A \wedge B)$,
- $\vdash_{m} \neg \neg(A \rightarrow B) \rightarrow(\neg \neg A \rightarrow \neg \neg B)$,
- $\vdash_{m} \forall x \neg \neg A \leftrightarrow \neg \neg \forall x \neg \neg A$.

The Gödel-Gentzen negative translation

Lemma
$\vdash_{m} A^{g} \leftrightarrow \neg \neg A^{g}$.
Proof.
By induction on the complexity of A.
Basis: $\vdash_{m} \perp \leftrightarrow \neg \neg \perp$ and $\vdash_{m} \neg \neg P \leftrightarrow \neg \neg P$.
Induction step:
$-\vdash_{m} A^{g} \wedge B^{g} \leftrightarrow \neg \neg A^{g} \wedge \neg \neg B^{g} \leftrightarrow \neg \neg\left(A^{g} \wedge B^{g}\right)$.
$-\vdash_{m} \neg\left(\neg A^{g} \wedge \neg B^{g}\right) \leftrightarrow \neg \neg \neg\left(\neg A^{g} \wedge B^{g}\right)$.
$-\vdash_{m}\left(A^{g} \rightarrow B^{g}\right) \rightarrow \neg \neg\left(A^{g} \rightarrow B^{g}\right) \rightarrow\left(\neg \neg A^{g} \rightarrow \neg \neg B^{g}\right) \leftrightarrow\left(A^{g} \rightarrow B^{g}\right)$.
$-\vdash_{m} \forall x A^{g} \leftrightarrow \forall x \neg \neg A^{g} \leftrightarrow \neg \neg \forall x \neg \neg A^{g} \leftrightarrow \neg \neg \forall x A^{g}$.
$-\vdash_{m} \neg \forall \neg A^{g} \leftrightarrow \neg \neg \neg \forall x \neg A^{g}$.

The Gödel-Gentzen negative translation

Proposition
If $\Gamma \vdash_{c} A$, then $\Gamma^{g} \vdash_{m} A^{g}$, where $\Gamma^{g}=\left\{B^{g} \mid B \in \Gamma\right\}$.
Proof.
By induction on the depth of a deduction of $\Gamma \vdash_{c} A$. Basis: A is translated into A^{g}. Induction step:

The Gödel-Gentzen negative translation

$$
\begin{aligned}
& \frac{\mathcal{D}}{A} \\
& \frac{A \vee B}{I_{r}}
\end{aligned}
$$

is transfered into

$$
\left.\frac{\mathcal{D}^{g}}{A^{g}} \frac{\left[\neg A^{g} \wedge \neg B^{g}\right]}{\neg A^{g}}\right)
$$

The Gödel-Gentzen negative translation

is translated into

The Gödel-Gentzen negative translation

$$
\begin{gathered}
\mathcal{D} \\
\frac{A[x / t]}{\exists x A} \exists \mathrm{I}
\end{gathered}
$$

is transfered into

$$
\frac{\begin{array}{c}
\mathcal{D}^{g} \\
(A[x / t])^{g}
\end{array}}{} \begin{aligned}
& \neg\left(\forall x \neg A^{g}\right] \\
& \neg(A / t])^{g}
\end{aligned}
$$

The Gödel-Gentzen negative translation

$$
\begin{array}{cc}
& {[A]} \\
\mathcal{D}_{1} & \begin{array}{c}
\mathcal{D}_{2} \\
\exists y A[x / y] \\
C
\end{array} \\
\hline
\end{array}
$$

is translated into

$$
\begin{aligned}
& \text { [} A^{g} \text {] } \\
& \begin{array}{l}
\\
\\
{\left[\neg C^{g}\right]} \\
\hline
\end{array} \begin{array}{c}
\mathcal{D}_{2}^{g} \\
C^{g} \\
\hline
\end{array} \\
& \begin{array}{l}
\begin{array}{c}
\mathcal{D}_{1}^{g} \\
(\exists y A[x / y])^{g}
\end{array} \\
\perp \\
\hline y-(A[x / y])^{g}
\end{array} \forall \mathrm{I} \\
& c^{g}
\end{aligned}
$$

The Gödel-Gentzen negative translation

$$
\begin{aligned}
& {[\neg A]} \\
& \mathcal{D} \\
& \stackrel{\perp}{A} \perp_{c}
\end{aligned}
$$

is translated into

$$
\begin{gathered}
\text { } \begin{array}{c}
\\
\vdots \neg A^{g} \rightarrow A^{g}
\end{array} \begin{array}{c}
{\left[\neg A^{g}\right]} \\
A^{g} \\
\frac{\perp}{\neg \neg A^{g}}
\end{array} \rightarrow \mathrm{I} \\
\hline \mathrm{E}
\end{gathered}
$$

Negative formulas

Definition

We define the class \mathcal{N} of negative formulas as follows. Let P range over atomic formulas, and N and N^{\prime} over \mathcal{N}. Then \mathcal{N} is inductively generated by the clause

$$
\perp, \neg P, N \wedge N^{\prime}, N \rightarrow N^{\prime}, \forall x N \in \mathcal{N}
$$

Negative formulas

Lemma
If $N \in \mathcal{N}$, then $\vdash_{m} N \leftrightarrow N^{g}$.
Proof.
By induction on the definition of \mathcal{N}.
Basis: $\vdash_{m} \perp \leftrightarrow \perp$ and $\vdash_{m} \neg P \leftrightarrow \neg \neg \neg P$. Induction step:

- $\vdash_{m} N \wedge N^{\prime} \leftrightarrow N^{g} \wedge N^{\prime g}$.
$-\vdash_{m}\left(N \rightarrow N^{\prime}\right) \leftrightarrow\left(N^{g} \rightarrow N^{g}\right)$.
- $\vdash_{m} \forall x N \leftrightarrow \forall x N^{g}$.

The conservative extension result

Theorem
If $\Gamma \subseteq \mathcal{N}$ and $A \in \mathcal{N}$, then $\Gamma \vdash_{c} A$ implies $\Gamma \vdash_{m} A$.
Proof.
Suppose that $\Gamma \subseteq \mathcal{N}$ and $A \in \mathcal{N}$. Then $\Gamma \vdash_{m} B^{g}$ for each $B \in \Gamma$ and $A^{g} \vdash_{m} A$ by Lemma. Therefore, if $\Gamma \vdash_{c} A$, then $\Gamma^{g} \vdash_{m} A^{g}$, and so $\Gamma \vdash_{m} A$.

Leivant's conservative extension result

Definition

We define simultaneously classes \mathcal{S} (spreading), \mathcal{W} (wiping) and \mathcal{I} (isolating) of formulas as follows. Let P range over atomic formulas, S and S^{\prime} over \mathcal{S}, W and W^{\prime} over \mathcal{W}, and I and I^{\prime} over \mathcal{I}. Then \mathcal{S}, \mathcal{W} and \mathcal{I} are inductively generated by the clauses

- $\perp, P, S \wedge S^{\prime}, S \vee S^{\prime}, \forall x S, \exists x S, I \rightarrow S \in \mathcal{S}$;
- $\perp, W \wedge W^{\prime}, \forall x W, S \rightarrow W \in \mathcal{W}$;
- $P, W, I \wedge I^{\prime}, I \vee I^{\prime}, \exists x I, S \rightarrow I \in \mathcal{I}$.

Note that

$$
\mathcal{N} \subseteq \mathcal{S} \cap \mathcal{W}
$$

Leivant's conservative extension result

Lemma

- $\vdash_{m} \neg(\neg A \wedge \neg B) \leftrightarrow \neg \neg(A \vee B)$,
- $\vdash_{m}(\neg \neg A \rightarrow \neg \neg B) \leftrightarrow(A \rightarrow \neg \neg B)$,
- $\vdash_{i} \neg \neg(A \rightarrow B) \leftrightarrow(\neg \neg A \rightarrow \neg \neg B)$,
- $\vdash_{m} \neg \forall x \neg A \leftrightarrow \neg \neg \exists x A$.

Leivant's conservative extension result

Proposition

- If $A \in \mathcal{S}$, then $\vdash_{i} A \rightarrow A^{g}$;
- If $A \in \mathcal{W}$, then $\vdash_{i} A^{g} \rightarrow A$;
- If $A \in \mathcal{I}$, then $\vdash_{i} A^{g} \rightarrow \neg \neg A$.

Leivant's conservative extension result

Proof.

By simultaneous induction on the definition of \mathcal{S}, \mathcal{W} and \mathcal{I}.
Basis: $\vdash_{m} \perp \rightarrow \neg \neg \perp$ and $\vdash_{m} P \rightarrow \neg \neg P$. Induction step:
$-\vdash_{i} S \vee S^{\prime} \rightarrow \neg \neg\left(S^{g} \vee S^{\prime g}\right) \leftrightarrow \neg\left(\neg S^{g} \wedge \neg S^{\prime g}\right)$.
$-\vdash_{i} \exists x S \rightarrow \neg \neg \exists x S^{g} \leftrightarrow \neg \forall x \neg S^{g}$.
$\stackrel{\vdash}{ }(I \rightarrow S) \rightarrow(\neg \neg I \rightarrow \neg \neg S) \rightarrow\left(I^{g} \rightarrow \neg \neg S^{g}\right) \leftrightarrow\left(I^{g} \rightarrow S^{g}\right)$.
$-\vdash_{i} \neg\left(\neg I^{g} \wedge \neg I^{\prime g}\right) \rightarrow \neg\left(\neg I \wedge \neg I^{\prime}\right) \leftrightarrow \neg \neg\left(I \vee I^{\prime}\right)$.

- $\vdash_{i} \neg \forall x \neg I^{g} \rightarrow \neg \forall x \neg / \leftrightarrow \neg \neg \exists x \mid$.
- $\vdash_{i}\left(S^{g} \rightarrow I^{g}\right) \rightarrow(S \rightarrow \neg \neg I) \leftrightarrow \neg \neg(S \rightarrow I)$.

Leivant's conservative extension result

Theorem (Leivant 1985)
If $\Gamma \subseteq \mathcal{S}$ and $A \in \mathcal{W}$, then $\Gamma \vdash_{c} A$ implies $\Gamma \vdash_{i} A$.
Proof.
Suppose that $\Gamma \subseteq \mathcal{S}$ and $A \in \mathcal{W}$. Then $\Gamma \vdash_{i} B^{g}$ for each $B \in \Gamma$ and $A^{g} \vdash_{;} A$ by Proposition. Therefore, if $\Gamma \vdash_{c} A$, then $\Gamma^{g} \vdash_{m} A^{g}$, and so $\Gamma \vdash_{i} A$.

A variant of the Gödel-Gentzen translation

Definition

The $*$-negative translation $(\cdot)^{*}$ on the formulas of predicate logic is defined by $A^{*} \equiv A^{g}[\perp / *]$, that is,

- $\perp^{*} \equiv *$;
- $P^{*} \equiv \neg_{*} \neg_{*} P$ for P atomic;
- $(A \wedge B)^{*} \equiv A^{*} \wedge B^{*}$;
- $(A \vee B)^{*} \equiv \neg_{*}\left(\neg_{*} A^{*} \wedge \neg_{*} B^{*}\right)$;
- $(A \rightarrow B)^{*} \equiv A^{*} \rightarrow B^{*}$;
- $(\forall x A)^{*} \equiv \forall x A^{*}$;
- $(\exists x A)^{*} \equiv \neg_{*} \forall x \neg_{*} A^{*}$.

A variant of the Gödel-Gentzen translation

Lemma

$\vdash_{m} A^{*} \leftrightarrow \neg_{*} \neg_{*} A^{*}$.

Proof.

Note that \perp is treated as an arbitrary proposition letter in minimal logic and $A^{*} \leftrightarrow \neg_{*} \neg_{*} A^{*} \equiv\left(A^{g} \leftrightarrow \neg \neg A^{g}\right)[\perp / *]$. Since
$\vdash_{m} A^{g} \leftrightarrow \neg \neg A^{g}$, we have $\vdash_{m} A^{*} \leftrightarrow \neg_{*} \neg_{*} A^{*}$.
Proposition
If $\Gamma \vdash_{c} A$, then $\Gamma^{*} \vdash_{m} A^{*}$, where $\Gamma^{*}=\left\{B^{*} \mid B \in \Gamma\right\}$.
Proof.
Since $\Gamma^{*} \equiv \Gamma^{g}[\perp / *]$ and $A^{*} \equiv A^{g}[\perp / *]$, if $\Gamma \vdash_{c} A$, then $\Gamma^{g} \vdash_{m} A^{g}$, and hence $\Gamma^{*} \vdash_{m} A^{*}$.

Another conservative extension result

Definition

We define simultaneously classes $\mathcal{Q}, \mathcal{R}, \mathcal{J}$ and \mathcal{K} of formulas as follows. Let P range over atomic formulas, Q and Q^{\prime} over \mathcal{Q}, R and R^{\prime} over \mathcal{R}, J and J^{\prime} over \mathcal{J}, and K and K^{\prime} over \mathcal{K}. Then \mathcal{Q}, \mathcal{R}, \mathcal{J} and \mathcal{K} are inductively generated by the clauses

- $\perp, P, Q \wedge Q^{\prime}, Q \vee Q^{\prime}, \forall x Q, \exists x Q, J \rightarrow Q \in \mathcal{Q}$;
- $\perp, R \wedge R^{\prime}, R \vee R^{\prime}, \forall x R, J \rightarrow R \in \mathcal{R}$;
- $\perp, P, J \wedge J^{\prime}, J \vee J^{\prime}, \exists x J, R \rightarrow J \in \mathcal{J}$;
- J, $K \wedge K^{\prime}, \forall x K, Q \rightarrow K \in \mathcal{K}$.

Another conservative extension result

Lemma

- $\vdash_{m}(A \rightarrow B) \rightarrow\left(\neg_{*} \neg_{*} A \rightarrow \neg_{*} \neg_{*} B\right)$,
- $\vdash_{m}\left(\neg_{*} \neg_{*} A \rightarrow \neg_{*} \neg_{*} B\right) \leftrightarrow\left(A \rightarrow \neg_{*} \neg_{*} B\right)$,
$-\vdash_{m} \neg_{*} \neg(A \rightarrow B) \rightarrow\left(\neg_{*} \neg_{*} A \rightarrow \neg_{*} \neg B\right)$,

Another conservative extension result

Proposition

- If $A \in \mathcal{Q}$, then $\vdash_{i} A \rightarrow A^{*}$;
- If $A \in \mathcal{R}$, then $\vdash_{i} \neg_{*} \neg A \rightarrow A^{*}$;
- If $A \in \mathcal{J}$, then $\vdash_{i} A^{*} \rightarrow \neg_{*} \neg_{*} A$.

Another conservative extension result

Proof.

By simultaneous induction on the definition of \mathcal{Q}, \mathcal{R} and \mathcal{J}.
Basis: $\vdash_{i} \perp \rightarrow *, \vdash_{m} P \rightarrow \neg_{*} \neg_{*} P, \vdash_{m} \neg_{*} \neg \perp \rightarrow *$, and $\vdash_{m} * \rightarrow \neg_{*} \neg_{*} \perp$.
Induction step:
$-\vdash_{i}(J \rightarrow Q) \rightarrow\left(\neg_{*} \neg_{*} J \rightarrow \neg_{*} \neg_{*} Q\right) \leftrightarrow\left(J^{*} \rightarrow \neg_{*} \neg_{*} Q^{*}\right) \leftrightarrow\left(J^{*} \rightarrow Q^{*}\right)$,

- $\vdash_{i} \neg_{*} \neg(J \rightarrow R) \rightarrow\left(\neg_{*} \neg_{*} J \rightarrow \neg_{*} \neg R\right) \rightarrow\left(J^{*} \rightarrow R^{*}\right)$,
${ }^{-} \vdash_{i}\left(R^{*} \rightarrow J^{*}\right) \rightarrow\left(\neg_{*} \neg R \rightarrow \neg_{*} \neg_{*}\right) \rightarrow \neg_{*} \neg_{*}(R \rightarrow J)$.

Another conservative extension result

A set Γ of formulas is closed under $(\cdot)^{*}$ if $\Gamma \vdash_{i} A^{*}[* / C]$ for each $A \in \Gamma$ and C being free for $*$ in A^{*}.

Theorem (I 2000)
If Γ is a set of formulas closed under $(\cdot)^{*}$ and $A \in \mathcal{K}$, then $\Gamma \vdash_{c} A$ implies $\Gamma \vdash_{i} A$.

Corollary
If $\Gamma \subseteq \mathcal{Q}$ and $A \in \mathcal{K}$, then $\Gamma \vdash_{c} A$ implies $\Gamma \vdash_{i} A$.

Another conservative extension result

Proof of Theorem.
By induction on the definition of \mathcal{K}.
Basis: Suppose that $\Gamma \vdash_{c} J$ and $J \in \mathcal{J}$. Then $\Gamma \vdash_{m} J^{*}$, and hence $\Gamma^{*} \vdash_{i} \neg_{*} \neg_{*} J$. Therefore $\Gamma^{*}[* / J] \vdash_{i}\left(\neg_{*} \neg_{*} J\right)[* / J] \equiv(J \rightarrow J) \rightarrow J$, and, since Γ is closed under $(\cdot)^{*}$, we have $\Gamma \vdash_{i} J$.
Induction step:

- Suppose that $\Gamma \vdash_{c} K \wedge K^{\prime}$. Then $\Gamma \vdash_{c} K$ and $\Gamma \vdash_{c} K^{\prime}$, and hence $\Gamma \vdash_{i} K$ and $\Gamma \vdash_{i} K^{\prime}$ by induction hypothesis. Thus $\Gamma_{i} \vdash K \wedge K^{\prime}$.
- Suppose that $\Gamma \vdash_{c} \forall x K$. Then $\Gamma \vdash_{c} K$, and hence $\Gamma \vdash_{i} K$ by induction hypothesis. Thus $\Gamma_{i} \vdash \forall x K$.
- Suppose that $\Gamma \vdash_{c} Q \rightarrow K$. Then $\Gamma \cup\{Q\} \vdash_{c} K$, and therefore, since $\Gamma \cup\{Q\}$ is closed under $(\cdot)^{*}$, we have $\Gamma \cup\{Q\} \vdash_{i} K$ by induction hypothesis. Thus $\Gamma \vdash_{i} Q \rightarrow K$.

Application (Barr's theorem)

Definition

We define classes \mathcal{G} and $\mathcal{G}_{\text {I }}$ of geometric formulas and geometiric implications, respectively, as follows. Let P range over atomic formulas, G and G^{\prime} over \mathcal{G} and G_{l} over \mathcal{G}_{l}. Then \mathcal{G} and \mathcal{G}_{l} are inductively generated by the clauses

- $\perp, \top, P, G \wedge G^{\prime}, G \vee G^{\prime}, \exists x G \in \mathcal{G}$;
- $G \rightarrow G^{\prime}, \forall x G_{l} \in \mathcal{G}_{I}$,
where $\top \equiv \perp \rightarrow \perp$.

Theorem (Barr's thoerem)
If $\Gamma \subseteq \mathcal{G}_{I}$ and $A \in \mathcal{G}_{I}$, then $\Gamma \vdash_{c} A$ implies $\Gamma \vdash_{i} A$.
Proof.
Note that $\mathcal{G} \subseteq \mathcal{Q} \cap \mathcal{J}$, and hence $\mathcal{G}_{I} \subseteq \mathcal{Q} \cap \mathcal{K}$.

Application (first-order arithmetic)

Theorem
If $A \in \mathcal{K}$, then $\mathbf{P A} \vdash A$ implies $\mathbf{H A} \vdash A$.
Proof.
The axioms and the axiom schema of first-order arithmetic are closed under ($\cdot)^{*}$.

Corollary

PA is conservative over HA with respect to Π_{2}^{0} formulas, and, moreover, the following form of formulas.

$$
\forall x\left[\forall u_{1} \exists v_{1} \ldots \forall u_{n} \exists v_{n}(s(\vec{u}, \vec{v}, x)=0) \rightarrow \exists y(t(x, y)=0)\right] .
$$

Proof.
Π_{2}^{0} formulas and the formulas of the above form are in \mathcal{K}.

Application (first-order arithmetic)

Moreover, we can extend the class \mathcal{R} (and hence the classes \mathcal{J}, \mathcal{Q} and \mathcal{K}) by the clause

$$
\perp, P, R \wedge R^{\prime}, R \vee R^{\prime}, \forall x R, J \rightarrow R \in \mathcal{R}
$$

because, for atomic P, since $\mathbf{H A} \vdash P \vee \neg P$, we have HA $\vdash \neg * \neg P \rightarrow P^{*}$, and the following proposition holds for the extended classes in HA.

Proposition

- If $A \in \mathcal{Q}$, then $\mathbf{H A} \vdash A \rightarrow A^{*}$;
- If $A \in \mathcal{R}$, then $\mathbf{H A} \vdash \neg_{*} \neg A \rightarrow A^{*}$;
- If $A \in \mathcal{J}$, then $\mathbf{H A} \vdash A^{*} \rightarrow \neg_{*} \neg_{*} A$.

Schwichtenberg's question

Helmut Schwichtenberg has asked about a possibility of extending the classes \mathcal{R} and \mathcal{J}, defined by the clauses
$-\perp, R \wedge R^{\prime}, R \vee R^{\prime}, \forall x R, J \rightarrow R \in \mathcal{R}$;
$-\perp, P, J \wedge J^{\prime}, J \vee J^{\prime}, \exists x J, R \rightarrow J \in \mathcal{J}$,
by introducing \exists and \forall in the clauses, respectively, to the classes \mathcal{R}_{0} and \mathcal{J}_{0}, defined by
$-\perp, R \wedge R^{\prime}, R \vee R^{\prime}, \forall x R, \exists x R, J \rightarrow R \in \mathcal{R}_{0}$;

- $\perp, P, J \wedge J^{\prime}, J \vee J^{\prime}, \forall x J, \exists x J, R \rightarrow J \in \mathcal{J}_{0}$.

Intuitionistic sequent calculus G3i

$$
\begin{array}{cc}
P, \Gamma \Rightarrow P \mathrm{Ax} & \perp, \Gamma \Rightarrow A \mathrm{~L} \perp \\
\frac{A, B, \Gamma \Rightarrow C}{A \wedge B, \Gamma \Rightarrow C} \mathrm{~L} \wedge & \frac{\Gamma \Rightarrow A \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B} \mathrm{R} \wedge \\
\frac{A, \Gamma \Rightarrow C \quad B, \Gamma \Rightarrow C}{A \vee B, \Gamma \Rightarrow C} \mathrm{~L} \vee & \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \vee B} \mathrm{R} \vee_{1} \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \vee B} \mathrm{R} \vee_{2} \\
\frac{A \rightarrow B, \Gamma \Rightarrow A \quad B, \Gamma \Rightarrow C}{A \rightarrow B, \Gamma \Rightarrow C} \mathrm{~L} \rightarrow & \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \mathrm{R} \rightarrow
\end{array}
$$

where in Ax, P is atomic.

Intuitionistic sequent calculus G3i

$$
\begin{array}{cc}
\frac{\forall x A, A[x / t], \Gamma \Rightarrow C}{\forall x A, \Gamma \Rightarrow C} \mathrm{~L} \forall & \frac{\Gamma \Rightarrow A[x / y]}{\Gamma \Rightarrow \forall x A} \mathrm{R} \forall \\
\frac{A[x / y], \Gamma \Rightarrow C}{\exists x A, \Gamma \Rightarrow C} \mathrm{~L} \exists & \frac{\Gamma \Rightarrow A[x / t]}{\Gamma \Rightarrow \exists x A} \mathrm{R} \exists
\end{array}
$$

where in $\mathrm{R} \forall, y \notin \mathrm{FV}(\Gamma), y \equiv x$ or $y \notin \mathrm{FV}(A)$, and in $\mathrm{L} \exists$, $y \notin \mathrm{FV}(\Gamma, C), y \equiv x$ or $y \notin \mathrm{FV}(A)$.
We denote by

$$
\vdash ; \Gamma \Rightarrow A
$$

that there is a deduction of the sequent $\Gamma \Rightarrow A$ in $\mathbf{G 3 i}$.
Note that

$$
\vdash_{i} \Gamma \Rightarrow A \text { if and only if } \Gamma \vdash_{i} A .
$$

Classical sequent calculus G3c

$$
\begin{array}{cc}
P, \Gamma \Rightarrow \Delta, P \quad \mathrm{Ax} & \perp, \Gamma \Rightarrow \Delta \quad \mathrm{~L} \perp \\
\frac{A, B, \Gamma \Rightarrow \Delta}{A \wedge B, \Gamma \Rightarrow \Delta} \mathrm{~L} \wedge & \frac{\Gamma \Rightarrow \Delta, A \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \wedge B} \mathrm{R} \wedge \\
\frac{A, \Gamma \Rightarrow \Delta \quad B, \Gamma \Rightarrow \Delta}{A \vee B, \Gamma \Rightarrow \Delta} \mathrm{~L} \vee & \frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma \Rightarrow \Delta, A \vee B} \mathrm{R} \vee \\
\frac{\Gamma \Rightarrow \Delta, A \quad B, \Gamma \Rightarrow \Delta}{A \rightarrow B, \Gamma \Rightarrow \Delta} \mathrm{~L} \rightarrow & \frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B} \mathrm{R} \rightarrow
\end{array}
$$

where in Ax, P is atomic.

Classical sequent calculus G3c

$$
\begin{array}{cc}
\frac{\forall x A, A[x / t], \Gamma \Rightarrow \Delta}{\forall x A, \Gamma \Rightarrow \Delta} \text { L } \forall & \frac{\Gamma \Rightarrow \Delta, A[x / y]}{\Gamma \Rightarrow \Delta, \forall x A} \mathrm{R} \forall \\
\frac{A[x / y], \Gamma \Rightarrow \Delta}{\exists x A, \Gamma \Rightarrow \Delta} \text { L } \exists & \frac{\Gamma \Rightarrow \Delta, A[x / t], \exists x A}{\Gamma \Rightarrow \Delta, \exists x A} \mathrm{R} \mathrm{\exists}
\end{array}
$$

where in $\mathrm{R} \forall$ and $\mathrm{L} \exists, y \notin \mathrm{FV}(\Gamma, \Delta), y \equiv x$ or $y \notin \mathrm{FV}(A)$.
We denote by

$$
\vdash_{c} \Gamma \Rightarrow \Delta
$$

that there is a deduction of the sequent $\Gamma \Rightarrow \Delta$ in G3c. Note that

$$
\vdash_{c} \Gamma \Rightarrow A \text { if and only if } \Gamma \vdash_{c} A .
$$

Structural rules

The structural rules (weakening, contraction and cut) are admissible in G3c and in G3i.

Those structural rules are formulated in G3i as follows:

$$
\begin{gathered}
\frac{\Gamma \Rightarrow C}{\Gamma, \Delta \Rightarrow C} \mathrm{LW} \quad \frac{A, A, \Gamma \Rightarrow C}{A, \Gamma \Rightarrow C} \mathrm{LC} \\
\frac{\Gamma \Rightarrow A \quad A, \Gamma^{\prime} \Rightarrow C}{\Gamma, \Gamma^{\prime} \Rightarrow C} \mathrm{Cut}
\end{gathered}
$$

Some conservative extension results

Definition

We define simultaneously classes $\mathcal{R}_{0}, \mathcal{J}_{0}, \mathcal{Q}_{m}$ and $\mathcal{K}_{m}(m=1,2)$ of formulas as follows. Let P range over atomic formulas and $*, R$ and R^{\prime} over \mathcal{R}_{0}, J and J^{\prime} over \mathcal{J}_{0}, Q_{m} and Q_{m}^{\prime} over \mathcal{Q}_{m}, and K_{m} and K_{m}^{\prime} over $\mathcal{K}_{m}(m=1,2)$. Then $\mathcal{R}_{0}, \mathcal{J}_{0}, \mathcal{Q}_{m}$ and \mathcal{K}_{m} ($m=1,2$) are inductively generated by the clauses

- $\perp, R \wedge R^{\prime}, R \vee R^{\prime}, \forall x R, \exists x R, J \rightarrow R \in \mathcal{R}_{0}$;
- $\perp, P, J \wedge J^{\prime}, J \vee J^{\prime}, \forall x J, \exists x J, R \rightarrow J \in \mathcal{J}_{0}$;
- $P, R, Q_{1} \wedge Q_{1}^{\prime}, Q_{1} \vee Q_{1}^{\prime}, \exists x Q_{1}, J \rightarrow Q_{1} \in \mathcal{Q}_{1}$;
- $P, R, Q_{2} \wedge Q_{2}^{\prime}, \forall x Q_{2}, \exists x Q_{2}, J \rightarrow Q_{2} \in \mathcal{Q}_{2}$;
- J, $K_{m} \wedge K_{m}^{\prime}, \forall x K_{m}, Q_{m} \rightarrow K_{m} \in \mathcal{K}_{m}(m=1,2)$.

Some conservative extension results

Proposition
If either $\Gamma \subseteq \mathcal{Q}_{1}$ or $\Gamma \subseteq \mathcal{Q}_{2}, \Delta \subseteq \mathcal{R}_{0}$ and $\Sigma \subseteq \mathcal{J}_{0}$, then
$\vdash_{c} \Gamma, \Delta \Rightarrow \Sigma$ implies $\vdash_{i} \Gamma, \neg_{*} \neg \Delta, \neg_{*} \Sigma \Rightarrow *$.
Proof.
By induction on the depth of a deduction of $\vdash_{c} \Gamma, \Delta \Rightarrow \Sigma$.

Some conservative extension results

Theorem (I 2011)
For each $m=1$, 2, if $\Gamma \subseteq \mathcal{Q}_{m}$ and $A \in \mathcal{K}_{m}$, then $\vdash_{c} \Gamma \Rightarrow A$ implies
$\vdash_{i} \Gamma \Rightarrow A$.
Proof.
By induction on the definition of \mathcal{K}_{m}.
Suppose that $A \in \mathcal{J}_{0}$ and $\vdash_{c} \Gamma \Rightarrow A$. Then $\vdash_{i} \Gamma, \neg_{*} A \Rightarrow *$, by
Proposition. Therefore, since A is free for $*$ in $\Gamma, \neg_{*} A$, $*$, we have

$$
\vdash_{i} \Gamma, A \rightarrow A \Rightarrow A,
$$

$$
\text { and so } \vdash_{i} \Gamma \Rightarrow A
$$

Positive and negative occurrences

- C occurs positively in C;
- if C occurs positively and negatively in A or in B, then C occurs positively and negatively, respectively, in $A \wedge B$ and in $A \vee B$;
- if C occurs negatively in A or positively in B, and positively in A or negatively in B, then C occurs positively, and negatively, respectively, in $A \rightarrow B$;
- if C occurs positively and negatively in A, then C occurs positively and negatively, respectively, in $\forall x A$ and in $\exists x A$.

Strictly positive occurrences

- C occurs strict positively in C;
- if C occurs strict positively in A or in B, then C occurs strict positively in $A \wedge B$ and in $A \vee B$;
- if C occurs strict positively in B, then C occurs strict positively in $A \rightarrow B$;
- if C occurs strict positively in A, then C occurs strict positively in $\forall x A$ and in $\exists x A$.

Some conservative extension results

Lemma

If $\vdash_{i} *^{n}, \Gamma, \neg_{*} \Delta \Rightarrow A$, where $*^{n}$ stands for n copies of $*$, and $*$ does not occur in Γ negatively nor positively in A, then $\vdash_{i} \Gamma \Rightarrow A$.

Proof.
By induction on the depth of a deduction of
$\vdash_{i} *^{n}, \Gamma, \neg_{*} \Delta \Rightarrow A$.
Lemma
If $\vdash_{i} \Gamma, \neg_{*} A[x / y], \neg_{*} \Delta \Rightarrow *$, where $*$ does not occur in the antecedent negatively, there is no strictly positive occurrence of \forall in Γ, and $y \notin \mathrm{FV}(\Gamma), y \equiv x$ or $y \notin \mathrm{FV}(A)$, then
$\vdash_{i} \Gamma, \neg_{*} \forall x A, \neg_{*} \Delta \Rightarrow *$.
Proof.
By induction on the depth of a deduction of
$\vdash_{i} \Gamma, \neg_{*} A[x / y], \neg_{*} \Delta \Rightarrow *$.

Some conservative extension results

Lemma

If $\vdash_{i} \Gamma, \neg_{*} A, \neg_{*} \Delta \Rightarrow *$, where $*$ does not occur in the antecedent negatively, and there is no strictly positive occurrence of \vee in Γ, then either $\vdash_{i} \Gamma \Rightarrow A$, or $\vdash_{i} \Gamma, \neg_{*} \Delta \Rightarrow *$.

Proof.
By induction on the depth of a deduction of
$\vdash_{i} \Gamma, \neg_{*} A, \neg_{*} \Delta \Rightarrow *$.
Corollary
If $\vdash_{i} \Gamma, \neg_{*} A[x / y], \neg_{*} \Delta \Rightarrow *$, where $*$ does not occur in the antecedent negatively, there is no strictly positive occurrence of \vee in Γ, and $y \notin \mathrm{FV}(\Gamma), y \equiv x$ or $y \notin \mathrm{FV}(A)$, then
$\vdash_{i} \Gamma, \neg_{*} \forall x A, \neg_{*} \Delta \Rightarrow *$.

