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Language

We use the standard language of (many-sorted) first-order
predicate logic based on

» (individual) variables vp, vy, .. .;

v

(individual) constants ¢, c1, . . .;

v

predicate (relation) symbols Ry, Ry, .. .;

v

function symbols fy, f1, .. .;

v

primitive logical operators A, VvV, —, 1.V, 3.



Terms

Terms are defined inductively by
» variables and constants are terms;

> if t1,...,t, are terms and f is an (n-ary) function symbol,
then f(t1,...,t,) is a term.

The set FV(t) of free variables of a term t is defined inductively
by

» FV(x):={x} and FV(c) := 0;

» FV(f(t1,...,ty)) =FV(t1) U...UFV(t,).



Formulas

Formulas are defined inductively by
» | is a formula;

» if t1,...,t, are terms and R is an (n-ary) predicate symbol,
then R(t1,...,t,) is an (atomic) formula;

» if A and B are formulas, then (AA B), (AV B) and (A— B)
are formulas;

» if Ais a formula and x is a variable, then (VxA) and (3xA) are
formulas.

We introduce the abbreviations
» "A=A— 1
» A B=(A—B)A(B—A).



Formulas

The set FV(A) of free variables of a formula A is defined
inductively by

> FV(J_) = 0;

FV(R(t1,...,tn)) :=FV(t1) U...UFV(t,);

» FV(Ao B) :=FV(A)UFV(B), where o € {A,V,—};
FV(VxA) := FV(3xA) := FV(A) \ {x}.

v

>

For a set I of formulas, let FV(I') := [J{FV(A) | AeT}.



Substitution (1)

Let s and t be terms, and let x be a variable. Then define a term
s[x/t] by

» x[x/t]=t, y[x/t] =y (x # y), and ¢[x/t] = c;

> (F(t1,..., tn))[x/t] = f(ta[x/t], ..., ta[x/t]).
Let A be a formula, let t be a term, and let x be a variable. Then
define a formula A[x/t] by

» L[x/t] = L;

» R(t1,..., th)[x/t] = R(t1[x/t], ..., talx/t]);

» (Ao B)[x/t] = (A[x/t] o B[x/t]), where o € {A,V,—};

> (WA)Ix/t] = Yy(Alx/t]) and (FyA)lx/t] = Fy(Alx/¢]), if

xtzé y,.and (VyA)[x/t] = VyA and (3yA)[x/t] = FyA,



Free for (1)

Let A be a formula, let t be a term, and let x be a variable. Then
define a predicate t is free for x in A by
» tis free for x in L;
> tis free for x in R(t1,...,tn);
» if t is free for x in A and B, then t is free for x in (Ao B),
where o € {A,V,—};
> if tis free for x in A, x Z y and y & FV/(t), then t is free for
x in VyA and JyA.



Substitution (2)

We introduce

> a proposition symbol (0-ary predicate symbol) x acting as a
place holder.

» an abbreviation = ,A = A — *.

Let A and C be formulas. Then define a formula A[x/C] by
» L[x/Cl=L1;
» x[x/C] = C and (R(t1,...,ts))[*/C] = R(t1,...,tn);
» (Ao B)[x/C] = (A[*x/C] o B[*/C]), where o € {A,V,—};
» (VxA)[x/C] = Vx(A[*/C]) and (IxA)[x/C] = Ix(A[*/C]),



Free for (2)

Let A and C be formulas. Then define a predicate C is free for x
in A by
» C is free for x in L;
» C is free for x in x and R(ty,...,t,);
» if C is free for x in A and B, then C is free for x in (Ao B),
where o € {A,V,—};
» if C is free for x in A and x € FV(C), then C is free for x in
VxA and 3xA.



Natural Deduction System

We shall use D, possibly with a subscript, for arbitrary deduction.

We write
r
D
A

to indicate that D is deduction with conclusion A and assumptions
r.



Minimal logic

Deductions are inductively defined as follows.

Basis: For each formula A,
A

is a deduction with conclusion A and assumptions {A}.

Induction step:



Minimal logic

M P
» if D; and D, are deductions, then
A B
I
D1 Dy
A B
Ang M

is a deduction with conclusion AA B and assumptions ['; U l5;



Minimal logic

r
» if D is a deduction, then
AANB

I I
D D
AAB AANB

NE,

AE;

>

B

are deductions with conclusions A and B, respectively, and
assumptions [;



Minimal logic

r
» if D is a deduction, then
A

r
D

9

A
ave Ir BVAVY

L

are deductions with conclusions AV B and BV A, respectively,
and assumptions [;



Minimal logic

I 3
» if D; , D, and D3 are deductions, then
AvB C C

M M I3
D1 D> Ds
AV B CC C VE

is a deduction with conclusion C and assumptions

MU\ {AH) U (T3 \ {B});



Minimal logic

r
» if D is a deduction, then
B

r
D

B |
A— B

is a deduction with conclusion A — B and assumptions

I\ {A}.



Minimal logic

M1 P
» if D; and D, are deductions, then
A—B A
! P
Dy D,
A —>g A E

is a deduction with conclusion B and assumptions I'; U 5.



Minimal logic

r
» if D is a deduction, x € FV(l), and y = x or y & FV(A),

A
then
r
D
A

WAyl T

is a deduction with conclusion VyA[x/y] and assumptions .



Minimal logic

r
» if D is a deduction and t is free for x in A, then
VxA

r
D
VxA

Alx/t]

VE

is a deduction with conclusion A[x/t] and assumptions I



Minimal logic

r
» if D s a deduction, then
Alx/t]
r
D
Alx/t]
IxA

is a deduction with conclusion 3xA and assumptions I.



Minimal logic

r1 F2
» if D1  and D, are deductions, x € FV(C),
yAlx/yl C
x € FV([2\ {A}), and y = x or y € FV(A), then

is a deduction with conclusion C and assumptions

Mu (I'2 \ {A})



Minimal logic

We denote by
M, A

that there is a deduction in minimal logic with conclusion A and
assumptions A which is a subset of .



Example (1)

[A— B] [A]

[-B] B
T —E
[~(A=B)] ~(A=B) |
T —E
[-—A] Ey
n —E
-8 !
Ao B 1
—1

ﬁ—|(A — B) — (—|—\A — —\ﬁB)

—E



Example (2)

[A— B] [A]
[, B] B
* I—>E
[-.~.(A=B)] —.(A>B)
¥ —E
[~ A —A 1
—E
— —I

—I
_‘*_‘*A — _‘*_‘*B

(Ao B) = (Ao —B)

—E



Example (3)

[A— B] [A]
[-B] B
n —E
[.~(A=B)] (A=B) !
* —E
[ Al —A 1
¥ —E
- —I
—I



Intuitionistc logic

Intuitionistic logic is obtained from minimal logic by adding the
intuitionistic absurdity rule.

r
» if D is a deduction, then
1

1;

pN[C

is a deduction with conclusion A and assumptions I'.



Intuitionistc logic

We denote by
M= A

that there is a deduction in intuitionistic logic with conclusion A
and assumptions in .

Note that
Men A= T HA



Example (4)

[-Al (Al
L
B
[-(A—-B)] A—B [B]
L [-(A—B)] A—B
[-—A — ——B] -—A N
——-B -B
L
—|—\(A — B)

(—\—\A — _|_\B) — _|_\(A — B)



Example (5)

[FA] [A]

L

B

[-«(A—>B)] A—B [B]
* -+«(A—B)] A—B
—|*—|*B —\*B

.

—x«(A— B)

(——A = ——B) —» (A= B)



Classical logic

Classical logic is obtained from intuitionistic logic by strengthening
the absurdity rule to the classical absurdity rule.

r
» if D is a deduction, then
1

Le

Nl

is a deduction with conclusion A and assumption I\ {—A}.



Classical logic

We denote by
M- A

that there is a deduction in classical logic with the conclusion A
and the assumptions in I'.

Note that
M= A=TF:A.



Examples (6)

[-—A] [2A]
-

L, "
A C
—A-A
[Al
[H(AV—-A)] Av-A b
[ 1 . —E
(AV -A)] Av—AVl
—E




The Godel-Gentzen negative translation

Definition
The Godel-Gentzen negative translation (-)8 on the formulas of
predicate logic is defined inductively by

> 18=1;

» P8 = —=P for P atomic;
» (AN B)8 = A8 A BS;
(AV B)& = =(—A8 A\ —B8);
(A— B)8 = A8 — BS,
(
(

>

v

VxA)8 = VxAS,
IxA)8 = —Vx—AS.

v



The Godel-Gentzen negative translation

Lemma
>y A& A,
> Fm AN B < (AN B),
» by (A= B) = (——A — —=B),
>y VX0 A & Vx—A,



The Godel-Gentzen negative translation

Lemma
o AE <5 —— A8,

Proof.

By induction on the complexity of A.

Basis: F,, L +»—-=1 and F,, == P < =P,
Induction step:

Fm A8 A B8 <+ =—A8 N\ = B8 <> -~ (A8 A BE).

Fm —(—A8 A —BE) ¢ =——(—AE A BS).

Fm (A8 — B8&)——— (A8 — B8)—(——A8 ——-—B&)« (A8 — BS).
Fm VXA8 & Vx——A8 & =—Vx——A8 > —VxAS.

Fm —V—A8 < ———Vx—AS.

v

v

v

v

v



The Godel-Gentzen negative translation

Proposition
IfFT ¢ A, then T b, AS, where T8 = {B& | BT}

Proof.

By induction on the depth of a deduction of [ . A.
Basis: A is translated into AS.

Induction step:



The Godel-Gentzen negative translation

2
AvE VI
is transfered into
pe  [TAE A BE]
A& - A8
= —I

(AVBE



The Godel-Gentzen negative translation

[A] [B]
D1 D> D3
AvB C C
C VE
is translated into
(A8 (B8
D3 D3
[-Cc8] C&8 [-C8] C&
L L
D —A8 B
(AV B)8 -A8 N -B8§
: L
-—C& — C& —-—Cé&

cg



The Godel-Gentzen negative translation

D
Alx/1]

dxA

is transfered into
pe [PxAf)

(Alx/t])e  —(Alx/t])®
1
(3xA)E

—1



The Godel-Gentzen negative translation

[A]
D1 D>
JyA C
yalx/yl €
C
is translated into
[A¢]
D5
[~ce) ce
. L
Dl _‘—Ag VI
(3yAlx/y])8  Vy—(Alx/y])8
: L
-—C& - C& —-—Cé&

Cc8



The Godel-Gentzen negative translation

is translated into
[—A%]
DE
. # I
A8 s AE S—AE
AE —E




Negative formulas

Definition

We define the class \V of negative formulas as follows. Let P range
over atomic formulas, and N and N’ over A. Then N is
inductively generated by the clause

L, =P, NAN N N VxNeN.



Negative formulas

Lemma
If N eN, thentp,, N < N&.

Proof.

By induction on the definition of V.
Basis: F,, L+ L and F,, =P < === P.
Induction step:

» Fm NAN < N&EAN'E,
> B (N— N') < (N8 — N'8).
> o VXN < VxNE.



The conservative extension result

Theorem
IfFT CN and Ae N, then T . A implies T -, A.

Proof.

Suppose that T C N and A€ N. Then I -, B& for each Be T
and A8 I, A by Lemma. Therefore, if [ - A, then I8 |, A8,
and so I -, A. O



Leivant’s conservative extension result

Definition
We define simultaneously classes S (spreading), YW (wiping) and Z
(isolating) of formulas as follows. Let P range over atomic
formulas, S and S’ over S, W and W’ over W, and [ and I’ over
Z. Then S, W and T are inductively generated by the clauses

» | P,SAS SVvS VxS5,3xS,1 - S €S,

» L WAW VXW,S — W e W,

» PW IANIIVI,3xI,S— 1 €L

Note that
NCTSnw.



Leivant’s conservative extension result

Lemma
> Fm (AN B) < -=(AV B),
> Fm (A — —=B) < (A— ——B),
» i ==(A— B) < (-—A— —=B),
> b, Vx—A & dXA.



Leivant’s conservative extension result

Proposition
» IfAES, thent; A— A8;

» If A€W, then; A8 — A;
» IfA€Z, then ; A8 — ——A.



Leivant’s conservative extension result

Proof.
By simultaneous induction on the definition of S, W and Z.

Basis: +,, L ——=1L and b+, P — =P,
Induction step:

> HiSVS — (S8 V S8) s —(—58 A S'E).

F; IxS — ——dx58 < —Vx—58.

Fi(l—=S)— (-~ ——=S)— (18 - ——~58) < (18 — S8).
Fi (=18 A=IE) = —(=] A=l') 5 =1V 1),

Fi 2Vx—18 — =Vx—l < ——dx].

Fi (58 = 18) = (S — =)+ =—(S—=1).

v

v

v

v

v



Leivant’s conservative extension result

Theorem (Leivant 1985)
IfT CSand Ae W, thenT . A implies T F; A.

Proof.

Suppose that T C S and A€ W. Then I' ; B8 for each BTl
and A8 ; A by Proposition. Therefore, if [ . A, then '8 I, A8,
andso I H; A. O



A variant of the Godel-Gentzen translation

Definition
The x-negative translation (-)* on the formulas of predicate logic is
defined by A* = A&[L/x], that is,
> ¥ =x;
> P* = —,—-,P for P atomic;
» (AN B)" = A* A\ B,
> (AV B)* = = (—A* A BY);
(A— B)* = A* — B*,
( =
(

v

v

VxA)* = VxA*;
IxA)* = =, Vx—, A"



A variant of the Godel-Gentzen translation

Lemma
Fm A* < - A"

Proof.

Note that L is treated as an arbitrary proposition letter in minimal
logic and A* <3 —,—,A* = (A8 <> ——A8)[L/x]. Since

Fm A8 <> ——A8, we have F,, A" & -, —, A% O]

Proposition
IfFT bc A, then T* -, A%, where T* = {B* | B € T'}.

Proof.
Since I =T8[L/«] and A* = A8[L/x], if [ k¢ A, then I8 |-, A8,
and hence ™ I, A*. ]



Another conservative extension result

Definition
We define simultaneously classes @, R, J and K of formulas as
follows. Let P range over atomic formulas, Q and Q' over Q, R
and R’ over R, J and J' over J, and K and K’ over K. Then Q,
R, J and K are inductively generated by the clauses

» LP,ONQ,QVQ,VxQ,3xQ,J - Q € Q;

» 1L, RAR,RVR VxR,J— R eR;

» LP.IANJS,JVI,IxXJ,R—Jec T;

» LJKAK UK, Q - K € K.



Another conservative extension result

Lemma
> Fm (A= B) = (m—A — 2 B),
> Fm (ﬂ*ﬂ*A — ﬂ*ﬂ*B) <~ (A — ﬂ*ﬂ*B),
> Fm (A= B) = (- A— 0 B),
> Fi (m0A = e B) — (A= B).



Another conservative extension result

Proposition
» IfAe O, thent; A— A%,

» If A€ R, then - =, —A — A%,
» IfAe J, thent; A* — -~ A.



Another conservative extension result

Proof.

By simultaneous induction on the definition of Q, R and J.

Basis: i L — %, Fp P— 24— P, by moo L — %, and

'_m * — L.

Induction step:
> H (U= Q)= (= Q) & (JF = Q%) = (JF = QF),
> Fi (= R) = (mewd = o R) = (JF — RY),



Another conservative extension result

A set T of formulas is closed under (-)* if [ =; A*[x/C] for each
A €T and C being free for x in A*.

Theorem (I 2000)

If T is a set of formulas closed under (-)* and A€ K, then T . A
implies I =; A.

Corollary
IfT CQand Ae I, then T . A implies T +; A.



Another conservative extension result

Proof of Theorem.

By induction on the definition of K.

Basis: Suppose that ' - J and J € J. Then I I, J*, and hence
M i —e—ud. Therefore T*[x/J] F; (m—u)[x/J] = (U= J) = J,
and, since [ is closed under (-)*, we have I ; J.

Induction step:

» Suppose that T KAK'. Then . K and I . K’, and
hence I' ; K and I' F; K’ by induction hypothesis. Thus
NEKAK'.

» Suppose that [ F. VxK. Then I . K, and hence I F; K by
induction hypothesis. Thus I'; - VxK.

» Suppose that ', @ — K. Then TU{Q} ¢ K, and
therefore, since ' U {Q} is closed under (-)*, we have
U {Q} i K by induction hypothesis. Thus '+ Q — K.

O



Application (Barr's theorem)

Definition

We define classes G and G, of geometric formulas and geometiric
implications, respectively, as follows. Let P range over atomic
formulas, G and G’ over G and G, over G;. Then G and G, are
inductively generated by the clauses

» L.T,P.GANG',GV G, 3IxG € G;
» G — G',VxG, € G,
where T=1 — 1.

Theorem (Barr's thoerem)
IfTl CGyand A Gy, thenT . A implies T F; A.

Proof.
Note that G C 9N J, and hence G, C 9N K. OJ



Application (first-order arithmetic)

Theorem
If A€ IC, then PA+ A implies HA + A.

Proof.
The axioms and the axiom schema of first-order arithmetic are
closed under (-)*. O

Corollary

PA is conservative over HA with respect to M3 formulas, and,
moreover, the following form of formulas.

Vx[Vui3vy ... Yu,3va(s(d, v, x) = 0) — Jy(t(x,y) = 0)].

Proof.
I—Ig formulas and the formulas of the above form are in K. OJ



Application (first-order arithmetic)

Moreover, we can extend the class R (and hence the classes 7, Q
and K) by the clause

1,P,RAR,RVR VxR,J— RER,

because, for atomic P, since HA+ PV =P, we have
HA + —,—P — P*, and the following proposition holds for the
extended classes in HA.

Proposition
» IfAe Q, then HAF- A— A%,

» IfAe R, then HA - —,~A — A%,
» IfAe J, then HAF A* — -~ A



Schwichtenberg’s question

Helmut Schwichtenberg has asked about a possibility of extending
the classes R and 7, defined by the clauses

» L, RAR,RVR VxR, J— RETR;
> LP,JANS, VI, 3IxJ,R—JE T,

by introducing 3 and V in the clauses, respectively, to the classes
Ro and Jp, defined by

» L. RAR RV R VxR,3xR,J — R € Ry;

> L.P.INS IV I VxJ,3xJ,R— J € To.



Intuitionistic sequent calculus G3i

Pl =P Ax LI=A LL
ABT=C r=A =8
ANB.T = C r=AnB "
Al=C BTI=C = A r=B
AVBT=C Y r=oave™r roave V2
A—-BT=A BIl=C ATl =B
L—

ASBTI=C Fr=A-B L

where in Ax, P is atomic.



Intuitionistic sequent calculus G3i

VxA, Alx/t],T = C M= Alx/y]

VxA, T = C = VxA
Alx/y],T = C = Alx/t]
AT = C M= %A

where in RY, y  FV(IN), y = x or y € FV(A), and in L3,
y ¢ FV(l,C),y=xory¢FV(A).
We denote by

= A

that there is a deduction of the sequent ' = A in G3i.
Note that
F; T = Aifand only if T F; A.



Classical sequent calculus G3c

Pl=AP Ax
ABI=A
ANB,T = A N

AT=A BTl=A
AVB,T = A

r=AA BT=A
ASB T =A

where in Ax, P is atomic.

1, r'=A LL
r=AA IT=AB
Fr=AAANB
r=AAB

FT=AAvB Y
ATl=AB
7 TS AASBRT




Classical sequent calculus G3c

VxA, Alx/t],T = A M= A, A[x/y]
VAT = A [= A, VxA
Alx/y],T = A M= A, Alx/t],3xA
XA, T = A M= A,3xA

where in RY and L3, y € FV(I,A), y = x or y € FV(A).

We denote by
F. M= A

that there is a deduction of the sequent ' = A in G3c.
Note that
Fc = Aifandonly if I . A.



Structural rules

The structural rules (weakening, contraction and cut) are
admissible in G3c and in G3i.

Those structural rules are formulated in G3i as follows:

r==C¢ AAT=C

rascWV armsc KO

r=A Al'=C
rr=~«=C

ut



Some conservative extension results

Definition

We define simultaneously classes Ro, Jo, Qm and K, (m = 1,2)

of formulas as follows. Let P range over atomic formulas and *, R
and R’ over Ry, J and J' over Jo, Qm and Q), over Qp,, and K,
and K], over K, (m=1,2). Then Ro, Jo, Qm and K,

(m = 1,2) are inductively generated by the clauses

> LRAR,RV R, YxR,3xR, ) — R € Ro:
LP. NS IV I Yx). IS R— J € Ty
P,R, Q1A Qi,Q1V Qf,3xQ1,J — Q1 € Q1;
P,R, Q2 N Q3,YxQ2,3xQ2, J = Q2 € Qo;

Iy K A K] XK, Qm — K € Ky (m=1,2).

v

v

v

v



Some conservative extension results

Proposition
If eitherT C Q1 orT C Qs, A CRg and ¥ C Jo, then
Fc LA =% implies i T —— A - Y = .

Proof.
By induction on the depth of a deduction of F. I, A = X



Some conservative extension results

Theorem (I 2011)

Foreach m=1,2, ifT C Q,, and A€ K., then . T = A implies
= A

Proof.

By induction on the definition of KCp,.

Suppose that A€ Jpand . ' = A. Then ; T, A= %, by
Proposition. Therefore, since A is free for x in I, =, A, %, we have

HTLAS A= A

and so ;I = A. O



Positive and negative occurrences

» C occurs positively in C;

» if C occurs positively and negatively in A or in B, then C

occurs positively and negatively, respectively, in AA B and in
AV B;

» if C occurs negatively in A or positively in B, and positively in
A or negatively in B, then C occurs positively, and negatively,
respectively, in A — B;

» if C occurs positively and negatively in A, then C occurs
positively and negatively, respectively, in ¥xA and in 3xA.



Strictly positive occurrences

» C occurs strict positively in C;

» if C occurs strict positively in A or in B, then C occurs strict
positively in AA B and in AV B;

» if C occurs strict positively in B, then C occurs strict
positively in A — B;

» if C occurs strict positively in A, then C occurs strict
positively in VxA and in 3xA.



Some conservative extension results

Lemma
If=; %" [, A = A, where x" stands for n copies of x, and x does
not occur in I' negatively nor positively in A, then ;I = A.

Proof.
By induction on the depth of a deduction of
F; *n, I, A = A O

Lemma

If=; T, = Alx/y], <A = %, where * does not occur in the
antecedent negatively, there is no strictly positive occurrence of ¥/
inT,andy ¢ FV(T), y = x or y ¢ FV(A), then

Fi T, VXA, A = x.

Proof.
By induction on the depth of a deduction of
Fi T, Alx/y], —A = . O



Some conservative extension results

Lemma

If=; T, = A, = A = %, where x does not occur in the antecedent
negatively, and there is no strictly positive occurrence of V in T,
then either =i I = A, orF; [, A = .

Proof.
By induction on the depth of a deduction of

i T, A, A = O

Corollary

Ift=i T, = Alx/y], <A = %, where x does not occur in the
antecedent negatively, there is no strictly positive occurrence of V
inT,andy ¢ FV(T), y = x ory ¢ FV(A), then

Fi T, VXA, A = %,



