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Language

We use the standard language of (many-sorted) first-order
predicate logic based on

I (individual) variables v0, v1, . . .;

I (individual) constants c0, c1, . . .;

I predicate (relation) symbols R0,R1, . . .;

I function symbols f0, f1, . . .;

I primitive logical operators ∧,∨,→,⊥,∀,∃.



Terms

Terms are defined inductively by

I variables and constants are terms;

I if t1, . . . , tn are terms and f is an (n-ary) function symbol,
then f (t1, . . . , tn) is a term.

The set FV(t) of free variables of a term t is defined inductively
by

I FV(x) := {x} and FV(c) := ∅;
I FV(f (t1, . . . , tn)) := FV(t1) ∪ . . . ∪ FV(tn).



Formulas

Formulas are defined inductively by

I ⊥ is a formula;

I if t1, . . . , tn are terms and R is an (n-ary) predicate symbol,
then R(t1, . . . , tn) is an (atomic) formula;

I if A and B are formulas, then (A ∧ B), (A ∨ B) and (A→ B)
are formulas;

I if A is a formula and x is a variable, then (∀xA) and (∃xA) are
formulas.

We introduce the abbreviations

I ¬A ≡ A→⊥;

I A↔ B ≡ (A→ B) ∧ (B → A).



Formulas

The set FV(A) of free variables of a formula A is defined
inductively by

I FV(⊥) := ∅;
I FV(R(t1, . . . , tn)) := FV(t1) ∪ . . . ∪ FV(tn);

I FV(A ◦ B) := FV(A) ∪ FV(B), where ◦ ∈ {∧,∨,→};
I FV(∀xA) := FV(∃xA) := FV(A) \ {x}.

For a set Γ of formulas, let FV(Γ) :=
⋃
{FV(A) | A ∈ Γ}.



Substitution (1)

Let s and t be terms, and let x be a variable. Then define a term
s[x/t] by

I x [x/t] ≡ t, y [x/t] ≡ y (x 6≡ y), and c[x/t] ≡ c ;

I (f (t1, . . . , tn))[x/t] ≡ f (t1[x/t], . . . , tn[x/t]).

Let A be a formula, let t be a term, and let x be a variable. Then
define a formula A[x/t] by

I ⊥[x/t] ≡ ⊥;

I R(t1, . . . , tn)[x/t] ≡ R(t1[x/t], . . . , tn[x/t]);

I (A ◦ B)[x/t] ≡ (A[x/t] ◦ B[x/t]), where ◦ ∈ {∧,∨,→};
I (∀yA)[x/t] ≡ ∀y(A[x/t]) and (∃yA)[x/t] ≡ ∃y(A[x/t]), if

x 6≡ y , and (∀yA)[x/t] ≡ ∀yA and (∃yA)[x/t] ≡ ∃yA,
otherwise.



Free for (1)

Let A be a formula, let t be a term, and let x be a variable. Then
define a predicate t is free for x in A by

I t is free for x in ⊥;

I t is free for x in R(t1, . . . , tn);

I if t is free for x in A and B, then t is free for x in (A ◦ B),
where ◦ ∈ {∧,∨,→};

I if t is free for x in A, x 6≡ y and y 6∈ FV(t), then t is free for
x in ∀yA and ∃yA.



Substitution (2)

We introduce

I a proposition symbol (0-ary predicate symbol) ∗ acting as a
place holder.

I an abbreviation ¬∗A ≡ A→∗.

Let A and C be formulas. Then define a formula A[∗/C ] by

I ⊥[∗/C ] ≡ ⊥;

I ∗[∗/C ] ≡ C and (R(t1, . . . , tn))[∗/C ] ≡ R(t1, . . . , tn);

I (A ◦ B)[∗/C ] ≡ (A[∗/C ] ◦ B[∗/C ]), where ◦ ∈ {∧,∨,→};
I (∀xA)[∗/C ] ≡ ∀x(A[∗/C ]) and (∃xA)[∗/C ] ≡ ∃x(A[∗/C ]),



Free for (2)

Let A and C be formulas. Then define a predicate C is free for ∗
in A by

I C is free for ∗ in ⊥;

I C is free for ∗ in ∗ and R(t1, . . . , tn);

I if C is free for ∗ in A and B, then C is free for ∗ in (A ◦ B),
where ◦ ∈ {∧,∨,→};

I if C is free for ∗ in A and x 6∈ FV(C ), then C is free for ∗ in
∀xA and ∃xA.



Natural Deduction System

We shall use D, possibly with a subscript, for arbitrary deduction.

We write
Γ
D
A

to indicate that D is deduction with conclusion A and assumptions
Γ.



Minimal logic

Deductions are inductively defined as follows.

Basis: For each formula A,
A

is a deduction with conclusion A and assumptions {A}.

Induction step:



Minimal logic

I if
Γ1
D1
A

and
Γ2
D2
B

are deductions, then

Γ1
D1
A

Γ2
D2
B

A ∧ B
∧I

is a deduction with conclusion A∧B and assumptions Γ1 ∪ Γ2;



Minimal logic

I if
Γ
D

A ∧ B
is a deduction, then

Γ
D

A ∧ B
A

∧Er

Γ
D

A ∧ B
B

∧El

are deductions with conclusions A and B, respectively, and
assumptions Γ;



Minimal logic

I if
Γ
D
A

is a deduction, then

Γ
D
A

A ∨ B
∨Ir

Γ
D
A

B ∨ A
∨Il

are deductions with conclusions A∨B and B ∨A, respectively,
and assumptions Γ;



Minimal logic

I if
Γ1
D1

A ∨ B
,

Γ2
D2
C

and
Γ3
D3
C

are deductions, then

Γ1
D1

A ∨ B

Γ2
D2
C

Γ3
D3
C

C
∨E

is a deduction with conclusion C and assumptions
Γ1 ∪ (Γ2 \ {A}) ∪ (Γ3 \ {B});



Minimal logic

I if
Γ
D
B

is a deduction, then

Γ
D
B

A→ B
→I

is a deduction with conclusion A→ B and assumptions
Γ \ {A}.



Minimal logic

I if
Γ1
D1

A→ B
and

Γ2
D2
A

are deductions, then

Γ1
D1

A→ B

Γ2
D2
A

B
→E

is a deduction with conclusion B and assumptions Γ1 ∪ Γ2.



Minimal logic

I if
Γ
D
A

is a deduction, x 6∈ FV(Γ), and y ≡ x or y 6∈ FV(A),

then
Γ
D
A

∀yA[x/y ]
∀I

is a deduction with conclusion ∀yA[x/y ] and assumptions Γ.



Minimal logic

I if
Γ
D
∀xA

is a deduction and t is free for x in A, then

Γ
D
∀xA

A[x/t]
∀E

is a deduction with conclusion A[x/t] and assumptions Γ.



Minimal logic

I if
Γ
D

A[x/t]
is a deduction, then

Γ
D

A[x/t]

∃xA ∃I

is a deduction with conclusion ∃xA and assumptions Γ.



Minimal logic

I if
Γ1
D1

∃yA[x/y ]
and

Γ2
D2
C

are deductions, x 6∈ FV(C ),

x 6∈ FV(Γ2 \ {A}), and y ≡ x or y 6∈ FV(A), then

Γ1
D1

∃yA[x/y ]

Γ2
D2
C

C
∃E

is a deduction with conclusion C and assumptions
Γ1 ∪ (Γ2 \ {A}).



Minimal logic

We denote by
Γ `m A

that there is a deduction in minimal logic with conclusion A and
assumptions ∆ which is a subset of Γ.



Example (1)

[¬¬A]

[¬¬(A→ B)]

[¬B]

[A→ B] [A]

B
→E

⊥ →E

¬(A→ B)
→I

⊥ →E

¬A →I

⊥ →E

¬¬B →I

¬¬A→¬¬B →I

¬¬(A→ B)→ (¬¬A→¬¬B)
→I



Example (2)

[¬∗¬∗A]

[¬∗¬∗(A→ B)]

[¬∗B]

[A→ B] [A]

B
→E

∗ →E

¬∗(A→ B)
→I

∗ →E

¬∗A
→I

∗ →E

¬∗¬∗B
→I

¬∗¬∗A→¬∗¬∗B
→I

¬∗¬∗(A→ B)→ (¬∗¬∗A→¬∗¬∗B)
→I



Example (3)

[¬∗¬∗A]

[¬∗¬(A→ B)]

[¬B]

[A→ B] [A]

B
→E

⊥ →E

¬(A→ B)
→I

∗ →E

¬∗A
→I

∗ →E

¬∗¬B
→I

¬∗¬∗A→¬∗¬B
→I

¬∗¬(A→ B)→ (¬∗¬∗A→¬∗¬B)
→I



Intuitionistc logic

Intuitionistic logic is obtained from minimal logic by adding the
intuitionistic absurdity rule.

I if
Γ
D
⊥

is a deduction, then

Γ
D
⊥
A
⊥i

is a deduction with conclusion A and assumptions Γ.



Intuitionistc logic

We denote by
Γ `i A

that there is a deduction in intuitionistic logic with conclusion A
and assumptions in Γ.

Note that
Γ `m A⇒ Γ `i A.



Example (4)

[¬¬A→¬¬B]

[¬(A→ B)]

[¬A] [A]

⊥
B
⊥i

A→ B

⊥
¬¬A

¬¬B

[¬(A→ B)]

[B]

A→ B

⊥
¬B

⊥
¬¬(A→ B)

(¬¬A→¬¬B)→¬¬(A→ B)



Example (5)

[¬∗¬A→¬∗¬∗B]

[¬∗(A→ B)]

[¬A] [A]

⊥
B
⊥i

A→ B
∗
¬∗¬A

¬∗¬∗B

¬∗(A→ B)]

[B]

A→ B
∗
¬∗B

∗
¬∗¬∗(A→ B)

(¬∗¬A→¬∗¬∗B)→¬∗¬∗(A→ B)



Classical logic

Classical logic is obtained from intuitionistic logic by strengthening
the absurdity rule to the classical absurdity rule.

I if
Γ
D
⊥

is a deduction, then

Γ
D
⊥
A
⊥c

is a deduction with conclusion A and assumption Γ \ {¬A}.



Classical logic

We denote by
Γ `c A

that there is a deduction in classical logic with the conclusion A
and the assumptions in Γ.

Note that
Γ `i A⇒ Γ `c A.



Examples (6)

[¬¬A] [¬A]

⊥ →E

A
⊥c

¬¬A→ A
→I

[¬(A ∨ ¬A)]

[¬(A ∨ ¬A)]

[A]

A ∨ ¬A ∨Ir

⊥ →E

¬A →I

A ∨ ¬A ∨Il

⊥ →E

A ∨ ¬A ⊥c



The Gödel-Gentzen negative translation

Definition
The Gödel-Gentzen negative translation (·)g on the formulas of
predicate logic is defined inductively by

I ⊥g ≡ ⊥;

I Pg ≡ ¬¬P for P atomic;

I (A ∧ B)g ≡ Ag ∧ Bg ;

I (A ∨ B)g ≡ ¬(¬Ag ∧ ¬Bg );

I (A→ B)g ≡ Ag → Bg ;

I (∀xA)g ≡ ∀xAg ;

I (∃xA)g ≡ ¬∀x¬Ag .



The Gödel-Gentzen negative translation

Lemma

I `m ¬A↔¬¬¬A,
I `m ¬¬A ∧ ¬¬B ↔¬¬(A ∧ B),

I `m ¬¬(A→ B)→ (¬¬A→¬¬B),

I `m ∀x¬¬A↔¬¬∀x¬¬A.



The Gödel-Gentzen negative translation

Lemma
`m Ag ↔¬¬Ag .

Proof.
By induction on the complexity of A.
Basis: `m ⊥↔¬¬⊥ and `m ¬¬P ↔¬¬P.
Induction step:

I `m Ag ∧ Bg ↔¬¬Ag ∧ ¬¬Bg ↔¬¬(Ag ∧ Bg ).

I `m ¬(¬Ag ∧ ¬Bg )↔¬¬¬(¬Ag ∧ Bg ).

I `m (Ag→Bg )→¬¬(Ag→Bg )→(¬¬Ag→¬¬Bg )↔(Ag→Bg ).

I `m ∀xAg ↔∀x¬¬Ag ↔¬¬∀x¬¬Ag ↔¬¬∀xAg .

I `m ¬∀¬Ag ↔¬¬¬∀x¬Ag .



The Gödel-Gentzen negative translation

Proposition

If Γ `c A, then Γg `m Ag , where Γg = {Bg | B ∈ Γ}.

Proof.
By induction on the depth of a deduction of Γ `c A.
Basis: A is translated into Ag .
Induction step:



The Gödel-Gentzen negative translation

D
A

A ∨ B
∨Ir

is transfered into

Dg

Ag

[¬Ag ∧ ¬Bg ]

¬Ag

⊥
(A ∨ B)g

→Ir



The Gödel-Gentzen negative translation

D1
A ∨ B

[A]
D2
C

[B]
D3
C

C
∨E

is translated into

....
¬¬C g → C g

Dg
1

(A ∨ B)g

[¬C g ]

[Ag ]
Dg

2
C g

⊥
¬Ag

[¬C g ]

[Bg ]
Dg

3
C g

⊥
¬Bg

¬Ag ∧ ¬Bg ∧I

⊥
¬¬C g

C g



The Gödel-Gentzen negative translation

D
A[x/t]

∃xA ∃I

is transfered into

Dg

(A[x/t])g
[∀x¬Ag ]

¬(A[x/t])g

⊥
(∃xA)g

→I



The Gödel-Gentzen negative translation

D1

∃yA[x/y ]

[A]
D2
C

C
∃E

is translated into

....
¬¬C g → C g

Dg
1

(∃yA[x/y ])g

[¬C g ]

[Ag ]
Dg

2
C g

⊥
¬Ag

∀y¬(A[x/y ])g
∀I

⊥
¬¬C g

C g



The Gödel-Gentzen negative translation

[¬A]
D
⊥
A
⊥c

is translated into

....
¬¬Ag → Ag

[¬Ag ]
Dg

⊥
¬¬Ag →I

Ag →E



Negative formulas

Definition
We define the class N of negative formulas as follows. Let P range
over atomic formulas, and N and N ′ over N . Then N is
inductively generated by the clause

⊥,¬P,N ∧ N ′,N → N ′, ∀xN ∈ N .



Negative formulas

Lemma
If N ∈ N , then `m N ↔ Ng .

Proof.
By induction on the definition of N .
Basis: `m ⊥↔⊥ and `m ¬P ↔¬¬¬P.
Induction step:

I `m N ∧ N ′↔ Ng ∧ N ′g .

I `m (N → N ′)↔ (Ng → N ′g ).

I `m ∀xN ↔∀xNg .



The conservative extension result

Theorem
If Γ ⊆ N and A ∈ N , then Γ `c A implies Γ `m A.

Proof.
Suppose that Γ ⊆ N and A ∈ N . Then Γ `m Bg for each B ∈ Γ
and Ag `m A by Lemma. Therefore, if Γ `c A, then Γg `m Ag ,
and so Γ `m A.



Leivant’s conservative extension result

Definition
We define simultaneously classes S (spreading), W (wiping) and I
(isolating) of formulas as follows. Let P range over atomic
formulas, S and S ′ over S, W and W ′ over W, and I and I ′ over
I. Then S, W and I are inductively generated by the clauses

I ⊥,P, S ∧ S ′,S ∨ S ′,∀xS ,∃xS , I → S ∈ S;

I ⊥,W ∧W ′,∀xW , S →W ∈ W;

I P,W , I ∧ I ′, I ∨ I ′,∃xI , S → I ∈ I.

Note that
N ⊆ S ∩W.



Leivant’s conservative extension result

Lemma

I `m ¬(¬A ∧ ¬B)↔¬¬(A ∨ B),

I `m (¬¬A→¬¬B)↔ (A→¬¬B),

I `i ¬¬(A→ B)↔ (¬¬A→¬¬B),

I `m ¬∀x¬A↔¬¬∃xA.



Leivant’s conservative extension result

Proposition

I If A ∈ S, then `i A→ Ag ;

I If A ∈ W, then `i Ag → A;

I If A ∈ I, then `i Ag →¬¬A.



Leivant’s conservative extension result

Proof.
By simultaneous induction on the definition of S, W and I.
Basis: `m ⊥→¬¬⊥ and `m P →¬¬P.
Induction step:

I `i S ∨ S ′→¬¬(Sg ∨ S ′g )↔¬(¬Sg ∧ ¬S ′g ).

I `i ∃xS →¬¬∃xSg ↔¬∀x¬Sg .

I `i (I → S)→ (¬¬I →¬¬S)→ (I g →¬¬Sg )↔ (I g → Sg ).

I `i ¬(¬I g ∧ ¬I ′g )→¬(¬I ∧ ¬I ′)↔¬¬(I ∨ I ′).

I `i ¬∀x¬I g →¬∀x¬I ↔¬¬∃xI .
I `i (Sg → I g )→ (S →¬¬I )↔¬¬(S → I ).



Leivant’s conservative extension result

Theorem (Leivant 1985)

If Γ ⊆ S and A ∈ W, then Γ `c A implies Γ `i A.

Proof.
Suppose that Γ ⊆ S and A ∈ W. Then Γ `i Bg for each B ∈ Γ
and Ag `i A by Proposition. Therefore, if Γ `c A, then Γg `m Ag ,
and so Γ `i A.



A variant of the Gödel-Gentzen translation

Definition
The ∗-negative translation (·)∗ on the formulas of predicate logic is
defined by A∗ ≡ Ag [⊥/∗], that is,

I ⊥∗ ≡ ∗;
I P∗ ≡ ¬∗¬∗P for P atomic;

I (A ∧ B)∗ ≡ A∗ ∧ B∗;

I (A ∨ B)∗ ≡ ¬∗(¬∗A∗ ∧ ¬∗B∗);

I (A→ B)∗ ≡ A∗→ B∗;

I (∀xA)∗ ≡ ∀xA∗;
I (∃xA)∗ ≡ ¬∗∀x¬∗A∗.



A variant of the Gödel-Gentzen translation

Lemma
`m A∗↔¬∗¬∗A∗.

Proof.
Note that ⊥ is treated as an arbitrary proposition letter in minimal
logic and A∗↔¬∗¬∗A∗ ≡ (Ag ↔¬¬Ag )[⊥/∗]. Since
`m Ag ↔¬¬Ag , we have `m A∗↔¬∗¬∗A∗.

Proposition

If Γ `c A, then Γ∗ `m A∗, where Γ∗ = {B∗ | B ∈ Γ}.

Proof.
Since Γ∗ ≡ Γg [⊥/∗] and A∗ ≡ Ag [⊥/∗], if Γ `c A, then Γg `m Ag ,
and hence Γ∗ `m A∗.



Another conservative extension result

Definition
We define simultaneously classes Q, R, J and K of formulas as
follows. Let P range over atomic formulas, Q and Q ′ over Q, R
and R ′ over R, J and J ′ over J , and K and K ′ over K. Then Q,
R, J and K are inductively generated by the clauses

I ⊥,P,Q ∧ Q ′,Q ∨ Q ′, ∀xQ, ∃xQ, J → Q ∈ Q;

I ⊥,R ∧ R ′,R ∨ R ′, ∀xR, J → R ∈ R;

I ⊥,P, J ∧ J ′, J ∨ J ′,∃xJ,R → J ∈ J ;

I J,K ∧ K ′,∀xK ,Q→ K ∈ K.



Another conservative extension result

Lemma

I `m (A→ B)→ (¬∗¬∗A→¬∗¬∗B),

I `m (¬∗¬∗A→¬∗¬∗B)↔ (A→¬∗¬∗B),

I `m ¬∗¬(A→ B)→ (¬∗¬∗A→¬∗¬B),

I `i (¬∗¬A→¬∗¬∗B)→¬∗¬∗(A→ B).



Another conservative extension result

Proposition

I If A ∈ Q, then `i A→ A∗;

I If A ∈ R, then `i ¬∗¬A→ A∗;

I If A ∈ J , then `i A∗→¬∗¬∗A.



Another conservative extension result

Proof.
By simultaneous induction on the definition of Q, R and J .
Basis: `i ⊥→ ∗, `m P →¬∗¬∗P, `m ¬∗¬⊥→ ∗, and
`m ∗→ ¬∗¬∗⊥.
Induction step:

I `i (J→Q)→(¬∗¬∗J→¬∗¬∗Q)↔(J∗→¬∗¬∗Q∗)↔(J∗→Q∗),

I `i ¬∗¬(J → R)→ (¬∗¬∗J →¬∗¬R)→ (J∗→ R∗),

I `i (R∗→ J∗)→ (¬∗¬R →¬∗¬∗)→¬∗¬∗(R → J).



Another conservative extension result

A set Γ of formulas is closed under (·)∗ if Γ `i A∗[∗/C ] for each
A ∈ Γ and C being free for ∗ in A∗.

Theorem (I 2000)

If Γ is a set of formulas closed under (·)∗ and A ∈ K, then Γ `c A
implies Γ `i A.

Corollary

If Γ ⊆ Q and A ∈ K, then Γ `c A implies Γ `i A.



Another conservative extension result

Proof of Theorem.
By induction on the definition of K.
Basis: Suppose that Γ `c J and J ∈ J . Then Γ∗ `m J∗, and hence
Γ∗ `i ¬∗¬∗J. Therefore Γ∗[∗/J] `i (¬∗¬∗J)[∗/J] ≡ (J → J)→ J,
and, since Γ is closed under (·)∗, we have Γ `i J.
Induction step:

I Suppose that Γ `c K ∧ K ′. Then Γ `c K and Γ `c K ′, and
hence Γ `i K and Γ `i K ′ by induction hypothesis. Thus
Γi ` K ∧ K ′.

I Suppose that Γ `c ∀xK . Then Γ `c K , and hence Γ `i K by
induction hypothesis. Thus Γi ` ∀xK .

I Suppose that Γ `c Q→ K . Then Γ ∪ {Q} `c K , and
therefore, since Γ ∪ {Q} is closed under (·)∗, we have
Γ ∪ {Q} `i K by induction hypothesis. Thus Γ `i Q→ K .



Application (Barr’s theorem)

Definition
We define classes G and GI of geometric formulas and geometiric
implications, respectively, as follows. Let P range over atomic
formulas, G and G ′ over G and GI over GI . Then G and GI are
inductively generated by the clauses

I ⊥,>,P,G ∧ G ′,G ∨ G ′,∃xG ∈ G;

I G → G ′, ∀xGI ∈ GI ,
where > ≡ ⊥→⊥.

Theorem (Barr’s thoerem)

If Γ ⊆ GI and A ∈ GI , then Γ `c A implies Γ `i A.

Proof.
Note that G ⊆ Q ∩ J , and hence GI ⊆ Q ∩K.



Application (first-order arithmetic)

Theorem
If A ∈ K, then PA ` A implies HA ` A.

Proof.
The axioms and the axiom schema of first-order arithmetic are
closed under (·)∗.

Corollary

PA is conservative over HA with respect to Π0
2 formulas, and,

moreover, the following form of formulas.

∀x [∀u1∃v1 . . . ∀un∃vn(s(~u, ~v , x) = 0)→∃y(t(x , y) = 0)].

Proof.
Π0
2 formulas and the formulas of the above form are in K.



Application (first-order arithmetic)

Moreover, we can extend the class R (and hence the classes J , Q
and K) by the clause

⊥,P,R ∧ R ′,R ∨ R ′,∀xR, J → R ∈ R,

because, for atomic P, since HA ` P ∨ ¬P, we have
HA ` ¬∗¬P → P∗, and the following proposition holds for the
extended classes in HA.

Proposition

I If A ∈ Q, then HA ` A→ A∗;

I If A ∈ R, then HA ` ¬∗¬A→ A∗;

I If A ∈ J , then HA ` A∗→¬∗¬∗A.



Schwichtenberg’s question

Helmut Schwichtenberg has asked about a possibility of extending
the classes R and J , defined by the clauses

I ⊥,R ∧ R ′,R ∨ R ′, ∀xR, J → R ∈ R;

I ⊥,P, J ∧ J ′, J ∨ J ′,∃xJ,R → J ∈ J ,

by introducing ∃ and ∀ in the clauses, respectively, to the classes
R0 and J0, defined by

I ⊥,R ∧ R ′,R ∨ R ′, ∀xR,∃xR, J → R ∈ R0;

I ⊥,P, J ∧ J ′, J ∨ J ′,∀xJ,∃xJ,R → J ∈ J0.



Intuitionistic sequent calculus G3i

P, Γ⇒ P Ax ⊥, Γ⇒ A L⊥
A,B, Γ⇒ C

A ∧ B, Γ⇒ C
L∧ Γ⇒ A Γ⇒ B

Γ⇒ A ∧ B
R∧

A, Γ⇒ C B, Γ⇒ C

A ∨ B, Γ⇒ C
L∨ Γ⇒ A

Γ⇒ A ∨ B
R∨1 Γ⇒ B

Γ⇒ A ∨ B
R∨2

A→ B, Γ⇒ A B, Γ⇒ C

A→ B, Γ⇒ C
L→

A, Γ⇒ B

Γ⇒ A→ B
R→

where in Ax, P is atomic.



Intuitionistic sequent calculus G3i

∀xA,A[x/t], Γ⇒ C

∀xA, Γ⇒ C
L∀

Γ⇒ A[x/y ]

Γ⇒ ∀xA R∀

A[x/y ], Γ⇒ C

∃xA, Γ⇒ C
L∃

Γ⇒ A[x/t]

Γ⇒ ∃xA R∃

where in R∀, y 6∈ FV(Γ), y ≡ x or y 6∈ FV(A), and in L∃,
y 6∈ FV(Γ,C ), y ≡ x or y 6∈ FV(A).

We denote by
`i Γ⇒ A

that there is a deduction of the sequent Γ⇒ A in G3i.
Note that

`i Γ⇒ A if and only if Γ `i A.



Classical sequent calculus G3c

P, Γ⇒ ∆,P Ax ⊥, Γ⇒ ∆ L⊥
A,B, Γ⇒ ∆

A ∧ B, Γ⇒ ∆
L∧

Γ⇒ ∆,A Γ⇒ ∆,B

Γ⇒ ∆,A ∧ B
R∧

A, Γ⇒ ∆ B, Γ⇒ ∆

A ∨ B, Γ⇒ ∆
L∨

Γ⇒ ∆,A,B

Γ⇒ ∆,A ∨ B
R∨

Γ⇒ ∆,A B, Γ⇒ ∆

A→ B, Γ⇒ ∆
L→

A, Γ⇒ ∆,B

Γ⇒ ∆,A→ B
R→

where in Ax, P is atomic.



Classical sequent calculus G3c

∀xA,A[x/t], Γ⇒ ∆

∀xA, Γ⇒ ∆
L∀

Γ⇒ ∆,A[x/y ]

Γ⇒ ∆,∀xA R∀

A[x/y ], Γ⇒ ∆

∃xA, Γ⇒ ∆
L∃

Γ⇒ ∆,A[x/t], ∃xA
Γ⇒ ∆,∃xA R∃

where in R∀ and L∃, y 6∈ FV(Γ,∆), y ≡ x or y 6∈ FV(A).

We denote by
`c Γ⇒ ∆

that there is a deduction of the sequent Γ⇒ ∆ in G3c.
Note that

`c Γ⇒ A if and only if Γ `c A.



Structural rules

The structural rules (weakening, contraction and cut) are
admissible in G3c and in G3i.

Those structural rules are formulated in G3i as follows:

Γ⇒ C
Γ,∆⇒ C

LW
A,A, Γ⇒ C

A, Γ⇒ C
LC

Γ⇒ A A, Γ′ ⇒ C

Γ, Γ′ ⇒ C
Cut

.



Some conservative extension results

Definition
We define simultaneously classes R0, J0, Qm and Km (m = 1, 2)
of formulas as follows. Let P range over atomic formulas and ∗, R
and R ′ over R0, J and J ′ over J0, Qm and Q ′m over Qm, and Km

and K ′m over Km (m = 1, 2). Then R0, J0, Qm and Km

(m = 1, 2) are inductively generated by the clauses

I ⊥,R ∧ R ′,R ∨ R ′, ∀xR,∃xR, J → R ∈ R0;

I ⊥,P, J ∧ J ′, J ∨ J ′,∀xJ,∃xJ,R → J ∈ J0;

I P,R,Q1 ∧ Q ′1,Q1 ∨ Q ′1, ∃xQ1, J → Q1 ∈ Q1;

I P,R,Q2 ∧ Q ′2,∀xQ2,∃xQ2, J → Q2 ∈ Q2;

I J,Km ∧ K ′m, ∀xKm,Qm→ Km ∈ Km (m = 1, 2).



Some conservative extension results

Proposition

If either Γ ⊆ Q1 or Γ ⊆ Q2, ∆ ⊆ R0 and Σ ⊆ J0, then
`c Γ,∆⇒ Σ implies `i Γ,¬∗¬∆,¬∗Σ⇒ ∗.

Proof.
By induction on the depth of a deduction of `c Γ,∆⇒ Σ.



Some conservative extension results

Theorem (I 2011)

For each m = 1, 2, if Γ ⊆ Qm and A ∈ Km, then `c Γ⇒ A implies
`i Γ⇒ A.

Proof.
By induction on the definition of Km.
Suppose that A ∈ J0 and `c Γ⇒ A. Then `i Γ,¬∗A⇒ ∗, by
Proposition. Therefore, since A is free for ∗ in Γ,¬∗A, ∗, we have

`i Γ,A→ A⇒ A,

and so `i Γ⇒ A.



Positive and negative occurrences

I C occurs positively in C ;

I if C occurs positively and negatively in A or in B, then C
occurs positively and negatively, respectively, in A ∧ B and in
A ∨ B;

I if C occurs negatively in A or positively in B, and positively in
A or negatively in B, then C occurs positively, and negatively,
respectively, in A→ B;

I if C occurs positively and negatively in A, then C occurs
positively and negatively, respectively, in ∀xA and in ∃xA.



Strictly positive occurrences

I C occurs strict positively in C ;

I if C occurs strict positively in A or in B, then C occurs strict
positively in A ∧ B and in A ∨ B;

I if C occurs strict positively in B, then C occurs strict
positively in A→ B;

I if C occurs strict positively in A, then C occurs strict
positively in ∀xA and in ∃xA.



Some conservative extension results

Lemma
If `i ∗n, Γ,¬∗∆⇒ A, where ∗n stands for n copies of ∗, and ∗ does
not occur in Γ negatively nor positively in A, then `i Γ⇒ A.

Proof.
By induction on the depth of a deduction of
`i ∗n, Γ,¬∗∆⇒ A.

Lemma
If `i Γ,¬∗A[x/y ],¬∗∆⇒ ∗, where ∗ does not occur in the
antecedent negatively, there is no strictly positive occurrence of ∀
in Γ, and y 6∈ FV(Γ), y ≡ x or y 6∈ FV(A), then
`i Γ,¬∗∀xA,¬∗∆⇒ ∗.

Proof.
By induction on the depth of a deduction of
`i Γ,¬∗A[x/y ],¬∗∆⇒ ∗.



Some conservative extension results

Lemma
If `i Γ,¬∗A,¬∗∆⇒ ∗, where ∗ does not occur in the antecedent
negatively, and there is no strictly positive occurrence of ∨ in Γ,
then either `i Γ⇒ A, or `i Γ,¬∗∆⇒ ∗.

Proof.
By induction on the depth of a deduction of
`i Γ,¬∗A,¬∗∆⇒ ∗.

Corollary

If `i Γ,¬∗A[x/y ],¬∗∆⇒ ∗, where ∗ does not occur in the
antecedent negatively, there is no strictly positive occurrence of ∨
in Γ, and y 6∈ FV(Γ), y ≡ x or y 6∈ FV(A), then
`i Γ,¬∗∀xA,¬∗∆⇒ ∗.


