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Compositional Reasoning

Example. Combining Probabilities and Non-Determinism
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Simple Segala Systems
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Alternating Systems

Coalgebraic Interpretation

C → PA(D(C)) C → PA(C) + D(C)

Semantics of Combination. Functor Composition – ingredients represent features.
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Logics for Combined Systems

Simple Segala Systems: C → PA(D(C))

Fn ∋ φ ::= ⊤ | φ1 ∧ φ2 | ¬φ | ✷aψ (nondeterministic formulas; ψ ∈ Fu, a ∈ A)

Fu ∋ ψ ::= ⊤ | ψ1 ∧ ψ2 | ¬ψ | Lpφ (probabilistic formulas; φ ∈ Fn, p ∈ [0, 1] ∩Q).

Alternating Systems: C → PA(C) + D(C)

Fo ∋ ρ ::= ⊤ | ρ1 ∧ ρ2 | ¬ρ | φ+ ψ (alternating formulas; φ ∈ Fu, ψ ∈ Fn)

Fu ∋ φ ::= ⊤ | φ1 ∧ φ2 | ¬φ | Lpρ (probabilistic formulas; ρ ∈ Fo, p ∈ [0, 1] ∩Q)

Fn ∋ ψ ::= ⊤ | ψ1 ∧ ψ2 | ¬ψ2 | ✷aρ (nondeterministic formulas; ρ ∈ Fo, a ∈ A)

Languages

• multisorted, one sort per feature

Language Composition

• mimics functor composition
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Features and Gluings by Example

Features. Modalities and Axioms of the Building Blocks

• N, nondeterminism: unary modalities ✷a for a ∈ A

• U, uncertainty: unary modalities Lp for p ∈ [0, 1]

• C, choice: binary modality +

Rule(schema) for C

(
∧m

i=1 αi →
∨n

j=1 βj) : 1 (
∧m

i=1 γi →
∨n

j=1 δj) : 2
∧m

i=1(αi + γi) →
∨n

j=1(βj + δj)
(m,n ≥ 0)

Gluings. Specification of Feature Composition

Simple Segala Systems

G1(a) = N(U(a))

Alternating Systems

G2(a) = C(U(a),N(a))
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Features and Gluings, Formally

Defn. An n-ary feature F = (Λ,R) comprises

• a set Λ of modal operators L : i1, . . . , ik where 1 ≤ i1, . . . , ik ≤ n are

argument sorts

• a set R of one-step rules of the form (φ1; . . . ;φn)/ψ,where

– the φi are purely propositional

– ψ is a clause over ♥(p1, . . . , pk) where ♥ : i1, . . . , ik ∈ Λ and pj ∈ Vij

Defn. Feature expressions are terms built with features as function symbols

t ::= a | F(t1, . . . , tn) a ∈ S, F ∈ Φ n-ary.

A gluing of Φ over S is a family G = (ta)a∈S of feature expressions.
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Semantics

Defn. A structure for an n-ary feature F = (Λ,R) consists of

• a functor JFK : Setn → Set

• an assignment of predicate liftings

J♥KX : P(Xi1)× · · · × P(Xik) → P(JFKX)

indexed overX = (X1, . . . , Xn) ∈ Setn to operators ♥ : i1, . . . , ik ∈ Λ

Easy Consequence. Every gluing G = (ta)a∈S gives rise to a functor

JGK : SetS → SetS

by compositionality.

Idea. Given a gluing G, its models are S-sorted JGK-coalgebras

(Cs)s∈S

(γs)s∈S
// JGK(Cs)s∈S

(previous definitions apply on a pre-component basis)
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Examples

Nondeterminism over a set A of action as unary feature N with ✷a : 1

JNKX = PA(X) with J✷aKX(B) = {f : A→ P(X) | f(a) ⊆ B}

(in the same way, all previous logics arise as features)

Choice as binary feature C with + : 1, 2

JCK(X, Y ) = X + Y with J+KX,Y (A,B) = A+B

Fusion as a binary feature P with πi : i for i = 1, 2 and

J×K(X, Y ) = X × Y and JπiKX1,X2
(A) = {(x1, x2) ∈ X1 ×X2 | xi ∈ A}

Simple Segala Systems

Ja 7→ N(U(a))KX = PA(D(X))

Alternating Systems

Ja 7→ C(U(a),N(a))KX = PA(X)+D(X)
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The Logic of a Gluing

Types of a gluing G: the set Types(G) of proper subterms of a gluing

Example. The gluings

G1 = (a 7→ N(U(a))) and G2 = (a 7→ N(b), b 7→ U(a))

(morally) have the same types a,U(a) and a, b, but different semantics:

JG1K(X) = PA(D(X)) and JG2K(X, Y ) = (PA(Y ),D(X))

Typed Formulas:

φ1 : s1, . . . , φn : sn
♥(φi1 , . . . , φin) : F(s1, . . . , sn)

if F(s1, . . . , sn) ∈ Types(G)

φ1 : s1, . . . , φn : sn
♥(φi1 , . . . , φin) : a

if G(a) = F(a1, . . . , sn)

Note. G1 and G2 have (morally) the same set of typed formulas.
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Semantic Reconciliation

Suppose that G is a gluing and (C, γ) ∈ Coalg(JGK).

• for s ∈ Types(G), an s-state of C is an element of JsK(C)

Example

• for G1 = (a→ N(U(a)) and (C, γ → PA(D(C)), we have

– a-states are the elements of C

– U(a)-states are the elements of JU(a)K(C) = D(C)

• for G2 = (a 7→ N(b), b 7→ U(a)) and

((Ca, Cb), γa : Ca → PA(Cb), γb : Cb → D(Ca) we have

– a-states are elements of JaK(Ca, Cb) = Ca

– b-states are elements of JbK(Ca, Cb) = Cb

Satisfiability Problem. For a gluing G and s ∈ Types(G), is φ : s satisfiable in an

s-state of some (C, γ) ∈ Coalg(JGK)? valid in all s-states of all (C, γ)?
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Flat Gluings

Recall. For the gluings

G1 = (a 7→ N(U(a))) and G2 = (a 7→ N(b), b 7→ U(a))

we have the same satisfiability problem, but different semantics!

Flattening. Every Gluing G = (ta)a∈S has a flattening G♭ = (t′s′)s′∈S′ where

S′ = Types(G) and t′s′ =







ts for s ∈ S

t′s′ = s otherwise

Main Theorem. The satisfiability problems over G and G♭ are equivalent.

Proof Sketch. “Padding with identities”, e.g. a satisfying model

(

C
γ

−→ PA(D(X))
)

yields





C

D(C)





γ,id
−→





PA(D(C))

D(C)





Benefit. Pick the “easiest” gluing to decide satsifiability.
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Completeness and Decidability

Compositional Reasoning using a rule (φ1; . . . ;φn)/ψ is a rule of F

⊢s1 φ1σ, . . . ,⊢sn φnσ

⊢F(s1,...,sn) ψσ
if (F(s1, . . . , sn) ∈ Types(G)

⊢s1 φ1σ . . . ⊢sn φnσ

⊢a ψσ
if a→ F(s1, . . . , sn) ∈ G

(Note the difference in the typing discipline)

Soundness. If all features are one-step sound, then Coalg(JGK) |=s φ if ⊢s φ

Completeness If all features are one-step complete, then ⊢s φ if

Coalg(JGK) |=s φ.

Complexity. If all features are one-step sound, complete and NPMV, then

satisfiability of φ : s is in PSPACE.

Proof Sketch. Straightforward generalisation of one-sorted results for flat gluings.
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Example: Probabilistic Coalitions

Idea. Coalitions of agents can force probabilities of events.

Formulas. Two-sorted structure (coalitions/probabilities)

Fc ∋ ψ ::= ⊤ | ρ1 ∧ ρ2 | ¬ρ | [C]ψ (coalition formulas; ψ ∈ Fu)

Fu ∋ ψ ::= ⊤ | φ1 ∧ φ2 | ¬φ | Lpφ (probabilistic formulas; φ ∈ Fc)

Example.

(coalition level) [C]Lpφ – C can ensure that P (φ) ≥ p

(probabilistic level) Mp([C]φ ∨ [D]φ) – P ( C or D can force φ) ≤ p

Equivalent Semantics where G(X) are game frames / distributions overX

C → G(D)

D → D(C)

two-sorted models

C → G ◦ D(C)

Coalition Models

D → D ◦ G(D)

Probabilistic Models
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Haskell Implementation

Gluings are a Haskell data type

Seg = HML <.> PML <.> S Alt = HML <.> S <+> PML <.>

KK = K <.> S <*> K <.> S PC = CL <.> PML <.> S

are constructed using <.> (composition), <+> (choice) and <*> (fusion)

Specific data type for Flat gluings: e.g. flatten Seg yields the flat gluing

[FlatUnary HML 1, FlatUnary PML 0]

corresponing to

(s0 → N(s1), s1 → U(s0))

Satisfiability checking by automatic generation of a solver for the language

data L0 = (propositional connectives) | HML0 Char L1

data L1 = (propositional connectives) | PML1 Rational L0
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Conclusions

Coalgebraic Semantics allows for

• uniform proofs of soundness, completeness, complexity

• compositionality – heterogeneous systems

Implementation.

• proof of concept – no optimisation

• slow in comparision with logic specific solvers

• but covers many new logics / combinations

In the pipeline. One-step logics are not of the most general variety . . .

• add fixpoints

• allow nested modalities

• optimise GML/PML/propositional reasoning

• interaction between features
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