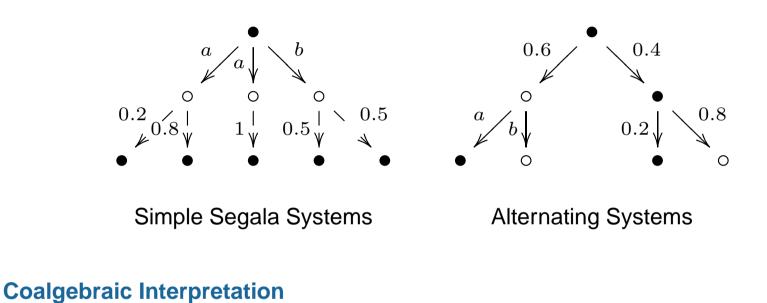
Coalgebraic Logics: Modalities Beyond Kripke Semantics

Part IV: Combining

Dirk Pattinson, Imperial College London

Compositional Reasoning

Example. Combining Probabilities and Non-Determinism



$$C \to \mathcal{P}^A(\mathsf{D}(C))$$
 $C \to \mathcal{P}^A(C) + \mathsf{D}(C)$

Semantics of Combination. Functor Composition – ingredients represent features.

Simple Segala Systems: $C \to \mathcal{P}^A(\mathsf{D}(C))$

 $\mathcal{F}_n \ni \phi ::= \top \mid \phi_1 \land \phi_2 \mid \neg \phi \mid \Box_a \psi \quad \text{(nondeterministic formulas; } \psi \in \mathcal{F}_u, a \in A\text{)}$ $\mathcal{F}_u \ni \psi ::= \top \mid \psi_1 \land \psi_2 \mid \neg \psi \mid L_p \phi \quad \text{(probabilistic formulas; } \phi \in \mathcal{F}_n, p \in [0, 1] \cap \mathbb{Q}\text{)}.$

Alternating Systems: $C \to \mathcal{P}^A(C) + \mathsf{D}(C)$

 $\mathcal{F}_{o} \ni \rho ::= \top | \rho_{1} \land \rho_{2} | \neg \rho | \phi + \psi \quad \text{(alternating formulas; } \phi \in \mathcal{F}_{u}, \psi \in \mathcal{F}_{n} \text{)}$ $\mathcal{F}_{u} \ni \phi ::= \top | \phi_{1} \land \phi_{2} | \neg \phi | L_{p}\rho \quad \text{(probabilistic formulas; } \rho \in \mathcal{F}_{o}, p \in [0, 1] \cap \mathbb{Q} \text{)}$ $\mathcal{F}_{n} \ni \psi ::= \top | \psi_{1} \land \psi_{2} | \neg \psi_{2} | \Box_{a}\rho \quad \text{(nondeterministic formulas; } \rho \in \mathcal{F}_{o}, a \in A \text{)}$

Languages

• multisorted, one sort per feature

Language Composition

• mimics functor composition

Features and Gluings by Example

Features. Modalities and Axioms of the Building Blocks

- N, nondeterminism: unary modalities \Box_a for $a \in A$
- U, uncertainty: unary modalities L_p for $p \in [0, 1]$
- C, choice: binary modality +

Rule(schema) for C

$$\frac{\left(\bigwedge_{i=1}^{m} \alpha_{i} \to \bigvee_{j=1}^{n} \beta_{j}\right) : 1 \quad \left(\bigwedge_{i=1}^{m} \gamma_{i} \to \bigvee_{j=1}^{n} \delta_{j}\right) : 2}{\bigwedge_{i=1}^{m} (\alpha_{i} + \gamma_{i}) \to \bigvee_{j=1}^{n} (\beta_{j} + \delta_{j})} \quad (m, n \ge 0)$$

Gluings. Specification of Feature Composition

Simple Segala Systems

Alternating Systems

 $G_1(a) = \mathsf{N}(\mathsf{U}(a)) \qquad \qquad G_2(a) = \mathsf{C}(\mathsf{U}(a), \mathsf{N}(a))$

Defn. An *n*-ary *feature* $F = (\Lambda, R)$ comprises

- a set Λ of modal operators $L:i_1,\ldots,i_k$ where $1\leq i_1,\ldots,i_k\leq n$ are argument sorts
- a set R of *one-step rules* of the form $(\phi_1;\ldots;\phi_n)/\psi,$ where
 - the ϕ_i are purely propositional
 - ψ is a clause over $\heartsuit(p_1,\ldots,p_k)$ where $\heartsuit:i_1,\ldots,i_k\in\Lambda$ and $p_j\in V_{i_j}$

Defn. Feature expressions are terms built with features as function symbols

$$t ::= a \mid \mathsf{F}(t_1, \ldots, t_n) \qquad a \in \mathsf{S}, \, \mathsf{F} \in \Phi \text{ n-ary.}$$

A gluing of Φ over S is a family $G = (t_a)_{a \in S}$ of feature expressions.

Semantics

Defn. A *structure* for an *n*-ary feature $\mathsf{F} = (\Lambda, \mathsf{R})$ consists of

- $\bullet \text{ a functor } \llbracket \mathsf{F} \rrbracket : \mathsf{Set}^n \to \mathsf{Set}$
- an assignment of predicate liftings

$$\llbracket \heartsuit \rrbracket_X : \mathcal{P}(X_{i_1}) \times \cdots \times \mathcal{P}(X_{i_k}) \to \mathcal{P}(\llbracket \mathsf{F} \rrbracket X)$$

indexed over $X=(X_1,\ldots,X_n)\in \mathsf{Set}^n$ to operators $\heartsuit:i_1,\ldots,i_k\in\Lambda$

Easy Consequence. Every gluing $G = (t_a)_{a \in S}$ gives rise to a functor $[G] : Set^S \to Set^S$

by compositionality.

Idea. Given a gluing G, its models are S-sorted [[G]]-coalgebras

$$(C_s)_{s\in\mathsf{S}} \xrightarrow{(\gamma_s)_{s\in\mathsf{S}}} \llbracket \mathsf{G} \rrbracket (C_s)_{s\in\mathsf{S}}$$

(previous definitions apply on a pre-component basis)

Examples

Nondeterminism over a set A of action as unary feature N with $\Box_a : 1$

$$\llbracket \mathbb{N} \rrbracket X = \mathcal{P}^A(X) \text{ with } \llbracket \square_a \rrbracket_X(B) = \{ f : A \to \mathcal{P}(X) \mid f(a) \subseteq B \}$$

(in the same way, all previous logics arise as features)

Choice as binary feature C with +: 1, 2

$$[\![\mathbf{C}]\!](X,Y)=X+Y \text{ with } [\![+]\!]_{X,Y}(A,B)=A+B$$

Fusion as a binary feature P with $\pi_i : i$ for i = 1, 2 and

$$[\![\times]\!](X,Y) = X \times Y \text{ and } [\![\pi_i]\!]_{X_1,X_2}(A) = \{(x_1,x_2) \in X_1 \times X_2 \mid x_i \in A\}$$

Simple Segala Systems

Alternating Systems

 $\llbracket a \mapsto \mathsf{N}(\mathsf{U}(a)) \rrbracket X = \mathcal{P}^A(\mathsf{D}(X)) \qquad \llbracket a \mapsto \mathsf{C}(\mathsf{U}(a),\mathsf{N}(a)) \rrbracket X = \mathcal{P}^A(X) + \mathsf{D}(X)$

The Logic of a Gluing

Types of a gluing G: the set Types(G) of proper subterms of a gluing

Example. The gluings

$$G_1 = (a \mapsto \mathsf{N}(\mathsf{U}(a))) \quad \text{and} \quad G_2 = (a \mapsto \mathsf{N}(b), b \mapsto \mathsf{U}(a))$$

(morally) have the same types a, U(a) and a, b, but different semantics:

$$\llbracket G_1 \rrbracket(X) = \mathcal{P}^A(\mathsf{D}(X))$$
 and $\llbracket G_2 \rrbracket(X,Y) = (\mathcal{P}^A(Y),\mathsf{D}(X))$

Typed Formulas:

$$\frac{\phi_1: s_1, \dots, \phi_n: s_n}{\heartsuit(\phi_{i_1}, \dots, \phi_{i_n}): \mathsf{F}(s_1, \dots, s_n)} \quad \text{if } \mathsf{F}(s_1, \dots, s_n) \in \mathsf{Types}(\mathsf{G})$$

$$\frac{\phi_1: s_1, \dots, \phi_n: s_n}{\heartsuit(\phi_{i_1}, \dots, \phi_{i_n}): a} \quad \text{if } \mathsf{G}(a) = \mathsf{F}(a_1, \dots, s_n)$$

Note. G_1 and G_2 have (morally) the same set of typed formulas.

Suppose that G is a gluing and $(C, \gamma) \in \mathsf{Coalg}(\llbracket G \rrbracket)$.

• for $s \in \mathsf{Types}(\mathsf{G})$, an *s*-state of *C* is an element of $[\![s]\!](C)$

Example

- for $G_1 = (a \to \mathsf{N}(\mathsf{U}(a)) \text{ and } (C, \gamma \to \mathcal{P}^A(\mathsf{D}(C)))$, we have
 - a-states are the elements of C
 - U(a)-states are the elements of $\llbracket U(a) \rrbracket(C) = D(C)$
- for $G_2 = (a \mapsto \mathsf{N}(b), b \mapsto \mathsf{U}(a))$ and $((C_a, C_b), \gamma_a : C_a \to \mathcal{P}^A(C_b), \gamma_b : C_b \to \mathsf{D}(C_a)$ we have
 - a-states are elements of $\llbracket a \rrbracket (C_a, C_b) = C_a$
 - b-states are elements of $\llbracket b \rrbracket (C_a, C_b) = C_b$

Satisfiability Problem. For a gluing G and $s \in \text{Types}(G)$, is $\phi : s$ satisfiable in an s-state of some $(C, \gamma) \in \text{Coalg}(\llbracket G \rrbracket)$? valid in all s-states of all (C, γ) ?

Recall. For the gluings

$$G_1 = (a \mapsto \mathsf{N}(\mathsf{U}(a)))$$
 and $G_2 = (a \mapsto \mathsf{N}(b), b \mapsto \mathsf{U}(a))$

we have the same satisfiability problem, but different semantics!

Flattening. Every Gluing $G = (t_a)_{a \in S}$ has a flattening $G^{\flat} = (t'_{s'})_{s' \in S'}$ where

$$\mathsf{S}' = \mathsf{Types}(G) \quad \text{and} \quad t'_{s'} = \begin{cases} t_s & \text{for } s \in \mathsf{S} \\ t'_{s'} = s & \text{otherwise} \end{cases}$$

Main Theorem. The satisfiability problems over G and G^{\flat} are equivalent.

Proof Sketch. "Padding with identities", e.g. a satisfying model

$$\begin{pmatrix} C \xrightarrow{\gamma} \mathcal{P}^A(\mathsf{D}(X)) \end{pmatrix} \text{ yields } \begin{pmatrix} C \\ \mathsf{D}(C) \end{pmatrix} \xrightarrow{\gamma, id} \begin{pmatrix} \mathcal{P}^A(\mathsf{D}(C)) \\ \mathsf{D}(C) \end{pmatrix}$$

Benefit. Pick the "easiest" gluing to decide satsifiability.

Completeness and Decidability

Compositional Reasoning using a rule $(\phi_1; \ldots; \phi_n)/\psi$ is a rule of F

$$\frac{\vdash_{s_1} \phi_1 \sigma, \dots, \vdash_{s_n} \phi_n \sigma}{\vdash_{\mathsf{F}(s_1, \dots, s_n)} \psi \sigma} \quad \text{if } (\mathsf{F}(s_1, \dots, s_n) \in \mathsf{Types}(\mathsf{G})$$
$$\frac{\vdash_{s_1} \phi_1 \sigma \dots \vdash_{s_n} \phi_n \sigma}{\vdash_a \psi \sigma} \quad \text{if } a \to \mathsf{F}(s_1, \dots, s_n) \in \mathsf{G}$$

(Note the difference in the typing discipline)

Soundness. If all features are one-step sound, then $\text{Coalg}(\llbracket G \rrbracket) \models_s \phi$ if $\vdash_s \phi$ **Completeness** If all features are one-step complete, then $\vdash_s \phi$ if $\text{Coalg}(\llbracket G \rrbracket) \models_s \phi$.

Complexity. If all features are one-step sound, complete and NPMV, then satisfiability of ϕ : *s* is in PSPACE.

Proof Sketch. Straightforward generalisation of one-sorted results for flat gluings.

Example: Probabilistic Coalitions

Idea. Coalitions of agents can force *probabilities* of events.

Formulas. Two-sorted structure (coalitions/probabilities)

$$egin{aligned} \mathcal{F}_c
i \psi ::= & op \mid
ho_1 \wedge
ho_2 \mid
eg
ho \mid [C] \psi & ext{(coalition formulas; } \psi \in \mathcal{F}_u) \ \mathcal{F}_u
i \psi ::= & op \mid \phi_1 \wedge \phi_2 \mid
eg \phi \mid L_p \phi & ext{(probabilistic formulas; } \phi \in \mathcal{F}_c) \end{aligned}$$

Example.

(coalition level) $[C]L_p\phi - C$ can ensure that $P(\phi) \ge p$ (probabilistic level) $M_p([C]\phi \lor [D]\phi) - P(C \text{ or } D \text{ can force } \phi) \le p$

Equivalent Semantics where $\mathsf{G}(X)$ are game frames / distributions over X

two-sorted models

 α (\mathbf{n})

Coalition Models

Probabilistic Models

Haskell Implementation

Gluings are a Haskell data type

 Seg = HML <.> PML <.> S
 Alt = HML <.> S <+> PML <</td>

 KK = K <.> S <*> K <.> S
 PC = CL <.> PML <.> S

are constructed using < . > (composition), <+> (choice) and < *> (fusion)

Specific data type for Flat gluings: e.g. flatten Seg yields the flat gluing

```
[FlatUnary HML 1, FlatUnary PML 0]
```

corresponing to

$$(s_0 \rightarrow \mathsf{N}(s_1), s_1 \rightarrow \mathsf{U}(s_0))$$

Satisfiability checking by automatic generation of a solver for the language

data L0 =	(propositional	connectives)	HMLO Char L1
data L1 =	(propositional	connectives)	PML1 Rational LO

Conclusions

Coalgebraic Semantics allows for

- uniform proofs of soundness, completeness, complexity
- compositionality heterogeneous systems

Implementation.

- proof of concept no optimisation
- slow in comparision with logic specific solvers
- but covers many new logics / combinations

In the pipeline. One-step logics are not of the most general variety ...

- add fixpoints
- allow nested modalities
- optimise GML/PML/propositional reasoning
- interaction between features