Characterization, Definability and Separation via Saturated Models

Facundo Carreiro
Institute for Logic, Language and Computation
University of Amsterdam, Netherlands

March 8, 2012
JSS 2012 - Kanazawa, Japan

Outline

(1) Classical results for the basic modal logic

- Motivation
- Characterization
- Definability
- Separation
(2) Extending the results
- Objectives
- Basic definitions
- Characterization
- Definability
- Separation
(3) Conclusions and future work

Standard results for Basic Modal Logic

Motivation

Motivation

When designing a modal logic

- It is crucial to measure its expressive power.
- To be able to fine tune it and get the lowest possible computational complexity for a given task.
- Model equivalence relations (e.g., bisimulations) aid us in these tasks.

Motivation

When designing a modal logic

- It is crucial to measure its expressive power.
- To be able to fine tune it and get the lowest possible computational complexity for a given task.
- Model equivalence relations (e.g., bisimulations) aid us in these tasks.

What are bisimulations good for?

- Give a structural characterization of indistinguishability.
- Model/automata minimization.

Motivation

When designing a modal logic

- It is crucial to measure its expressive power.
- To be able to fine tune it and get the lowest possible computational complexity for a given task.
- Model equivalence relations (e.g., bisimulations) aid us in these tasks.

What are bisimulations good for?

- Give a structural characterization of indistinguishability.
- Model/automata minimization.

How can we choose the right 'bisimulation' notion for a given logic?

- There is no standard easy way!
- If we can develop the basic model theory that is a good hint of correctness.

Facts about BML

- Extends propositional logic with modalities \diamond, \square.
- Interpreted over Kripke models (directed labeled graphs).
- These models can also be seen as first order models.
- BML formulas have a translation to first order logic.
- BML can not distinguish between models which are bisimilar.

BML: Characterization

BML: Characterization

FORM(BML)

FORM(FO)

BML: Characterization

FORM(BML)

FORM(FO)

Theorem (van Benthem)
A first order formula $\alpha(x)$ with one free variable is equivalent to the translation of a BML-formula iff it is invariant under bisimulations.

BML: Definability

PMODS(BML)

BML: Definability

PMODS(BML)

$\begin{array}{lcc}\exists ? & \text { formula } & \varphi \\ \exists ? & \text { set } & \Gamma\end{array}$

BML: Definability

PMODS(BML)

\exists ? formula \exists ? set $\quad \Gamma$

Theorem (de Rijke)
Definability by a set of formulas. A class K is definable by a set of BML-formulas iff K is closed under ultraproducts, $\overline{\mathrm{K}}$ is closed under ultrapowers and both K and $\overline{\mathrm{K}}$ are closed under bisimulations.

Definability by a formula. A class K is definable by a BML-formula iff both K and $\overline{\mathrm{K}}$ are closed under bisimulations and ultraproducts.

BML: Separation

PMODS(BML)

BML: Separation

PMODS(BML)

BML: Separation

PMODS(BML)

$\exists \varphi$? $\exists Г$?

Theorem (de Rijke)

Let M and N be such that $\mathrm{M} \cap \mathrm{N}=\emptyset$.
Separation by a set of formulas. If M is closed under bisimulations and ultraproducts, and N is closed under bisimulations and ultrapowers, then there exists M^{\prime} definable by a set of formulas such that $\mathrm{M} \subseteq \mathrm{M}^{\prime}$ and $\mathrm{N} \cap \mathrm{M}^{\prime}=\emptyset$.

Separation by a formula. If both M and N are closed under bisimulations and ultraproducts, then M and N are separable by a singleton set.

Extending the results

(joint work with Carlos Areces and Santiago Figueira)

Objectives

We will extend previous results in the following two directions

Objectives

We will extend previous results in the following two directions

Arbitrary modal logic

- There are many other logics below first order
- Is there an uniform proof of these theorems that covers them all?
- The following problems arise:
(1) Different modal operators, different set of boolean operators
(2) Interpreted over variations of Kripke models
(3) Different notions of (bi)simulation

Objectives

We will extend previous results in the following two directions

Arbitrary modal logic

- There are many other logics below first order
- Is there an uniform proof of these theorems that covers them all?
- The following problems arise:
(1) Different modal operators, different set of boolean operators
(2) Interpreted over variations of Kripke models
(3) Different notions of (bi)simulation

Restriction to a particular class of models

- For example: tree models, linear orders, finite models, etc.
- The amount of valid formulas increases
- The amount of bisimulation-invariant formulas increases
- Does a characterization-like theorem hold in this case?
- How does this impact the definability/separation theorems?

Basic definitions

Definition (base logic)

1. \mathfrak{L} be a (modal) language extending $\varphi::=p|\varphi \wedge \varphi| \varphi \vee \varphi|\top| \perp$
2. $\operatorname{MODS}(\mathfrak{L})$ be the (set-based) class of \mathfrak{L}-models under consideration
3. $\operatorname{PMODS}(\mathfrak{L}):=\{\langle\mathcal{M}, w\rangle \mid \mathcal{M} \in \operatorname{MODS}(\mathfrak{L})$ and $w \in|\mathcal{M}|\}$

Basic definitions

Definition (base logic)

1. \mathfrak{L} be a (modal) language extending $\varphi::=p|\varphi \wedge \varphi| \varphi \vee \varphi|\top| \perp$
2. $\operatorname{MODS}(\mathfrak{L})$ be the (set-based) class of \mathfrak{L}-models under consideration
3. $\operatorname{PMODS}(\mathfrak{L}):=\{\langle\mathcal{M}, w\rangle \mid \mathcal{M} \in \operatorname{MODS}(\mathfrak{L})$ and $w \in|\mathcal{M}|\}$

Definition (first order logic)

1. FO be a countable first order language over a chosen signature σ
2. $\operatorname{MODS}(\mathrm{FO})$ be the class of all σ-structures
3. PMODS(FO) be defined as before

Basic definitions

Definition (base logic)

1. \mathfrak{L} be a (modal) language extending $\varphi::=p|\varphi \wedge \varphi| \varphi \vee \varphi|\top| \perp$
2. $\operatorname{MODS}(\mathfrak{L})$ be the (set-based) class of \mathfrak{L}-models under consideration
3. $\operatorname{PMODS}(\mathfrak{L}):=\{\langle\mathcal{M}, w\rangle \mid \mathcal{M} \in \operatorname{MODS}(\mathfrak{L})$ and $w \in|\mathcal{M}|\}$

Definition (first order logic)

1. FO be a countable first order language over a chosen signature σ
2. $\operatorname{MODS}(\mathrm{FO})$ be the class of all σ-structures
3. PMODS(FO) be defined as before

Observe that

- We do not require negation nor any specific modality
- $\operatorname{MODS}(\mathfrak{L})$ may be different from the class of all models of the signature of \mathfrak{L} (e.g., only trees, linear orders, etc.)

Basic definitions

We say that \mathfrak{L} is adequately below first order if there is

1. A formula translation $\mathrm{Tf}_{x}: \operatorname{FORM}(\mathfrak{L}) \rightarrow \mathrm{FORM}_{1}(\mathrm{FO})$
2. A class of FO-pointed models $\mathrm{K} \subseteq \operatorname{PMODS}$ (FO)
3. A model translation: a bijective function $\operatorname{Tm}: \operatorname{PMODS}(\mathfrak{L}) \rightarrow \mathrm{K}$ such that

Basic definitions

We say that \mathfrak{L} is adequately below first order if there is

1. A formula translation $\mathrm{Tf}_{x}: \operatorname{FORM}(\mathfrak{L}) \rightarrow \mathrm{FORM}_{1}(\mathrm{FO})$
2. A class of FO-pointed models $\mathrm{K} \subseteq \operatorname{PMODS}$ (FO)
3. A model translation: a bijective function $\mathrm{Tm}: \operatorname{PMODS}(\mathfrak{L}) \rightarrow \mathrm{K}$ such that
4. $\operatorname{Tf}_{x}(\varphi \wedge \psi)=\operatorname{Tf}_{x}(\varphi) \wedge \operatorname{Tf}_{x}(\psi)$ and $\operatorname{Tf}_{x}(\varphi \vee \psi)=\operatorname{Tf}_{x}(\varphi) \vee \operatorname{Tf}_{x}(\psi)$
5. K is closed under ultraproducts
6. The translations are truth-preserving: for all $\varphi \in \operatorname{FORM}(\mathfrak{L})$ and all $\langle\mathcal{M}, w\rangle \in \operatorname{PMODS}(\mathfrak{L})$ they satisfy

$$
\mathcal{M}, w \Vdash \varphi \text { iff } \operatorname{Tm}(\mathcal{M}, w) \models \operatorname{Tf}_{x}(\varphi) .
$$

Basic definitions

Every logic has an associated notion of observational equivalence, e.g,

Logic	Notion	Clauses
Basic modal logic	bisimulation	atom, zig, zag
Negation free BML	simulation	atom', zig
Graded modal logic	counting bisimulation	atom, zig, zag, bij-succ
Hybrid logic	hybrid bisimulation	atom, nominals, zig, zag
First order	potential isomorphisms	\ldots
Tense logic w/S +U	\ldots	\ldots

What do they have in common? we abstract it in the following definition

Definition

An \mathfrak{L}-similarity is a relation $\exists_{\mathfrak{L}} \subseteq \operatorname{PMODS}(\mathfrak{L}) \times \operatorname{PMODS}(\mathfrak{L})$ such that if $\mathcal{M}, w \exists_{\mathfrak{L}} \mathcal{N}, v$ then $\mathcal{M}, w \Rightarrow_{\mathfrak{L}} \mathcal{N}, v$.

Notation: $\mathcal{M}, w \Rightarrow_{\mathfrak{L}} \mathcal{N}, v$ iff for all $\varphi \in \operatorname{FORM}(\mathfrak{L}) ; \mathcal{M}, w \Vdash \varphi$ implies $\mathcal{N}, v \Vdash \varphi$

Basic definitions

We know that $\vec{\subseteq} \Rightarrow$ but the converse does not hold in general!

Definition

A class of models K has the Hennessy-Milner property if for each $\langle\mathcal{M}, w\rangle$, $\langle\mathcal{N}, v\rangle \in \mathrm{K}$ it holds that $\mathcal{M}, w \Rightarrow \mathcal{N}, v$ implies $\mathcal{M}, w \nexists \mathcal{N}, v$.

Logic	Notion	Class with HM
Basic modal logic	bisimulation	finite models finitely branching models modally-saturated
First order	pot. iso.	recursively saturated

These are all examples of ω-saturated models!

Basic definitions

We know that $\vec{\subseteq} \Rightarrow$ but the converse does not hold in general!

Definition

A class of models K has the Hennessy-Milner property if for each $\langle\mathcal{M}, w\rangle$, $\langle\mathcal{N}, v\rangle \in \mathrm{K}$ it holds that $\mathcal{M}, w \Rightarrow \mathcal{N}, v$ implies $\mathcal{M}, w \exists \mathcal{N}, v$.

Logic	Notion	Class with HM
Basic modal logic	bisimulation	finite models finitely branching models modally-saturated
First order	pot. iso.	recursively saturated

These are all examples of ω-saturated models!

Definition (adequate \mathfrak{L}-similarity)

Let \mathfrak{L} be adequately below first order. An \mathfrak{L}-similarity is an adequate similarity for \mathfrak{L} if the class of ω-saturated models in K has the Hennessy-Milner property.

Characterization

From now on we fix

1. a logic \mathfrak{L} adequately below first order, and
2. an adequate \mathfrak{L}-similarity \longrightarrow.

Characterization

From now on we fix

1. a logic \mathfrak{L} adequately below first order, and
2. an adequate \mathfrak{L}-similarity \longrightarrow.

Definition (\mathfrak{L}-similarity K-invariance)

A formula $\alpha(x) \in \mathrm{FORM}_{1}(\mathrm{FO})$ is K -invariant for \mathfrak{L}-similarity if for all \mathfrak{L}-pointed models \mathcal{M}, w and \mathcal{N}, v, such that $\mathcal{M}, w \rightrightarrows \mathcal{N}, v$, if $\operatorname{Tm}(\mathcal{M}, w) \models \alpha(x)$ then $\operatorname{Tm}(\mathcal{N}, v) \models \alpha(x)$.

Characterization

From now on we fix

1. a logic \mathfrak{L} adequately below first order, and
2. an adequate \mathfrak{L}-similarity \longrightarrow.

Definition (\mathfrak{L}-similarity K-invariance)

A formula $\alpha(x) \in \mathrm{FORM}_{1}(\mathrm{FO})$ is K-invariant for \mathfrak{L}-similarity if for all \mathfrak{L}-pointed models \mathcal{M}, w and \mathcal{N}, v, such that $\mathcal{M}, w \nsupseteq \mathcal{N}, v$, if $\operatorname{Tm}(\mathcal{M}, w) \models \alpha(x)$ then $\operatorname{Tm}(\mathcal{N}, v) \models \alpha(x)$.

Main Theorem (Characterization)

A formula $\alpha(x) \in \mathrm{FORM}_{1}(\mathrm{FO})$ is K -equivalent to the translation of an \mathfrak{L}-formula iff $\alpha(x)$ is K-invariant for \mathfrak{L}-similarity.

Definability

Definability

Main Theorem (Definability by a set)

A class $\mathrm{M} \subseteq \operatorname{PMODS}(\mathfrak{L})$ is definable by a set of \mathfrak{L}-formulas iff

1. M is closed under \mathfrak{L}-similarity,
2. $\operatorname{Tm}(\mathrm{M})$ is closed under ultraproducts and,
3. $\operatorname{Tm}(\bar{M})$ is closed under ultrapowers.

Main Theorem (Definability by a single formula)
A class $\mathrm{M} \subseteq \operatorname{PMODS}(\mathfrak{L})$ is definable by a single \mathfrak{L}-formula iff

1. M is closed under \mathfrak{L}-similarity and,
2. both $\operatorname{Tm}(M)$ and $\operatorname{Tm}(\overline{\mathrm{M}})$ are closed under ultraproducts.

Separation

Separation

```
Main Theorem (Separation by a set of formulas)
Let M,N\subseteqPMODS(L) be such that M }\cap\textrm{N}=\emptyset\mathrm{ ,
1. }\textrm{M}\mathrm{ is closed under }\mathfrak{L}\mathrm{ -similarity,
2. }\operatorname{Tm}(\textrm{M})\mathrm{ is closed under ultraproducts and,
3. }\textrm{Tm}(\textrm{N})\mathrm{ is closed under ultrapowers.
then there exists a class }\mp@subsup{M}{}{\prime}\supseteq\textrm{M}\mathrm{ such that it is definable by a set of
L}\mathrm{ -formulas and }\mp@subsup{\textrm{M}}{}{\prime}\capN=\emptyset\mathrm{ .
```


Main Theorem (Separation by a formula)

Let $\mathrm{M}, \mathrm{N} \subseteq \operatorname{PMODS}(\mathfrak{L})$ be such that $\mathrm{M} \cap \mathrm{N}=\emptyset$,

1. M and N are closed under \mathfrak{L}-similarity,
2. $\mathrm{Tm}(\mathrm{M})$ and $\mathrm{Tm}(\mathrm{N})$ are closed under ultraproducts
then M and N are separable by a singleton set.

Conclusions

- This result can be applied for many logics
- With or without negation
- Static or dynamic
- Arbitrary modal operators
- Arbitrary models (based on sets)

Conclusions

- This result can be applied for many logics
- With or without negation
- Static or dynamic
- Arbitrary modal operators
- Arbitrary models (based on sets)
- About the requirements
- Most of them are trivially satisfied by logics below FO
- The requirement about the class of ω-saturated models is non-trivial
- It isolates the specific logic-related aspects

Conclusions

- This result can be applied for many logics
- With or without negation
- Static or dynamic
- Arbitrary modal operators
- Arbitrary models (based on sets)
- About the requirements
- Most of them are trivially satisfied by logics below FO
- The requirement about the class of ω-saturated models is non-trivial
- It isolates the specific logic-related aspects
- If we want to study Characterization, Definability and Separation it is important to study ω-saturated classes

Future work

(1) Adapt the results for logics without disjunction
(2) Adapt the results for the class of finite models
(3) Concentrate in the study of classes of ω-saturated models

- Prove the Hennessy-Milner property for families of modal logics
(1) Given a logic \mathfrak{L}, try to give 'canonical' bisimulation notions
- Using relation liftings?
- Using behavioural equivalence of coalgebras?
© Study connections with Interpolation
- Sometimes, Craig interpolation follows from Separation
- When? Can it be incorporated to this framework?

Questions?

