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Classical results for the basic modal logic

Standard results for Basic Modal Logic
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Classical results for the basic modal logic Motivation

Motivation

When designing a modal logic

It is crucial to measure its expressive power.

To be able to fine tune it and get the lowest possible computational
complexity for a given task.

Model equivalence relations (e.g., bisimulations) aid us in these tasks.

What are bisimulations good for?

Give a structural characterization of indistinguishability.

Model/automata minimization.

How can we choose the right ‘bisimulation’ notion for a given logic?

There is no standard easy way!

If we can develop the basic model theory that is a good hint of correctness.
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Classical results for the basic modal logic Characterization

Facts about BML

Extends propositional logic with modalities 3,2.

Interpreted over Kripke models (directed labeled graphs).

These models can also be seen as first order models.

BML formulas have a translation to first order logic.

BML can not distinguish between models which are bisimilar.
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Classical results for the basic modal logic Characterization

BML: Characterization

FORM(BML) FORM(FO)

STx

Theorem (van Benthem)

A first order formula α(x) with one free variable is equivalent to the
translation of a BML-formula iff it is invariant under bisimulations.
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Classical results for the basic modal logic Definability

BML: Definability

PMODS(BML)

K

Theorem (de Rijke)

Definability by a set of formulas. A class K is definable by a set of
BML-formulas iff K is closed under ultraproducts, K is closed under ultrapowers
and both K and K are closed under bisimulations.

Definability by a formula. A class K is definable by a BML-formula iff both K
and K are closed under bisimulations and ultraproducts.
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Classical results for the basic modal logic Separation

BML: Separation

PMODS(BML)

M N

Theorem (de Rijke)

Let M and N be such that M ∩ N = ∅.
Separation by a set of formulas. If M is closed under bisimulations and
ultraproducts, and N is closed under bisimulations and ultrapowers, then there
exists M′ definable by a set of formulas such that M ⊆ M′ and N ∩M′ = ∅.
Separation by a formula. If both M and N are closed under bisimulations and
ultraproducts, then M and N are separable by a singleton set.
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Extending the results

Extending the results

(joint work with Carlos Areces and Santiago Figueira)
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Extending the results Objectives

Objectives

We will extend previous results in the following two directions

Arbitrary modal logic

There are many other logics below first order

Is there an uniform proof of these theorems that covers them all?

The following problems arise:
1 Different modal operators, different set of boolean operators
2 Interpreted over variations of Kripke models
3 Different notions of (bi)simulation

Restriction to a particular class of models

For example: tree models, linear orders, finite models, etc.

The amount of valid formulas increases

The amount of bisimulation-invariant formulas increases

Does a characterization-like theorem hold in this case?

How does this impact the definability/separation theorems?
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Extending the results Basic definitions

Basic definitions

Definition (base logic)

1. L be a (modal) language extending ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | > | ⊥
2. MODS(L) be the (set-based) class of L-models under consideration

3. PMODS(L) := {〈M, w〉 | M ∈ MODS(L) and w ∈ |M|}

Definition (first order logic)

1. FO be a countable first order language over a chosen signature σ

2. MODS(FO) be the class of all σ-structures

3. PMODS(FO) be defined as before

Observe that

We do not require negation nor any specific modality

MODS(L) may be different from the class of all models of the signature of
L (e.g., only trees, linear orders, etc.)
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Extending the results Basic definitions

Basic definitions

We say that L is adequately below first order if there is

1. A formula translation Tfx : FORM(L)→ FORM1(FO)

2. A class of FO-pointed models K ⊆ PMODS(FO)

3. A model translation: a bijective function Tm : PMODS(L)→ K

such that

1. Tfx(ϕ ∧ ψ) = Tfx(ϕ) ∧ Tfx(ψ) and Tfx(ϕ ∨ ψ) = Tfx(ϕ) ∨ Tfx(ψ)

2. K is closed under ultraproducts

3. The translations are truth-preserving: for all ϕ ∈ FORM(L) and all
〈M, w〉 ∈ PMODS(L) they satisfy

M, w  ϕ iff Tm(M, w) |= Tfx(ϕ).
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Extending the results Basic definitions

Basic definitions

Every logic has an associated notion of observational equivalence, e.g,

Logic Notion Clauses
Basic modal logic bisimulation atom, zig, zag
Negation free BML simulation atom’, zig
Graded modal logic counting bisimulation atom, zig, zag, bij-succ
Hybrid logic hybrid bisimulation atom, nominals, zig, zag
First order potential isomorphisms . . .
Tense logic w/S+U . . . . . .

What do they have in common? we abstract it in the following definition

Definition

An L-similarity is a relation →L ⊆ PMODS(L)× PMODS(L) such that if
M, w →L N , v then M, w VL N , v.

Notation: M, w VL N , v iff for all ϕ ∈ FORM(L); M, w  ϕ implies N , v  ϕ
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Extending the results Basic definitions

Basic definitions

We know that →⊆V but the converse does not hold in general!

Definition

A class of models K has the Hennessy-Milner property if for each 〈M, w〉,
〈N , v〉 ∈ K it holds that M, w V N , v implies M, w →N , v.

Logic Notion Class with HM
Basic modal logic bisimulation finite models

finitely branching models
modally-saturated

First order pot. iso. recursively saturated

These are all examples of ω-saturated models!

Definition (adequate L-similarity)

Let L be adequately below first order. An L-similarity is an adequate
similarity for L if the class of ω-saturated models in K has the
Hennessy-Milner property.
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Extending the results Characterization

Characterization

From now on we fix

1. a logic L adequately below first order, and

2. an adequate L-similarity →.

Definition (L-similarity K-invariance)

A formula α(x) ∈ FORM1(FO) is K-invariant for L-similarity if for all
L-pointed models M, w and N , v, such that M, w →N , v, if
Tm(M, w) |= α(x) then Tm(N , v) |= α(x).

Main Theorem (Characterization)

A formula α(x) ∈ FORM1(FO) is K-equivalent to the translation of an
L-formula iff α(x) is K-invariant for L-similarity.
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Extending the results Definability

Definability

Main Theorem (Definability by a set)

A class M ⊆ PMODS(L) is definable by a set of L-formulas iff

1. M is closed under L-similarity,

2. Tm(M) is closed under ultraproducts and,

3. Tm(M) is closed under ultrapowers.

Main Theorem (Definability by a single formula)

A class M ⊆ PMODS(L) is definable by a single L-formula iff

1. M is closed under L-similarity and,

2. both Tm(M) and Tm(M) are closed under ultraproducts.
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Extending the results Separation

Separation

Main Theorem (Separation by a set of formulas)

Let M,N ⊆ PMODS(L) be such that M ∩ N = ∅,
1. M is closed under L-similarity,

2. Tm(M) is closed under ultraproducts and,

3. Tm(N) is closed under ultrapowers.

then there exists a class M′ ⊇ M such that it is definable by a set of
L-formulas and M′ ∩ N = ∅.

Main Theorem (Separation by a formula)

Let M,N ⊆ PMODS(L) be such that M ∩ N = ∅,
1. M and N are closed under L-similarity,

2. Tm(M) and Tm(N) are closed under ultraproducts

then M and N are separable by a singleton set.
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Conclusions and future work

Conclusions

This result can be applied for many logics

With or without negation
Static or dynamic
Arbitrary modal operators
Arbitrary models (based on sets)

About the requirements

Most of them are trivially satisfied by logics below FO
The requirement about the class of ω-saturated models is non-trivial
It isolates the specific logic-related aspects

If we want to study Characterization, Definability and Separation it is
important to study ω-saturated classes
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Conclusions and future work

Future work

1 Adapt the results for logics without disjunction

2 Adapt the results for the class of finite models

3 Concentrate in the study of classes of ω-saturated models

Prove the Hennessy-Milner property for families of modal logics

4 Given a logic L, try to give ‘canonical’ bisimulation notions

Using relation liftings?

Using behavioural equivalence of coalgebras?

5 Study connections with Interpolation

Sometimes, Craig interpolation follows from Separation

When? Can it be incorporated to this framework?
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Conclusions and future work

Questions?
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