

Automated Proofs of Confluence of Term Rewrite Systems

Bertram Felgenhauer

Computational Logic Institute of Computer Science University of Innsbruck

JAIST Spring School Kanazawa 2012-03-08

Contents

- Term Rewriting
- Classical Confluence Criteria
- Decreasing Diagrams
- Decomposition Methods
- Demo
- Conclusion

Term Rewrite Systems

Definitions

- function symbols $\mathcal F$ with arity ari : $\mathcal F o \mathbb N$
- (infinite) set of variables V(x, y, z, ...)
- terms $\mathcal{T}(\mathcal{F},\mathcal{V}) := \mathcal{V} \cup \{f(t_1,\ldots,t_{\mathsf{ari}(f)}) \mid t_i \in \mathcal{T}(\mathcal{F},\mathcal{V})\}$
- positions \mathcal{P} os $(v) = \{\epsilon\}$, \mathcal{P} os $(f(t_1, \ldots, t_n)) = \{\epsilon\} \cup \{i \cdot p \mid i = 1 \ldots n, p \in \mathcal{P}$ os $(t_i)\}$
- subterm $t|_p \ (p \in \mathcal{P} os(t))$
- replacement t[t']_p
- substitution $\sigma: \mathcal{V} \to \mathcal{T}(\mathcal{F}, \mathcal{V})$ with $\{v \mid \sigma(v) \neq v\}$ finite
- TRS $\mathcal{R} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{V})^2$ with $l \notin \mathcal{V}$ and $\mathcal{V}ar(r) \subseteq \mathcal{V}ar(l)$ for $l \to r \in \mathcal{R}$
- rewrite step $t[I\sigma]_p \to_{\mathcal{R}} t[r\sigma]_p$, where $I \to r \in \mathcal{R}$

Example

Let
$$\mathcal{F}=\{^{-1},\circ\}$$
, $\mathcal{V}=\{x,y,z,\dots\}$ and \mathcal{R} consist of the rules
$$1\circ x\to x \qquad x^{-1}\circ x\to 1 \qquad (x\circ y)\circ z\to x\circ (y\circ z)$$

Then we can rewrite

$$\frac{\left(\left(x^{-1}\right)^{-1}\circ x^{-1}\right)\circ x\to_{\mathcal{R}} \underline{1\circ x}\to_{\mathcal{R}} x}{\left(\left(x^{-1}\right)^{-1}\circ x^{-1}\right)\circ x\to_{\mathcal{R}} \left(x^{-1}\right)^{-1}\circ \underline{\left(x^{-1}\circ x\right)}\to_{\mathcal{R}} \left(x^{-1}\right)^{-1}\circ 1}$$

This proves $x = (x^{-1})^{-1} \circ 1$.

Example

Let \mathcal{R}' consist of the rules

$$\begin{array}{ccccc}
1 \circ x \to x & x^{-1} \circ x \to 1 & (x \circ y) \circ z \to x \circ (y \circ z) \\
x \circ 1 \to x & x \circ x^{-1} \to 1 & x^{-1} \circ (x \circ y) \to y \\
(x^{-1})^{-1} \to x & 1^{-1} \to 1 & x \circ (x^{-1} \circ y) \to y \\
& (x \circ y)^{-1} \to y^{-1} \circ x^{-1}
\end{array}$$

Then

$$\underline{(x^{-1})^{-1}} \circ 1 \to_{\mathcal{R}'} \underline{x \circ 1} \to_{\mathcal{R}'} x$$

This proves $x = (x^{-1})^{-1} \circ 1$.

In fact \mathcal{R}' is complete: terminating and confluent.

Proofs and Confluence

Let \rightarrow be a (rewrite) relation. Define

- $\leftarrow = \rightarrow^{-1}$ (inverse), $\leftrightarrow = \leftarrow \cup \rightarrow$ (symmetric closure)
- $\xrightarrow{=}$ (reflexive closure), $\xrightarrow{+}$ (transitive closure), $\xrightarrow{*}$ (reflexive, transitive closure)
- proof $t \stackrel{*}{\leftrightarrow} t'$ $(t = t_0 \leftrightarrow t_1 \cdots t_{n-1} \leftrightarrow t_n = t')$

If every peak proof $t \stackrel{*}{\leftarrow} \cdot \stackrel{*}{\rightarrow} t'$ has an equivalent valley proof $t \stackrel{*}{\rightarrow} \cdot \stackrel{*}{\leftarrow} t'$, then \rightarrow is confluent.

If every proof $t \stackrel{*}{\longleftrightarrow} t'$ has a valley proof $t \stackrel{*}{\to} \cdot \stackrel{*}{\leftarrow} t'$, then \to has the Church-Rosser-property.

Proposition

Confluence and the Church-Rosser-property are equivalent.

Newman's Lemma

- \rightarrow is terminating if it allows no infinite reduction $t_0 \rightarrow t_1 \rightarrow \cdots$
- \rightarrow is locally confluent if $\leftarrow \cdot \rightarrow \subseteq \stackrel{*}{\rightarrow} \cdot \stackrel{*}{\leftarrow}$

Lemma

If o is terminating and locally confluent, then o is confluent.

Proof. $\succ = \xrightarrow{+}$ is well-founded. We measure proofs

$$t_0 \leftrightarrow t_1 \leftrightarrow \cdots \leftrightarrow t_n \quad (*)$$

by the multiset $\{t_i \mid i=0...n\}$. If $t_{i-1} \leftarrow t_i \rightarrow t_{i+1}$ then by local confluence $t_{i-1} \rightarrow u_1 \rightarrow \cdots \leftarrow u_{m-1} \leftarrow t_{i+1}$, where $t_i \succ u_i$.

$$t_0 \stackrel{*}{\longleftrightarrow} t_{i-1} \stackrel{*}{\to} u_7 \stackrel{*}{\longleftarrow} t_{i+1} \stackrel{*}{\longleftrightarrow} t_n$$

has smaller measure than (*). Hence this process will terminate.

Knuth-Bendix Criterion

Let \mathcal{R} be a TRS.

- $l_1 \rightarrow r_1, l_2 \rightarrow r_2 \in \mathcal{R}$. W.l.o.g. $Var(l_1) \cap Var(l_2) = \emptyset$
- $p \in \mathcal{P}os(I_2)$ and $I_2|_p \notin \mathcal{V}$
- σ be a most general unifier of l_1 and $l_2|_p$ $(l_1\sigma = l_2|_p\sigma)$

Then $\langle I_2[r_1]_p \sigma, r_2 \sigma \rangle$ is a critical pair of \mathcal{R} .

Note.
$$l_2[r_1]_p \sigma \leftarrow l_2[l_1]_p \sigma = l_2 \sigma \rightarrow r_2 \sigma$$

Example. $\mathcal{R} = \{1 \circ x \to x, x^{-1} \circ x \to 1, (x \circ y) \circ z \to x \circ (y \circ z)\}$ has a critical pair $\langle 1 \circ z, x^{-1} \circ (x \circ z) \rangle$ originating from $(x^{-1} \circ x) \circ z$.

Lemma

If all critical pairs of $\mathcal R$ have a valley proof then $\to_{\mathcal R}$ is locally confluent.

Theorem (Knuth, Bendix 1970)

If R is terminating and all critical pairs are joinable, then R is confluent.

Orthogonality

A TRS $\mathcal R$ is called orthogonal if it is left-linear (no duplicate variables in left-hand sides of rules) and has no critical pairs.

We write $t \not \Vdash_{\mathcal{R}} t'$ if $t \rightarrow_{\mathcal{R}} t_1 \cdots t_{n-1} \rightarrow_{\mathcal{R}} t'$ such that all rewrite steps are at parallel positions.

Lemma (Parallel Moves)

If $\mathcal R$ is orthogonal then $_{\mathcal R} \# \cdot \#_{\mathcal R} \subseteq \#_{\mathcal R} \cdot _{\mathcal R} \#$

Lemma

If $\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$ then \rightarrow is confluent.

Proof. Like Newman's Lemma, but count number of inversions (area).

Theorem (Rosen 1973)

If $\mathcal R$ is orthogonal then $\mathcal R$ is confluent.

Proof. Note that $\rightarrow \subseteq \mathcal{H} \subseteq \stackrel{*}{\rightarrow}$, so $\stackrel{*}{\rightarrow} = \mathcal{H}^*$.

Non-left-linearity Trouble

Let \mathcal{R} be given by

$$F(x,x) \rightarrow A$$

$$F(x, G(x)) \rightarrow B$$

$$\mathsf{C} \to \mathsf{G}(\mathsf{C})$$

Then \mathcal{R} has no critical pairs but is not confluent.

A related example is

$$F(x,x) \rightarrow A$$

$$G(x) \rightarrow F(x, G(x))$$

$$\mathsf{C} \to \mathsf{G}(\mathsf{C})$$

Decreasing Diagrams

Definition. Given

- ullet a set of labels ${\cal L}$ equipped with a well-founded order \succ
- a collection of rewrite relations $(\underset{\alpha}{\longrightarrow})_{\alpha\in\mathcal{L}}$

$$\bullet \ \ \underset{\curlyvee\alpha}{\longrightarrow} = \bigcup_{\alpha \succ \beta} \underset{\beta}{\longrightarrow} \text{ and } \ \underset{\curlyvee\alpha,\beta}{\longrightarrow} = \underset{\curlyvee\alpha}{\longrightarrow} \cup \underset{\curlyvee\beta}{\longrightarrow}.$$

 $(\underset{\alpha}{\longrightarrow})$ is locally decreasing if for all $\alpha, \beta \in \mathcal{L}$,

$$\frac{}{\alpha} \cdot \xrightarrow{\beta} \subseteq \xrightarrow{*} \cdot \xrightarrow{=} \xrightarrow{\beta} \cdot \xrightarrow{*} \xrightarrow{\gamma} \xrightarrow{\alpha} \cdot \xrightarrow{*} \xrightarrow{\gamma} \beta$$

Theorem (van Oostrom 1994, 2008)

If $(\underset{\alpha}{\rightarrow})$ is locally decreasing then $\bigcup_{\alpha\in\mathcal{L}}\underset{\alpha}{\rightarrow}$ is confluent.

Proof. By some suitable measure on proofs.

Applying Decreasing Diagrams

Questions

- How to label rewrite steps?
- What kind of rewrite steps?
- How to obtain an effectively checkable criterion?

Examples

- Newman's lemma: Label $s \to t$ by s, ordered by $\stackrel{+}{\to}$.
- Orthogonality: Use \oplus , but only a single label.
- Rule labeling: Label $s \to_{\mathcal{R}} t$ by the used rewrite step.
- ..

To check local decreasingness, analyze critical pairs.

Applying Decreasing Diagrams

Theorem (van Oostrom 2008)

Let \mathcal{R} be a linear TRS, and \succ be a well-founded order on $\mathcal{L} = \mathcal{R}$. If all critical peaks can be joined decreasingly, then \mathcal{R} is confluent.

Proof. Measure rewrite steps by the applied rule.

Theorem (Hirokawa, Middeldorp 2010)

Let $\mathcal R$ be a left-linear TRS such that the critical pair steps $\mathsf{CPS}(\mathcal R)$ are terminating relative to $\mathcal R$, and critical pairs are joinable. Then $\mathcal R$ is confluent.

Proof idea. Measure rewrite steps $s \oplus t$ by s, ordered by the relative rewriting relation.

Decomposition Methods

Theorem (Toyama 1987)

Let \mathcal{R}_0 and \mathcal{R}_1 be TRSs over disjoint signatures. Then $\mathcal{R}_0 \cup \mathcal{R}_1$ is confluent if and only if both \mathcal{R}_0 and \mathcal{R}_1 are confluent.

Theorem (Aoto, Toyama 1997)

Let $\mathcal R$ be a many-sorted TRS such that rules preserve well-sorted terms. Then $\mathcal R$ is confluent as a many-sorted TRS if and only if $\mathcal R$ is confluent as an unsorted TRS.

Theorem (F., Zankl, Middeldorp 2011)

Let $\mathcal R$ be an order-sorted TRS such that rules preserve well-sorted terms. If $\mathcal R$ is left-linear or non-duplicating then $\mathcal R$ is confluent if and only if $\mathcal R$ is confluent as an unsorted TRS. Otherwise, if $\mathcal R$ also reflects well-sorted terms, then again $\mathcal R$ is confluent iff $\mathcal R$ is confluent as an unsorted TRS.

Demo

Confluence Sill Inn

Past / Related

Refinements of orthogonality

- parallel closed TRSs, development closed TRSs
- special cases for overlay critical pairs

Reduction-Preserving Completion

• Idea: If $s \to_{\mathcal{R}} t \to_{\mathcal{R}} u$ then we can add $s \to r$ as a rule to \mathcal{R} without affecting confluence.

Decidable Cases

- ground TRSs
- shallow, right-linear TRSs

Non-Confluence

- stable root symbols
- tree automata techniques

Other tools

- ACP
- Saigawa

Present

Proving confluence by rewriting proofs

- eliminate local peaks
- show termination

From abstract criteria to concrete

- analyze parallel, nested and critical overlap cases
- termination analysis is useful!

Decomposition

- smaller TRSs are often easier to deal with
- parts may have nice properties like left-linearity

Future

Open problems

- powerful criteria for non-terminating, non-left-linear TRSs
- more applications of decreasing diagrams
- convincing applications for confluence in absence of termination

Confluence Competition

- http://coco.nue.riec.tohoku.ac.jp/
- still easy to write competitive tools

Future

Open problems

- powerful criteria for non-terminating, non-left-linear TRSs
- more applications of decreasing diagrams
- convincing applications for confluence in absence of termination

Confluence Competition

- http://coco.nue.riec.tohoku.ac.jp/
- still easy to write competitive tools

Thank you!

Literature I

Aoto, T., Toyama, Y.:

Persistency of confluence.

JUCS 3(11), 1134–1147 (1997)

Felgenhauer, B., Zankl, H., Middeldorp, A.:

Proving confluence with layer systems.

In: Proc. 31st FSTTCS. . LIPIcs, vol. 13, pp. 288-299 (2011)

Hirokawa, N., Middeldorp, A.:

Decreasing diagrams and relative termination.

In: Proc. 5th IJCAR. . LNCS (LNAI), vol. 6173, pp. 487-501 (2010)

Huet, G.:

Confluent reductions: Abstract properties and applications to term rewriting systems.

JACM 27(4), 797-821 (1980)

Literature II

Klop, J., Middeldorp, A., Toyama, Y., de Vrijer, R.: Modularity of confluence: A simplified proof. IPL 49, 101–109 (1994)

Knuth, D., Bendix, P.:

Simple word problems in universal algebras.

In: Leech, J. (ed.) Computational Problems in Abstract Algebra, 263–297.

Pergamon Press (1970)

van Oostrom, V.:

Confluence by decreasing diagrams - converted.

In: Proc. 19th RTA. . LNCS, vol. 5117, pp. 306-320 (2008)