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What is proof theory?
“The main concern of proof theory is to study and analyze
structures of proofs. A typical question in it is ‘what kind of
proofs will a given formula A have, if it is provable?’, or ‘is there
any standard proof of A?’. In proof theory, we want to derive
some logical properties from the analysis of structures of
proofs, by anticipating that these properties must be reflected in
the structures of proofs. In most cases, the analysis will be
based on combinatorial and constructive arguments. In this
way, we can get sometimes much more information on the
logical properties than with semantical methods, which will use
set-theoretic notions like models,interpretations and validity.”
(H. Ono, Proof-theoretic methods in nonclassical logic–an
introduction, 1998)



Challenges in modal and non-classical logics

Difficulties in establishing analyticity and
normalization/cut-elimination even for basic modal systems.

Extension of proof-theoretic semantics to non-classical logic.

Generality of model theory vs. goal directed developments in
proof theory for non-classical logics.

Proliferation of calculi “beyond Gentzen systems”.

Defeatist attitudes: “No proof procedure suffices for every
normal modal logic determined by a class of frames.” (M.
Fitting, Modal Proof Theory, HML, 2007).



The method of proof analysis
I Basic goal: maximal extraction of information from the

analysis of proofs in a formal inference system

I Analytic proof systems for pure logic: sequent calculus,
natural deduction

I Extension to mathematical theories: generalized Hauptsatz
requires cuts on axioms, so full analyticity is lost

I Conversion of axioms into rules allows full cut and
contraction elimination for

I theories with universal axioms (N and von Plato 1998)
I geometric theories (N 2003)
I a wide class of non-classical logics, including provability

logic (N 2005), intermediate logics (Dyckhoff and N 2012),
various logics in CS (conditional logics, description logics,
etc), epistemic logics, ...



Design principles and properties
Conversion of axioms into rules of inference is obtained by a
uniform procedure that has to respect the properties of the
logical calculus to which the rules are added.

The resulting calculi are complete for the theory under
consideration and have the same structural properties as the
logical calculi one started with. The rules are designed in
harmony with these requirements (e.g. context
sharing/independent).

Our favorite system is sequent calculus but also natural
deduction works nicely, with the condition that general
elimination rules are used ("Proof Analysis" part I).

Separation of logical and mathematical parts in a derivation can
be established for some extensions.

Full analyticity cannot be expected (not all theories are
decidable!). No full subformula property but subterm property
gives analyticity in the same sense as for first-order logic.



Hilbert-style systems
The most common way of presenting a logic.

Many axioms, one rule of inference

Axioms
1. ⊥ ⊃ A,
2. A ⊃ (B ⊃ A&B)
3. A&B ⊃ A
4. A&B ⊃ B
5. A ⊃ A ∨ B
6. B ⊃ A ∨ B
7. (A ⊃ C) ⊃ ((B ⊃ C) ⊃ (A ∨ B ⊃ C))
8. A ⊃ (B ⊃ A)
9. (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)).
Rule
A A ⊃ B

B
modus ponens



Hilbert-style systems (cont.)
The axioms and the rule are schematic, that is, any formula can
be substituted in place of A, B, and C.

Despite their popularity, Hilbert systems are impossible to use
in practice. One has to guess the appropriate instantiation of
axioms to start a derivation.

Example: Derivation of A ⊃ A

(A ⊃ ((A ⊃ A) ⊃ A)) ⊃ ((A ⊃ (A ⊃ A)) ⊃ (A ⊃ A)) A ⊃ ((A ⊃ A) ⊃ A)

(A ⊃ (A ⊃ A)) ⊃ (A ⊃ A) A ⊃ (A ⊃ A)

A ⊃ A



Hilbert systems have many axioms and few inference rules

The axioms are not natural!

One needs metatheorems to use them (e.g. the deduction
theorem)

Unfriendly systems for humans, and even for machines.

Hilbert himself paved the way to a new system of deduction



Hilbert’s last (24th) problem
Hilbert’s famous list of 23 open mathematical problems at the
international mathematical congress in Paris in 1900:
1. Cantor’s continuum problem, the question of the cardinality
of the set of reals numbers.
2. Consistency of the arithmetic of real numbers, i.e., of
analysis.
...
23. Problem about the calculus of variations.
In 2000 Rüdiger Thiele found from old archives in Göttingen
some notes in Hilbert’s hand that begin with:

As a 24th problem of my Paris talk I wanted to pose
the problem: criteria for the simplicity of proofs, or, to
show that certain proofs are simpler than any others.
In general, to develop a theory of proof methods in
mathematics.

Hilbert systems are inadequate for this. A beginning for a
solution arrived 30 years later.



Gentzen
I Introduced natural deduction systems and sequent calculi
I Trivial axioms, “natural rules”
I The rules formalize informal rules of reasoning
I Symmetry of the rules: Introduction/Elimination
I A methodology of permuting the order of application of

rules led to normalization, cut elimination, and a
consistency proof



2. Sequent calculus
Rules of sequent calculus can have independent or shared
contexts.
For instance the right rule for conjunction with independent
contexts is

Γ→ A ∆→ B
Γ, ∆→ A&B

R&ind

With shared contexts it is

Γ→ A Γ→ B
Γ→ A&B

R&sh

Fact: The two styles are equivalent in the presence of the
structural rules.
Shared contexts add determinism to proof search.



With the cut rule the subformula property is no longer
guaranteed. Thus one of the main tasks of structural proof
theory is the design of sequent calculi where cut is an
eliminable or admissible rule.

Contraction can be as “bad” as cut, as concerns a root-first
search for a derivation of a given sequent: Formulas in
antecedents can be multiplied with no end.

Weakening is easily avoided: modify the axiom A→ A to the
form A, Γ→ A.
Invertible rules are needed for decomposing root first a
sequent to be proved.
So, for instance, the single rule

A, B, Γ→ ∆

A&B, Γ→ ∆

is better than the two equivalent rules
A, Γ→ ∆

A&B, Γ→ ∆

B, Γ→ ∆

A&B, Γ→ ∆



Summing up the desiderata for our sequent calculus are:

multi-succedent,

context sharing rules,

admissible structural rules,

invertible logical rules.



G3 sequent calculi
I Introduced by Ketonen and successively modified and

extended by Kleene, Dragalin, Troelstra
I The rules are invertible
I Not only cut but also weakening and contraction are

admissible
I Shared context
I Suited for root-first proof search
I Multisuccedent sequents allow uniform treatment of

classical and intuitionistic logic



The calculus G3c
Initial sequents:

P, Γ→ ∆, P
Logical rules:

A, B, Γ→ ∆

A&B, Γ→ ∆
L&

Γ→ ∆, A Γ→ ∆, B
Γ→ ∆, A&B

R&

A, Γ→ ∆ B, Γ→ ∆

A ∨ B, Γ→ ∆
L∨

Γ→ ∆, A, B
Γ→ ∆, A ∨ B

R∨

Γ→ ∆, A B, Γ→ ∆

A ⊃ B, Γ→ ∆
L⊃

A, Γ→ ∆, B
Γ→ ∆, A ⊃ B

R⊃

⊥, Γ→ ∆
L⊥



Theorem: Height-preserving inversion. All rules of G3c are
invertible, with height-preserving inversion.
E.g.: If `n Γ→ ∆, A&B, then `n Γ→ ∆, A and `n Γ→ ∆, B.
Proof by induction on n: If Γ→ ∆, A&B is an axiom or
conclusion of L⊥, then, A&B not being atomic, also Γ→ ∆, A
and Γ→ ∆, B are axioms or conclusions of L⊥. Assume height
preserving inversion up to height n, and let `n+1 Γ→ ∆, A&B.
There are two cases:
If A&B is not principal in the last rule, it has one or two
premisses Γ′ → ∆′, A&B and Γ′′ → ∆′′, A&B, of derivation
height 6 n, so by inductive hypothesis, `n Γ′ → ∆′, A and
`n Γ′ → ∆′, B and `n Γ′′ → ∆′′, A and `n Γ′′ → ∆′′, B. Now
apply the last rule to these premisses to conclude Γ→ ∆, A
and Γ→ ∆, B with a height of derivation 6 n + 1.
If A&B is principal in the last rule, the premisses Γ→ ∆, A and
Γ→ ∆, B have derivations of height 6 n.



Admissibility of structural rules

Γ→ ∆
A, Γ→ ∆

LW
Γ→ ∆

Γ→ ∆, A
RW

A, A, Γ→ ∆

A, Γ→ ∆
LC

Γ→ ∆, A, A
Γ→ ∆, A

RC

Theorem: Height-preserving weakening.
If `n Γ→ ∆, then `n A, Γ→ ∆.
If `n Γ→ ∆, then `n Γ→ ∆, A.



Admissibility of structural rules of G3c (cont.)
Theorem: Height-preserving contraction.
If `n C, C, Γ→ ∆, then `n C, Γ→ ∆.
If `n Γ→ ∆, C, C, then `n Γ→ ∆, C.
Proof by simultaneus induction on the height of the derivation
for left and right contraction, using height-preserving invertibility
of the rules.



Theorem The rule of cut,

Γ→ ∆, D D, Γ′ → ∆′

Γ, Γ′ → ∆, ∆′
Cut

is admissible in G3c.

Here only a sketch. For all the details see proof of theorem
3.2.3 of Structural Proof Theory.

Advantage of a contraction-free calculus: no need of multicut

Γ→ ∆,

n×︷ ︸︸ ︷
D, . . . , D

m×︷ ︸︸ ︷
D, . . . , D, Γ′ → ∆′

Γ, Γ′ → ∆, ∆′
Multicut

(However see Jan von Plato’s A proof of Gentzen’s Hauptsatz
without multicut, Archive for Mathematical Logic, vol. 40 (2001),
pp. 9-18.).



Assume only one cut as the last step.

Induction on the weight of the cut formula with sub-induction on
the sum of the heights of the two premisses of cut.

The proof is organized as follows:

1,2: At least one premiss in a cut is an axiom or conclusion of
L⊥ and show how cut is eliminated.

Otherwise there are the cases:

3. The cut formula is not principal in either premiss of cut.
4. The cut formula is principal in just one premiss of cut.
5. The cut formula is principal in both premisses of cut.



1. The left premiss Γ→ ∆, D of cut is an axiom or concl. of
L⊥. There are three subcases:

1.1. The cut formula D is in Γ. In this case we derive
Γ, Γ′ → ∆, ∆′ from the right premiss D, Γ′ → ∆′ by weakening.

1.2. Γ and ∆ have a common atom. Then Γ, Γ′ → ∆, ∆′ is an
axiom.

1.3. ⊥ is a formula in Γ. Then Γ, Γ′ → ∆, ∆′ is a concl. of L⊥.

2. The right premiss D, Γ′ → ∆′ is an axiom or concl. of L⊥.

2.1. D is in ∆′. Then Γ, Γ′ → ∆, ∆′ follows from the first premiss
by weakening.

2.2. Γ′ → ∆′ is an axiom. Then also Γ, Γ′ → ∆, ∆′ is an axiom.

2.3. ⊥ is in Γ′. Then Γ, Γ′ → ∆, ∆′ is a concl. of L⊥.

2.4. D = ⊥. Then either the first premiss is an axiom or concl.
of L⊥ and Γ, Γ′ → ∆, ∆′ follows as in case 1, or Γ→ ∆,⊥ has
been derived. Six cases according to the rule used. Since ⊥ is
never principal in a rule, these are special cases of 3.1–3.6
below.



Cut with neither premiss an axiom: We have three cases:

3. Cut formula D is not principal in the left premiss. We have
six subcases according to the rule used to derive the left
premiss. For L& and L∨, the transformations are analogous to
cases 3.1 and 3.2 of theorem 2.4.3. For implication, we have

3.3. L⊃, with Γ = A ⊃ B, Γ′′. The derivation

Γ′′ → ∆, D, A B, Γ′′ → ∆, D
A ⊃ B, Γ′′ → ∆, D

L⊃
D, Γ′ → ∆′

A ⊃ B, Γ′′, Γ′ → ∆, ∆′
Cut

is transformed into the derivation

Γ′′ → ∆, D, A D, Γ′ → ∆′

Γ′′, Γ′ → ∆, ∆′, A
Cut

B, Γ′′ → ∆, D D, Γ′ → ∆′

B, Γ′′, Γ′ → ∆, ∆′
Cut

A ⊃ B, Γ′′, Γ′ → ∆, ∆′
L⊃

with two cuts of lower cut-height.



4. Cut formula D is principal in the left premiss only, and the
derivation is transformed in one with a cut of lower cut-height
according to derivation of the right premiss. We have six
subcases according to the rule used. Only the cases of L⊃ and
R∨ are significantly different from the cases of theorem 2.4.3:

4.5. R∨, with ∆ = A ∨ B, ∆′′. The derivation

Γ→ ∆, D
D, Γ′ → A, B, ∆

D, Γ′ → A ∨ B, ∆′′
R∨

Γ, Γ′ → ∆, A ∨ B, ∆′′
Cut

is transformed into the derivation with a cut of lower cut-height

Γ→ ∆, D D, Γ′ → A, B, ∆′′

Γ, Γ′ → ∆, A, B, ∆′′
Cut

Γ, Γ′ → ∆, A ∨ B, ∆′′
R∨



5. Cut formula D is principal in both premisses, and we have
three subcases, of which conjunction is very similar to case 5.1
of theorem 2.4.3.

5.2. D = A ∨ B, and the derivation

Γ→ ∆, A, B
Γ→ ∆, A ∨ B

R∨
A, Γ′ → ∆′ B, Γ′ → ∆′

A ∨ B, Γ′ → ∆′
L∨

Γ, Γ′ → ∆, ∆′
Cut

is transformed into

Γ→ ∆, A, B A, Γ′ → ∆′

Γ, Γ′ → ∆, ∆′, B
Cut

B, Γ′ → ∆′

Γ, Γ′, Γ′ → ∆, ∆′, ∆′
Cut

Γ, Γ′ → ∆, ∆′
Ctr

with two cuts of lower cut-height.



Corollary Each formula in the derivation of Γ→ ∆ in G3c is a
subformula of Γ, ∆.

Corollary: Consistence The sequent → is not derivable.
By admissibility of weakening, if Γ→ is derivable, then also
Γ→ ⊥ is derivable. The converse is obtained by applying cut to
Γ→ ⊥ and ⊥ → , thus, an empty succedent behaves like ⊥.



Beyond classical propositional logic
We want to extend proof analysis to

1. Theories with axioms: Need a way to add axioms to
sequent calculus while maintaining the structural properties.

2. Non-classical logics: Need rules for the modalities that
respect the guidelines of proof-theoretic semantics.

We have to be careful...



A parenthesis
• Our project of Proof Analysis started in 1997 when . . .

I presented a solution to the following problem:

Given a formula A derivable by the axioms of an apartness
relation, if all its atoms are negated, it is derivable by the
axioms of equality defined as the negation of apartness

• The axioms: ¬a 6= a, a 6= b ⊃ a 6= c ∨ b 6= c

Example of a “negatomic” formula:

¬a 6= b & ¬b 6= c ⊃ ¬a 6= c

•With a = b ≡ ¬a 6= b this follows from the axioms of equality,
i.e., belongs to the “equality fragment” of the theory of
apartness



• conservativity proved by analyzing derivations in sequent
calculus extended by rules that correspond to the apartness
axioms:

a 6= a, Γ→ ∆

Γ→ ∆
Irr

a 6= c, Γ→ ∆ b 6= c, Γ→ ∆

a 6= b, Γ→ ∆
Split



• rules give axioms:

a 6= a→ a 6= a
→ a 6= a Irr

a 6= c → a 6= c, b 6= c b 6= c → a 6= c, b 6= c
a 6= b → a 6= c, b 6= c

Split

a 6= b → a 6= c ∨ b 6= c
R∨

→ a 6= b ⊃ a 6= c ∨ b 6= c
R⊃

• axioms give rules by the use of cuts



• The conservativity result about apartness over equality for
negatomic formulas was proved through:

- a sequent calculus with added mathematical rules

- a proof of admissibility of the structural rules

- a reduction of derivations to a normal form, where the
apartness rules can be converted to rules for defined equality.
The result is not obvious because premisses of rules with
negatomic conclusion need not be negatomic.

• The common belief was that

“cut elimination fails in the presence of axioms”



1. Theories with axioms
Cut elimination fails in the presence of proper axioms:
A simple example is given in Girard (1987, p. 125): Let the
axioms have the forms

A ⊃ B (Ax1), A (Ax2)
These are represented by the “axiomatic sequents”

→ A ⊃ B, → A
The sequent → B is derived from these axiomatic sequents, as
in:

→ A
→ A ⊃ B

A→ A B → B
A, A ⊃ B → B

L⊃

A→ B
Cut

→ B
Cut

However, there is no cut-free derivation of → B.



1. Theories with axioms (cont.)
If the axioms A ⊃ B and A are converted into the equivalent
inference rules

B, Γ→ ∆

A, Γ→ ∆
Ax1-R

A, Γ→ ∆

Γ→ ∆
Ax2-R

we have the following cut-free derivation of→ B:

B → B
A→ B

Ax1-R

→ B
Ax2-R



Criteria for a good extension
I Added rules must guarantee that the extension is

conservative (non-creative definition).
I In sequent calculus this follows from cut elimination, in

natural deduction from normalization (and subsequent
subformula property).

I Structural properties of the inference relation have to be
maintained. In sequent calculus admissibility of weakening,
contraction, cut, and reduction to atomic initial sequents.

I Analyticity (not always a consequence of cut elimination)
has to be maintained.



Four types of extensions
(corresponding to parts I–IV of Proof Analysis)

1. Natural deduction:

- Applies to universal axioms that do not have essential
disjunctions

2. Multisuccedent sequent calculus:

- Applies to universal axioms

3. Systems of rules with eigenvariables:

- Applies to geometric and co-geometric implications

4. Systems of labelled calculi

-Applies also to axioms that are not first-order and to modalities



1. Natural deduction
Write all E-rules in the style of ∨E , ∃E :

A&B

1
A,

1
B....

C
C

&E ,1 A ⊃ B A

1
B....
C

C
⊃E ,1 ∀xA

1
A(t/x)....

C
C

∀E ,1

Rules follow from an
Inversion principle: (N and von Plato 2001)

Whatever follows from the direct grounds for asserting
a proposition must follow from that proposition.

Derivations are converted to normal form: all major premisses
of elimination rules are assumptions (von Plato 2001).



Mathematical rules
A typical axiom is of the form, with the Pi , Q atomic

P1& . . . &Pm ⊃ Q

The conversion into a rule is

P1 . . . Pm

Q

With m = 0 we have
Q

Another limiting case is

¬(P1& . . . &Pm)

The corresponding rule has ⊥ in place of the formula Q:

P1 . . . Pm
⊥



Mathematical rules
Derivations by mathematical rules are finitely branching trees
with atoms at the nodes. An extension of natural deduction NI
by such rules is denoted by NI∗.

With the NI-rules in general form, logical rules permute to
below the mathematical ones:

I-rules have compound formulas as conclusions, so the only
possible rules are E-rules. If the major premiss is A&B and
minor premiss P1 in rule &E followed by rule R, we have the
part of derivation and its permutation:

A&B

[A, B]....
P1

P1
&E

P2 . . . Pn

Q
R

A&B

[A, B]....
P1 P2 . . . Pn

Q
R

Q
&E



The combinatorial possibilities of an axiom system can be
studied in a pure form

A simple example:

logical derivation of d = a from a = b, c = b, and c = d by the
standard axioms of equality

a = d ⊃ d = a
a = c & c = d ⊃ a = d

a = b & b = c ⊃ a = c
a = b

c = b ⊃ b = c c = b
b = c

⊃E

a = b & b = c
& I

a = c ⊃E c = d
a = c & c = d

& I

a = d
⊃E

d = a
⊃E



Equality axioms as rules of inference

a = a Ref
a = b
b = a

Sym a = b b = c
a = c Tr

Our example derivation becomes:

a = b
c = b
b = c

Sym

a = c Tr c = d
a = d

Tr

d = a
Sym

Note that normalization extends to NI∗: Major premisses of
E-rules turn into assumptions

In general, trace of atoms can be lost but

In many cases, proof search can be limited to known terms



An example: rule system NDLT for lattice theory

a 6 a Ref
a 6 b b 6 c

a 6 c Tr

a∧b 6 a
L∧1 a∧b 6 b

L∧2
c 6 a c 6 b

c 6 a∧b
R∧

a 6 a∨b
R∨1 b 6 a∨b

R∨2
a 6 c b 6 c

a∨b 6 c
L∨

Theorem. Subterm property for NDLT. If an atom is derivable
from atomic assumptions in NDLT, it has a derivation with no
new terms.

Analogy: subterm property ∼ subformula property



In a typical case, there is by assumption some new term b∧c
that gets removed by a step of Tr.

Permutations of rules lead to the critical case
....

a 6 b

....
a 6 c

a 6 b∧c
R∧

b∧c 6 b
L∧1

a 6 b
Tr

....

The derivation has a loop and is transformed into
....

a 6 b....

A bounded number of terms gives a bounded number of
loop-free derivations

Note the analogy to a detour conversion on B&C



The result gives the simplest solution to the word problem for
freely generated lattices.

See N and von Plato (2002) for the system for lattice theory
presented here and N and von Plato (2004) and von Plato
(2007) for other systems.

By the same methods, a solution to the uniform word problem
for ortholattices has been given by A. Meinander (2010).



2. The calculus G3c
Initial sequents:

P, Γ→ ∆, P
Logical rules:

A, B, Γ→ ∆

A&B, Γ→ ∆
L&

Γ→ ∆, A Γ→ ∆, B
Γ→ ∆, A&B

R&

A, Γ→ ∆ B, Γ→ ∆

A ∨ B, Γ→ ∆
L∨

Γ→ ∆, A, B
Γ→ ∆, A ∨ B

R∨

Γ→ ∆, A B, Γ→ ∆

A ⊃ B, Γ→ ∆
L⊃

A, Γ→ ∆, B
Γ→ ∆, A ⊃ B

R⊃

⊥, Γ→ ∆
L⊥



Mathematical rules in sequent calculus
Conversion of axioms to conjunctive normal form: Every
quantifier-free formula can be converted to a conjunction of
disjunctions of literals, that is, of atomic formulas and
negations of atomic formulas.

Equivalently: Every quantifier-free formula can be converted to
a conjunction of implications of the form

P1& . . . &Pm ⊃ Q1 ∨ · · · ∨Qn

Every implication of the form P1& . . . &Pm ⊃ Q1 ∨ · · · ∨Qn can
be converted to a rule that can be added to the calculus without
losing the structural rules.

Every quantifier-free formula can be converted to a finite
number of rules that can be added to the calculus without
losing the structural rules.



Mathematical rules in sequent calculus (cont.)
Take the contraction- and cut-free calculus G3c and rules that
correspond to axioms

P1& . . . &Pm ⊃ Q1 ∨ · · · ∨Qn

formulation as a left rule:

Q1, Γ→ ∆ . . . Qn, Γ→ ∆

P1, . . . , Pm, Γ,→ ∆
R

formulation as a right rule:

Γ→ ∆, P1 . . . Γ→ ∆, Pm

Γ,→ ∆, Q1, . . . , Qn
R



Mathematical rules in sequent calculus (cont.)
The axioms are derivable from the corresponding rules

The rules are derivable from the corresponding axioms, using
cuts



Examples
Axiom Rule

∀x xRx reflexivity
xRx , Γ→ ∆

Γ→ ∆

∀xyz(xRy & yRz ⊃ xRz) trans.
xRz, Γ→ ∆

xRy , yRz, Γ→ ∆

∀xyz(xRy & xRz ⊃ yRz) euclid.
yRz, Γ→ ∆

xRy , xRz, Γ→ ∆

∀xy(xRy ⊃ yRx) symmetry
yRx , Γ→ ∆

xRy , Γ→ ∆

∀xyz(xRy & xRz ⊃ yRz ∨ zRy)

yRz,Γ→∆ zRy ,Γ→∆

xRy , xRz, Γ→ ∆
connectedness



Adequacy of the extension with rules
Prerequisites of extensions are satisfied:
Cut elimination without compromises thanks to the form of the
rules:

- rules act only on one side of sequents

- rules act only on atomic formulas

Typical conversion:

Γ→ ∆, P

...
P, Γ′ → ∆′

R

Γ, Γ′ → ∆, ∆′
Cut

If R is a left rule with P principal, P is not principal in the left
premiss of cut and cut can be permuted



Adequacy of the extension with rules
Admissibility of weakening: thanks to arbitrary contexts

Admissibility of contraction: Analyze proof of admissibility of
contraction. 3 cases:
1. None of the contraction formulas is principal in the
mathematical rule: OK
2. Only one contraction formula is principal in the mathematical
rule: Principal formulas copied in the premisses.
3. Both contraction formulas are principal in the mathematical
rule: Closure condition.

Reduction to atomic initial sequents: maintained by
monotonicity of extensions (obs. that instead admissibility is not
necessarily maintained in extensions)



Examples revisited after the conditions for contraction
Axiom Rule

∀x xRx reflexivity
xRx , Γ→ ∆

Γ→ ∆

∀xyz(xRy & yRz ⊃ xRz) trans.
xRz, xRy , yRz, Γ→ ∆

xRy , yRz, Γ→ ∆

∀xyz(xRy & xRz ⊃ yRz) euclid.
yRz, xRy , xRz, Γ→ ∆

xRy , xRz, Γ→ ∆

∀xy(xRy ⊃ yRx) symmetry
yRx , xRy , Γ→ ∆

xRy , Γ→ ∆

∀xyz(xRy & xRz ⊃ yRz ∨ zRy)

yRz, xRy , xRz,Γ→∆ zRy , xRy , xRz,Γ→∆

xRy , xRz, Γ→ ∆
connectedness

closure cond. for trans., euclid, connect.
xRx , xRx , Γ→ ∆

xRx , Γ→ ∆



Contraction and closure condition
Example of addition imposed by the closure condition:
Take the axiom of asymmetry ¬(a < b & b < a). As a rule, it is

a < b, b < a, Γ→ ∆

The addition imposed by the closure condition is the rule

a < a, Γ→ ∆

that corresponds to irreflexivity, ¬(a < a).
In some cases, the addition imposed by the closure condition
looks like a contraction on atomic formulas.
Legitimate worry: Does the closure condition in practice
re-introduce contraction for just atomic formulas in some
cases?
Answer: No! If a rule arising from the closure condition is an
instance of contraction, then it is admissible.



An example: nondegenerate linear order
The rules of LO are

a 6 b, Γ→ ∆ b 6 a, Γ→ ∆

Γ→ ∆
Lin

a 6 a, Γ→ ∆

Γ→ ∆
Ref

a 6 c, Γ→ ∆

a 6 b, b 6 c, Γ→ ∆
Tr

1 6 0, Γ→ ∆
Ndeg

The first and last rules correspond to the axioms a 6 b ∨ b 6 a
and ¬ 1 6 0

Rule Lin introduces terms that are difficult to trace but we have:

Theorem. Word problem for linear order. If Γ→ ∆ has only
atoms and is derivable in LO, terms in the derivation can be
restricted to those in Γ, ∆.



An application: Szpilrajn’s theorem

Lemma. If Γ→ P is derivable in LO, it is derivable in PO (i.e.,
without Lin).

Definition. An ordering Σ is inconsistent if Γ→ 1 6 0 is
derivable for some finite subset Γ of Σ, otherwise it is
consistent.



An application: Szpilrajn’s theorem
Szpilrajn’s theorem. Given a set Σ of atoms in a consistent
PO, it can be extended to a consistent LO.

Proof. Let a, b be any two elements in Σ not ordered in Σ. We
claim that either Σ, a 6 b or Σ, b 6 a is consistent in PO. Let us
assume the contrary, i.e., that there exists a finite subset Γ of Σ
such that both Γ, a 6 b → 1 6 0 and Γ, b 6 a→ 1 6 0 are
derivable in PO. We then have the step

a 6 b, Γ→ 1 6 0 b 6 a, Γ→ 1 6 0
Γ→ 1 6 0

Lin

Now Γ→ 1 6 0 is derivable in LO, and by the conservativity
lemma, Γ→ 1 6 0 is already derivable in PO, contrary to the
consistency assumption. Iteration of the procedure gives the
desired extension.



Classical set-theoretic extension results are reformulated as
proof-theoretical conservativity results: in pointfree topology,
similar shift in the proof of the Hahn-Banach theorem.



3. Geometric and co-geometric theories
A is a geometric formula if it does not contain ⊃ or ∀.
Geometric implications have the form, with A, B geometric
formulas,

∀x . . . ∀z(A ⊃ B)

A geometric theory is a theory axiomatized by geometric
implications.

Typical example:

∀xyz(P1& . . . &Pm ⊃ ∃uvw(Q1& . . . &Qn))

“For all x , y , z, if so-and-so, then there are u, v , w such that
so-and-so.”

- none of the “so-and-so’s” can be conditionals or universals

- especially, no negations



Canonical form for geometric implications
Conjunctions of

∀x(P1& . . . &Pm ⊃ ∃y1M1 ∨ · · · ∨ ∃ynMn)

Pi atomic formula
Mj conjunction of atomic formulas
none of the variables in y j are free in Pi .



Geometric rules
Left rules:

Q1(z1/y1), P, Γ→ ∆ . . . Qn(zn/yn), P, Γ→ ∆

P, Γ→ ∆
GRS

- The eigenvariables zi must not be free in P, Γ, ∆.

- Equivalent to geometric implications

- Basic results the same as for universal axioms

- Straightforward proof of Barr’s theorem: If a geometric
implication is proved classically in a geometric theory, then it
can be proved constructively (N 2003).
Model-theoretic proofs of the same result require the vast
apparatus of topos theory. Similar proof-theoretic conservativity
results use the Gödel-Gentzen translation and their variants
(Ishihara 2000, 2011, Palmgren 2001, Schwichtenberg and
Senjak 2011), permutability of rules in sequent calculus
(Orevkov 1968), root-first constraints in sequent calculus
derivations (Nadathur 1999).



Examples of geometric theories
The formulation of the axioms and the choice of the basic
concepts is crucial for obtaining an axiomatization that follows
the pattern of geometric implications.

1. Robinson arithmetic.
¬a = 0 ⊃ ∃y a = s(y) is not geometric, but the equivalent
a = 0 ∨ ∃y a = s(y) is
2. Ordered fields
¬a = 0 ⊃ ∃y a · y = 1 is not geometric, but the equivalent
a = 0 ∨ ∃y a · y = 1 is.
3. Real-closed fields
¬a2n+1 = 0 ⊃ ∃y a2n+1 · y2n+1 + a2n · y2n + . . . a1 · y + a0 = 0 is
not geometric, but the equivalent
a2n+1 = 0 ∨ ∃y a2n+1 · y2n+1 + a2n · y2n + . . . a1 · y + a0 = 0 is.



Examples of geometric theories (cont.)
3. Classical projective geometry with constructions.
Not a geometric theory!
The reason is the axiom of existence of three non-collinear
points
∃x∃y∃z(¬ x = y &¬ z ∈ ln(x , y))
if the basic notions are replaced by the constructive notions of
apartness between points and lines and “outsideness” of a
point from a line, a geometric axiomatization is found. In
particular the axiom above is replaced by
∃x∃y∃z(x 6= y & z /∈ ln(x , y))



Co-geometric theories
- a formula is co-geometric if it does not contain ⊃ or ∃.
- a co-geometric implication has the form, with A and B
co-geometric formulas,

∀x . . . ∀z(A ⊃ B)

- canonical form: conjunctions of
∀x(∀y1M1& . . . &∀ynMn ⊃ P1 ∨ · · · ∨ Pm)
with the Mi disjunctions of atoms

- classical projective and affine geometries with the axiom of
non-collinearity are co-geometric: write non-collinearity as

¬∀x∀y∀z(x = y ∨ z ∈ ln(x , y))

- the notion was found by Jan von Plato and myself on the basis
of a proof-theoretical duality in rule systems



The left-right duality

a 6= a, Γ→ ∆
Irref

a 6= c, Γ→ ∆ b 6= c, Γ→ ∆

a 6= b, Γ→ ∆
Split

Γ→ ∆, a = a Ref
Γ→ ∆, a = c Γ→ ∆, b = c

Γ→ ∆, a = b
ETr

ETr stands for the “Euclidean” form of Tr



Duality of derivations
Symmetry of apartness is → a 6= b ⊃ b 6= a, derived by

a 6= a→ b 6= a
Irref

b 6= a→ b 6= a
a 6= b → b 6= a

Split

→ a 6= b ⊃ b 6= a
R⊃

Symmetry of equality has a mirror-image derivation

b = a→ a = a
Ref

b = a→ b = a
b = a→ a = b

ETr

→ b = a ⊃ a = b
R⊃



Co-geometric rules
Formulate right rules as mirror images of geometric rules:

Γ→ ∆, P11 , . . . , P1k . . . Γ→ ∆, Pm1 , . . . , Pml

Γ,→ ∆, Q1, . . . , Qn,
R

The Pi can contain eigenvariables

Basic proof-theoretical results go through as for geometric rules

The duality between geometric and co-geometric theories can
be used for changing the primitive notions in the sequent
formulation of a theory. Meta-theoretical results can be
imported from one theory to its dual by exploiting the symmetry
of their associated sequent calculi. Herbrand’s theorem for
geometric and co-geometric theories



Example from plane geometry
Non-collinearity as a co-geometric rule

Γ→ ∆, x = y , z ∈ ln(x , y)

Γ→ ∆
Non-coll

The eigenvariables x , y , z must not be free in the conclusion

The cases that any two points are equal and that any point is
incident on ln(x , y) are excluded by the rule

Result. If Γ→ ∆ has only atoms and is derivable by the rules of
projective or affine geometry, rule Non-coll not needed

Result. Subterm property. If Γ→ ∆ has only atoms and is
derivable by the rules of projective or affine geometry, no new
terms are needed



Proof analysis in non-classical and philos. logics
I Aim: Formal investigation of non-classical and

philosophical logics, as formulated within the language of
modal logic in the way initiated by Hintikka and von Wright.

I Two main traditions in logic, two ways of answering the
question "What is a correct logical argument": Syntactic
and semantic way, proof-theoretic and model theoretic.
Completeness theorems guarantee that they are
equivalent.
For non-classical and philosophical logics, limitations in
standard proof systems (cf. SN 2011) and dominance of
model-theoretic methods (cf. recent handbooks).

I These two traditions are reconciled in our method: On the
syntactic side we follow sequent calculus, on the semantic
side Kripke, or relational, semantics. Cf. Hintikka 1955.

I Resulting systems are well suited both for the theory (make
derivations, automatic proof search) and the metatheory
(embeddings between various logics, decidability and
completeness results, negative results, etc.)



Model-theoretic semantics
Establishes correspondence between syntactic expressions
and elements of formal structures through interpretation
functions

1. Algebraic structures (algebraic semantics)

2. Categories (categorial semantics)

3. Relational structures (Kripke semantics)

....



Conceptual order in model-theoretic semantics:
1. Truth
2. Consequence
3. Proof

Traditional approach in many logic textbooks, e.g.
Mendelson: Introduction to Mathematical Logic;
Goldblatt: Logics of Time and Computation.



Completeness theorem = match between syntax and semantics

valid (in every model) = provable (in a calculus)

Validity usually straightforward: both interpretations and proofs
are inductively defined

Completeness obtained by suitable constructions that single
out a structure of the semantics from the logical system:

1. Lindenbaum-Tarski algebra

2. Term model construction

3. Canonical model construction based on Henkin sets

....



Syntax and semantics in logical consequence
Notion of logical consequence obtained by universal
quantification over all possible assignments of variables,
interpretations, etc. vs. syntactic notion of consequence based
on existence of a derivation in a logical calculus.

(logical) consequence is a universal notion, defined by
means of universal quantification over functions (or
sets), since one considers all models satistying a
certain condition... This universality of consequence is
a typical feature which is retained also for more
complex languages... (Sundholm 2007)

On the contrary, syntactic consequence holds in virtue
of the existence of a suitable derivation. (Sundholm
2007)



From model- to proof-theoretic semantics
Girard (On the meaning of the logical rules I: syntax vs.
semantics, 1998): Traditional semantics (“Gesticulation”,
“Broccoli semantics”, “Treason”, “Tarskism”) vs. internal
semantics of proofs:

“The meaning of the logical rules is to be found in the
well-hidden geometrical structure of the rules
themselves. ... logical rules must be understood in
term of their inner harmony.”

http://iml.univ-mrs.fr/~girard/meaning1.ps.gz
http://iml.univ-mrs.fr/~girard/meaning1.ps.gz


Proof-theoretic semantics
Term “proof-theoretic semantics” introduced by
Schroöder-Heister in 1987 but basic idea already in Gentzen
(1934) (von Kutschera 1968 used the term ‘Gentzen
semantics’):

“The introductions represent, as it were, the
‘definitions’ of the symbol concerned, and the
eliminations are no more, in the final analysis, than the
consequences of these definitions (...) By making
these ideas more precise it should be possible to
display the E-inferences as unique functions of the
I-inferences.”

Meaning of the logical constants given by their rules



Martin-Löf (1984): On the meaning of the logical constants and
the justification of the logical laws.
Introduction rules for intuitionistic connectives justified by the
BHK (Brouwer-Heyting-Kolmogorov) interpretation of the logical
constants.
Elimination rules Justified by introduction rules through an
argument which is the semantical counterpart of the detour
reduction of Prawitz.
Autonomous justification of the constants by their rules is a
delicate thing: Explanation implicitly uses normalization for NJ
(proved indirectly by Gentzen (1934), directly by Prawitz (1965)
and by Gentzen (2008)).

http://www.hf.uio.no/ifikk/filosofi/njpl/vol1no1/meaning/meaning.pdf
http://www.hf.uio.no/ifikk/filosofi/njpl/vol1no1/meaning/meaning.pdf


Hacking What is logic? (1979): Which definitions are
admissible?
Example: Prior’s tonk, in “The runabout inference ticket” (1960)

A
A tonk B tonk -I A tonk B

B tonk -E

non-eliminable detour

A
A tonk B tonk -I

B tonk -E

Destructive extensions!

http://www.jstor.org/stable/2025471


Detour eliminability not enough: take the modified tonk

A
A tonk ′ B tonk ′-I A tonk ′ B B

A tonk ′-E

has detour conversion
....
A

....
B

A tonk ′ B tonk ′-I
....
B

A tonk ′-E
;

....
A

but no permutation conversion

....
(A tonk ′ B)tonk ′ C

....
C

A tonk ′ B tonk ′-E
....
B

A tonk ′-E
; ???



Harmony in natural deduction
N and von Plato (2001) Inversion principle:

Whatever follows from the direct grounds for asserting
a proposition must follow from that proposition.

Natural deduction with general elimination rules (von Plato
2001)

A&B

1
A,

1
B....

C
C

&E ,1 A ⊃ B A

1
B....
C

C
⊃E ,1

Derivations are converted to normal form: all major premisses
of elimination rules are assumptions.



Note that the rules for tonk don’t satisfy the inversion principle,
lack of harmony causes failure of normalization; with elimination
rule obtained from the inversion principle of NvP (2001)

A tonk B

1
A....
C

C
tonk -E ′, 1

the problem disappears.



Labelled sequent calculi overcome the traditional duality
between syntax and semantics, usually considered as
complementary yet distinct ingredients of a logic.
Interaction of syntax and semantics in logical calculi

1. At design level: semantics as guiding tool

2. At investigation level: study of meta-theoretical properties
(completeness, embeddings, decidability...)

3. Deeper interaction in labelled calculi, disciplined and fertile
co-existence.



Semantics in logical calculi
I Implicit: Sequent calculus for classical logic, display

calculi (Wansing), nested sequents (Kashima 1994),
tree-sequents (Cerrato 1996), deep sequents (Brünnler
2006, Stouppa 2007), tree-hypersequents (Poggiolesi
2008), hypersequents, non-deterministic matrices (Avron,
Zamansky, Ciabattoni, et al.).

I Explicit: Labelled sequents (Mints 1997, Viganó 2000,
Kushida and Okada 2003, Castellini and Smaill 2002,
Castellini 2005), labelled tableaux (Fitting 1983, Catach
1991, Nerode 1991, Goré 1998, Massacci 2000), labelled
natural deduction (Fitch 1966, Simpson 1994, Basin,
Matthews, Viganó 1998), hybrid logic (Blackburn 2000),
Labelled Deductive Systems (Gabbay, Russo, et al. 1996).



A historical parenthesis
Who invented Kripke semantics? (politically correct
terminology: relational semantics)

I Copeland (2001) “The genesis of possible world
semantics”

I Goldblatt (2005) “Mathematical Modal Logic: a View of its
Evolution”
www.mcs.vuw.ac.nz/ rob/papers/modalhist.pdf.

I Ilpo Halonen course “Mahdollisten maailmojen
semantiikan synty ja kehitys”
http://www.helsinki.fi/hum/fil/filosofia/.

http://www.helsinki.fi/hum/fil/filosofia/


Rule systems with labels
For logics characterized by a Kripke-style semantics:
If the accessibility (Hintikka’s alternativeness) relation in Kripke
frames is made part of a sequent calculus, frame properties
typically turn into rules that maintain cut elimination

I Explanation of modal operators through harmonious
introduction and elimination pairs of rules.

I Properties of Kripke frames though rules for the
accessibility relation.

How?

I Add possible worlds as labels for formulas x : A
I Add properties of the accessibility relation xRy as rules,

following the method of extension for mathematical
theories



Basic modal logic K: Add to propositional logic:

1. 2(A ⊃ B) ⊃ (2A ⊃ 2B),
2. From A to infer 2A.

Rules for basic modal logic obtained from the inductive
definition of validity in a Kripke frame.

From
x  2A ⇐⇒ for all y , xRy implies y  A

I
xRy , Γ→ ∆, y : A

Γ→ ∆, x : 2A
R2

variable condition: y not (free) in Γ, ∆

I
y : A, x : 2A, xRy , Γ→ ∆

x : 2A, xRy , Γ→ ∆
L2



The systems G3K
Initial sequents: x : P, Γ→ ∆, x : P

Propositional rules:

x : A, x : B, Γ→ ∆

x : A&B, Γ→ ∆
L&

Γ→ ∆, x : A Γ→ ∆, x : B
Γ→ ∆, x : A&B

R&

x : A, Γ→ ∆ x : B, Γ→ ∆

x : A ∨ B, Γ→ ∆
L∨

Γ→ ∆, x : A, x : B
Γ→ ∆, x : A ∨ B

R∨

Γ→ ∆, x : A x : B, Γ→ ∆

x : A ⊃ B, Γ→ ∆
L⊃

x : A, Γ→ ∆, x : B
Γ→ ∆, x : A ⊃ B

R⊃

x :⊥, Γ→ ∆
L⊥

Modal rules:

y : A, x : 2A, xRy , Γ→ ∆

x : 2A, xRy , Γ→ ∆
L2

xRy , Γ→ ∆, y : A
Γ→ ∆, x : 2A

R2



Extensions of basic modal logic:

System Axiom
T 2A ⊃ A
4 2A ⊃ 22A
E 3A ⊃ 23A
B A ⊃ 23A
3 2(2A ⊃ B) ∨2(2B ⊃ A)

D 2A ⊃ 3A
2 32A ⊃ 23A



Rules for extensions obtained by adding to G3K the
mathematical rules that correspond to the frame properties



Examples of universal extensions
Axiom Frame property

T 2A ⊃ A ∀x xRx reflexivity
4 2A ⊃ 22A ∀xyz(xRy & yRz ⊃ xRz) transitivity
E 3A ⊃ 23A ∀xyz(xRy & xRz ⊃ yRz)

euclideanness
B A ⊃ 23A ∀xy(xRy ⊃ yRx) symmetry
3 2(2A ⊃ B) ∨2(2B ⊃ A) ∀xyz(xRy & xRz ⊃ yRz ∨ zRy)

connectedness
D 2A ⊃ 3A ∀x∃y xRy seriality
2 32A ⊃ 23A ∀xyz(xRy & xRz ⊃ ∃w(yRw & zRw))

directedness
GL 2(2A ⊃ A) ⊃ 2A trans., irref., and Noetherian
Grz 2(2(A ⊃ 2A) ⊃ A) ⊃ A trans., refl., Noetherian



Frame property Rule

T ∀x xRx reflexivity
xRx , Γ→ ∆

Γ→ ∆

4 ∀xyz(xRy & yRz ⊃ xRz) trans.
xRz, Γ→ ∆

xRy , yRz, Γ→ ∆

E ∀xyz(xRy & xRz ⊃ yRz) euclid.
yRzΓ→ ∆

xRy , xRz, Γ→ ∆

B ∀xy(xRy ⊃ yRx) symmetry
yRx , Γ→ ∆

xRy , Γ→ ∆
3 ∀xyz(xRy & xRz ⊃ yRz ∨ zRy)

connectedness
yRz, Γ→ ∆ zRy , Γ→ ∆

xRy , xRz, Γ→ ∆

D ∀x∃y xRy seriality
2 ∀xyz(xRy & xRz ⊃ ∃w(yRw & zRw))

GL trans., irref., and Noetherian
Grz trans., refl., and Noetherian



Examples of geometric extensions
Axiom Frame property

T 2A ⊃ A ∀x xRx reflexivity
4 2A ⊃ 22A ∀xyz(xRy & yRz ⊃ xRz) transitivity
E 3A ⊃ 23A ∀xyz(xRy & xRz ⊃ xRz)

euclideanness
B A ⊃ 23A ∀xy(xRy ⊃ yRx) symmetry
3 2(2A ⊃ B) ∨2(2B ⊃ A) ∀xyz(xRy & xRz ⊃ yRz ∨ zRy)

connectedness
D 2A ⊃ 3A ∀x∃y xRy seriality
2 32A ⊃ 23A ∀xyz(xRy & xRz ⊃ ∃w(yRw & zRw))

directedness
GL 2(2A ⊃ A) ⊃ 2A trans., irref., and Noetherian
Grz 2(2(A ⊃ 2A) ⊃ A) ⊃ A trans., refl., Noetherian



Frame property Rule

T ∀x xRx reflexivity
xRx , Γ→ ∆

Γ→ ∆

4 ∀xyz(xRy & yRz ⊃ xRz) trans.
xRz, Γ→ ∆

xRy , yRz, Γ→ ∆

E ∀xyz(xRy & xRz ⊃ yRz) euclid.
yRz, Γ→ ∆

xRy , xRz, Γ→ ∆

B ∀xy(xRy ⊃ yRx) symmetry
yRx , Γ→ ∆

xRy , Γ→ ∆

3 ∀xyz(xRy & xRz ⊃ yRz ∨ zRy)
yRz, Γ→ ∆ zRy, Γ→ ∆

xRy, xRz, Γ→ ∆

D ∀x∃y xRy seriality
xRy , Γ→ ∆

Γ→ ∆
y

2 ∀xyz(xRy & xRz ⊃ ∃w(yRw & zRw))

yRw , zRw , Γ→ ∆

xRy , xRz, Γ→ ∆
w

GL trans., irref., and Noetherian
Grz trans., refl., and Noetherian



Results
Let G3K* be any extension of G3K by universal or geometric
rules for the accessibility relation.

I All the structural rules–weakening, contraction, and
cut–are admissible in the system G3K*.

I The characteristic axioms are derivable.
I The necessitation rule is admissible.
I Indirect completeness, through equivalence with the

corresponding axiomatic system.
I Direct completeness: proof search in the system either

gives a derivation or a Kripke countemodel.
I Answers to questions of undefinability though

conservativity theorems.
I Answers to decidability questions through algorithms of

terminating proof search and countermodel constructions.



Some theorems
Lemma Sequents of the form

x : A, Γ→ ∆, x : A

with A an arbitrary modal formula (not just atomic), are
derivable in G3K*.
Lemma For arbitrary A and B, the sequent

→ x : 2(A ⊃ B) ⊃ (2A ⊃ 2B)

is derivable in G3K*.
Proposition The rules of left and right weakening are
height-preserving admissible in G3K*.



Necessitation as an explicit rule would ruin the system. Instead
it is an admissible rule. We exploit first-order features of the
system...

Definition: Substitution.
xRy(z/w) ≡ xRy if w 6= x and w 6= y
xRy(z/x) ≡ zRy
xRy(z/y) ≡ xRz
xRx(z/x) ≡ zRz

x : A(z/y) ≡ x : A if y 6= x
x : A(z/x) ≡ z : A

extend to multisets componentwise.

Lemma If Γ→ ∆ is derivable in G3K*, then Γ(y/x)→ ∆(y/x)
is also derivable, with the same derivation height.
Proposition The necessitation rule

→ x : A
→ x : 2A

is admissible in G3K*.



Examples of derivations in G3K*
G3K + Ref (G3T):

xRy , x : 2A, x : A→ x : A
xRx , x : 2A→ x : A

L2

x : 2A→ x : A
Ref

→ x : 2A ⊃ A
R⊃

G3K + Trans (G3K4):
xRz, xRy , yRz, x : 2A, z : A→ z : A

xRz, xRy , yRz, x : 2A→ z : A
L2

xRy , yRz, x : 2A→ z : A
Trans

xRy , x : 2A→ y : 2A
R2

x : 2A→ x : 22A
R2

→ x : 2A ⊃ 22A
R⊃

G3K + Sym (G3KB):
yRx , xRy , x : A→ x : A, y : 3A

yRx , xRy , x : A→ y : 3A
R3

xRy , x : A→ y : 3A
Sym

x : A→ x : 23A
R2

→ x : A ⊃ 23A
R⊃



G3K + Ser:

y : A, xRy , x : 2A→ x : 3A, y : A
xRy , x : 2A→ x : 3A, y : A

L2

xRy , x : 2A→ x : 3A
R3

x : 2A→ x : 3A
Ser

→ x : 2A ⊃ 3A
R⊃

G3K + Dir:

xRy , xRz, yRu, zRu, u : A, z : 2A→ y : 3A, u : A
xRy , xRz, yRu, zRu, u : A, z : 2A→ y : 3A

R3

xRy , xRz, yRu, zRu, z : 2A→ y : 3A
L2

xRy , xRz, z : 2A→ y : 3A
Dir

xRy , x : 32A→ y : 3A
L3

x : 32A→ x : 23A
R2

→ x : 32A ⊃ 23A
R⊃



Structural properties of G3K*
• All the rules of G3K* are height-preserving invertible.

• The rules of weakening and contraction are height-preserving
admissible in G3K*.
• The rule of cut is admissible in G3K*.



Undefinable properties

Alternative approach to proofs of negative results in
correspondence theory.

Certain frame properties (irreflexivity, intransitivity, etc.) do not
have any modal correspondent.

Usual proofs based on (complicated) model extension methods.
Here an immediate consequence of a conservativity theorem.

Irreflexivity ∀x¬xRx corresponds to the rule

xRx , Γ→ ∆
Irref

Theorem The system G3K+Irref is conservative over G3K.

Proof: Suppose that the sequent (not containing relational atoms)
Γ→ ∆ is derivable in G3K+Irref. The atoms of the form xRy that
appear on the left-hand side of sequents in the derivation originate
from applications of rule R2. By the variable condition, x 6= y , so the
derivation contains no atom of the form xRx , hence no application of
Irref. Therefore the sequent is derivable in G3K. QED



Intransitivity
∀x∀y∀z(xRy&yRz ⊃ ¬xRz) corresponds to

xRy , yRz, xRzΓ→ ∆
Intrans

Theorem The system G3K+Intrans is conservative over G3K.

Result holds for a generalization of intransitivity:

Theorem Let P1, . . . , PnΓ→ ∆ be a rule, called G-Intrans, that
corresponds to the axiom ¬(P1& . . . &Pn) with Pi ≡ xiRyi , and
assume that for some i , j , yi = yj . Then G3K+G-Intrans is
conservative over G3K.

Similar result for ∃x .xRx and ∀x∃y(xRy & yRy)



Analyticity
Cut elimination alone not enough to ensure terminating proof
search.
Need subformula property.
Subformula property and analytic cut.
Subformula property not always sufficient for decidability:
- first order logic
- calculi with explicit structural rules
In our systems, a suitable version of the subformula property,
adequate for proving syntactic decidability, is a consequence of
the structural properties of the calculi.



Subformula: For every propositional connective ◦, the
subformulas of x : A ◦B are x : A ◦B, and all the subformulas of
x : A and of x : B. The subformulas of x : 2A and x : 3A are
x : 2A and x : 3A, resp., and all the subformulas of y : A for
arbitrary y.
Subformula property: All formulas in a derivation are
subformulas of (formulas in) the endsequent.
Weak subformula property: All formulas in a derivation are
either subformulas of (formulas in) the endsequent or atomic
formulas of the form xRy.
Subterm property: All terms (variables, worlds) in a derivation
are either eigenvariables or terms (variables, worlds) in the
conclusion.
• Derivations in G3K* satisfy the weak subformula property
By h.p. substitution we can suppose that rules that remove
labels (e.g. Ref) are applied, root first, only to labels in their
conclusions, so that derivations in G3K, G3T, G3K4, G3KB,
G3S4, G3TB, G3S5, G3D,G3GL have the subterm property.



Other source of potentially non-terminating proof search: the
repetition of the principal formulas in the premisses of L2 and
R3.
By permutation of rules and height preserving contraction, we
prove that it is enough to apply L2 and R3 only once on any
given pair of principal formulas xRy , x : 2A or xRy , x : 3A.
Explicit bounds for proof search in G3K, G3T, G3KB, G3TB



In G3S4 proof search may not terminate

....
zRw , xRz, xRy , yRz, x : 2¬2A→ y : B, z : A, w : A

xRz, xRy , yRz, x : 2¬2A→ y : B, z : A, z : 2A
R2

z : ¬2A, xRz, xRy , yRz, x : 2¬2A→ y : B, z : 2A
L⊃

xRz, xRy , yRz, x : 2¬2A→ y : B, z : 2A
L2

xRy , yRz, x : 2¬2A→ y : B, z : A
Trans

xRy , x : 2¬2A→ y : B, y : 2A
R2

y : ¬2A, xRy , x : 2¬2A→ y : B
L⊃

xRy , x : 2¬2A→ y : B
L2

x : 2¬2A→ x : 2B
R2

→ x : 2¬2A ⊃ 2B
R⊃



Apply the substitution z/w and obtain

zRz, xRz, xRy , yRz, x : 2¬2A→ y : B, z : A, z : A

and continue using height-preserving contraction

....
zRz, xRz, xRy , yRz, x : 2¬2A→ y : B, z : A

xRz, xRy , yRz, x : 2¬2A→ y : B, z : A
Ref

xRy , yRz, x : 2¬2A→ y : B, z : A
Trans

the original derivation is shortened by two steps



By generalizing this argument we obtain a proof of:

Proposition In a minimal derivation of a sequent in G3S4, for
each formula x : 2A in its positive part there are at most n(2)
applications of R2 iterated on a chain of accessible worlds
xRx1, x1Rx2,. . . , with principal formula xi : 2A.

Corollary The systems G3S4 and G3S5 allow terminating
proof search.

Decidability can be proved by an application of the proof of
Kripke completeness through a suitable definition of saturation
of labelled sequents / truncation of countermodel construction
(this method has been used for the logic of linear time in Boretti
and Negri 2009).



The system G3I
Initial sequents: x 6 y , x : P, Γ→ ∆, y : P

Logical rules: As in G3K for &, ∨, ⊥,

x 6 y , x : A ⊃ B, Γ→ y : A, ∆, x 6 y , x : A ⊃ B, y : B, Γ→ ∆

x 6 y , x : A ⊃ B, Γ→ ∆
L⊃

x 6 y , y : A, Γ→ ∆, y : B
Γ→ ∆, x : A ⊃ B

R⊃

Order rules:

x 6 x , Γ→ ∆

Γ→ ∆
Ref

x 6 z, x 6 y , y 6 z, Γ→ ∆

x 6 y , y 6 z, Γ→ ∆
Trans

Rule R⊃ has the condition that y must not be in Γ, ∆.



Intermediate logics (joint work with Roy Dyckhoff)
G3I can be extended with rules expressing additional
properties of the pre-order 6 exactly as done for modal logic.

For example, Gödel-Dummett logic has a linear accessibility
relation
∀x∀y(x 6 y ∨ y 6 x). This becomes the rule

x 6 y , Γ→ ∆ y 6 x , Γ→ ∆

Γ→ ∆
Lin

Add the rule to G3I and obtain a (labelled) sequent system for
Gödel-Dummett logic.

Denote by G3I* any extension of G3I with rules following the
geometric rule scheme. Below more examples of intermediate
logics.



Structural properties of G3I*
All sequents of the following form are derivable in G3I*:

1. x 6 y , x : A, Γ→ ∆, y : A
2. x : A, Γ→ ∆, x : A

The substitution rule

Γ→ ∆
Γ(y/x)→ ∆(y/x)

(y/x)

is hp-admissible in G3I*.

The rules of Weakening

Γ→ ∆
x : A, Γ→ ∆

LW Γ→ ∆
Γ→ ∆, x : A RW Γ→ ∆

x 6 y , Γ→ ∆
LW 6

are hp-admissible in G3I*.



Structural properties of G3I* (cont.)
All the rules of G3I* are hp-invertible.

The rules of Contraction

x : A, x : A, Γ→ ∆

x : A, Γ→ ∆
L-Ctr

Γ→ ∆, x : A, x : A
Γ→ ∆, x : A R-Ctr

x 6 y , x 6 y , Γ→ ∆

x 6 y , Γ→ ∆
L-Ctr 6

are hp-admissible in G3I*.

The Cut rule

Γ→ ∆, x : A x : A, Γ′ → ∆′

Γ, Γ′ → ∆, ∆′
Cut

is admissible in G3I*.



The rule
→ x :A ⊃ B → x :A

→ x :B MP

is admissible in G3I*.

The axioms that correspond to the frame properties are
derivable in G3I*.

Each system in G3I* is equivalent to the intermediate logic
obtained by adding to Int the axiom(s) that correspond((s)) to
the frame property(ies)

`Int+Ax A iff G3I∗Ax ` → x : A



I Int Intuitionistic Logic.
I Jan Jankov-De Morgan Logic: The relation 6 is directed

or convergent, i.e.

∀xyz((x 6y & x 6z) ⊃ ∃w(y 6 w & z 6 w)).

Logic also known as KC, and as the “logic of weak
excluded middle”. Axiomatised by either ¬A ∨ ¬¬A or
¬(A&B) ⊃ (¬A ∨ ¬B).

I GD Gödel-Dummett Logic: The accessibility relation is
linear, i.e.

∀xy(x 6y ∨ y 6 x).

Axioms: (A ⊃ B) ∨ (B ⊃ A) or
((A ⊃ B) ⊃ C) ⊃ (((B ⊃ A) ⊃ C) ⊃ C).



I Bd2: Bounded depth at most 2

∀xyz((x 6y 6z) ⊃ (y 6 x ∨ z 6 y)).

Axiomatised by A ∨ (A ⊃ (B ∨ ¬B)).
I GSc:Depth at most 2 and at most 2 final elements

∀xyz∃v((x 6 v & y 6 v) ∨ (y 6 v & z 6 v) ∨ (x 6 v & z 6 v)).

This logic is axiomatised by, for example,
(A ⊃ B) ∨ (B ⊃ A) ∨ ((A ⊃ ¬B)& (¬B ⊃ A)) and
A ∨ (A ⊃ (B ∨ ¬B)).



I Sm: Smetanich logic, also known as LC2 or HT, the “logic
of here and there”, or as Gödel’s 3-valued logic. The
accessibility relation is linear and has depth at most 2

∀xy(x 6y ∨ y 6 x).
∀xyz((x 6y 6z) ⊃ (y 6 x ∨ z 6 y))

added to GD and Bd2. Axiomatised by the GD axiom plus
the Bd2 axiom, or, equivalently, by
(¬B ⊃ A) ⊃ (((A ⊃ B) ⊃ A) ⊃ A).

I Cl Classical logic: The accessibility relation is symmetric,

∀xy(x 6y ⊃ y 6 x).

Axiomatised by A ∨ ¬A or by ¬¬A ⊃ A.



Not only the interpolable ones can be treated by this method:
Several variants of these logics are non-interpolable but still
have geometric frame conditions:
Bdn for n > 2 (“Bounded depth n”) and btwn for n > 2
(approximately, “bounded top-width” n). For n = 3, frame
condition is

∀xx0x1x2x3(
n∧

i=1

xRxi ⊃ ∃y(
∨
i 6=j

xiRy & xjRy))

a geometric implication

Kreisel-Putnam logic, axiomatised over Int by the schema

(¬A ⊃ (B ∨ C)) ⊃ ((¬A ⊃ B) ∨ (¬A ⊃ C)),

is a (non-interpolable) intermediate logic with a characteristic
frame condition that is not a geometric implication (p. 55, CZ).



Gödel translation of Int to S4

1. Gödel (1933): `Int A⇒ `S4 A∗ soundness

2. McKinsey & Tarski (1948): 0Int A⇒ 0S4 A∗ faithfulness

3. Dummett & Lemmon (1959): `Int+Ax A iff `S4+Ax∗ A∗

A modal logic M is a modal companion of a superintuitionistic
logic L if `L A iff `M A∗. So S4 is a modal companion of Int,
S4+Ax∗ is a modal companion of Int+Ax.

2. and 3. are proved semantically. We look closer at McKinsey
& Tarski (1948):



Proof by McKinsey & Tarski (1948) uses:

I 1. Completeness of intuitionistic logic wrt Heyting algebras
(Brouwerian algebras) and of S4 wrt topological Boolean
algebras (closure algebras)

I 2. Representation of Heyting algebras as the opens of
topological Boolean algebras.

I 3. The proof is indirect because of 1. and
non-constructive because of 2. (Uses Stone
representation of distributive lattices, in particular Zorn’s
lemma)

The result was generalized to intermediate logics by Dummett
and Lemmon (1959).
No syntactic proof of faithfulness in the literature except the
complex proof of the embedding of Int into S4 in Troelstra &
Schwichtenberg (1996).



4. Troestra & Schwichtenberg (1996) use a variant of the
translation and give a complex syntactic proof of faithfulness.

P2 := 2P
⊥2 := ⊥

(A ⊃ B)2 := 2(A2 ⊃ B2)

(A&B)2 := A2&B2

(A ∨ B)2 := A2 ∨ B2

The translation Γ2 of a multiset Γ ≡ A1, . . . , An is defined
componentwise by

(A1, . . . , An)2 := A2
1 , . . . , A2

n



Given an extension G3I* of G3I with rules for 6 , we denote by
G3S4* the corresponding extension of G3S4.

Theorem. If G3I* ` Γ→ ∆ then G3S4* ` Γ2 → ∆2.

Proof: By induction on the structure of the derivation.

x 6y , Γ, x :P → y :P, ∆ ;

. . . , Γ2, x :2P, z :P → z :P, ∆2 Ax

x 6y , y 6z, x 6z, Γ2, x :2P → z :P, ∆2 L2

x 6y , y 6z, Γ2, x :2P → z :P, ∆2 Trans

x 6y , Γ2, x :2P → y :2P, ∆2 R2



x 6y , Γ, y :A→ y :B, ∆

Γ→ x :A ⊃ B, ∆
R⊃

;

x 6y , Γ2, y :A2 → y :B2, ∆2

x 6y , Γ2 → y :A2 ⊃ B2, ∆2 R⊃

Γ2 → x :2(A2 ⊃ B2), ∆2 R2

L⊃ similar; conjunction, disjunction and absurdity routine.

Frame rules identical in the two systems, so nothing to prove for
them.



Faithfulness. If G3S4* ` Γ2 → ∆2 then G3I* ` Γ→ ∆.

Follows as a special case from:

If Γ, ∆ are multisets of labelled formulas (with relational atoms
also possibly in Γ) and Γ′, ∆′ are multisets of labelled atomic
formulas, and G3S4* ` Γ2, Γ′ → ∆2, ∆′, then G3I*
` Γ, Γ′ → ∆, ∆′.

Proof: By induction on the derivation. We show here only one
case (the others are even easier)

x 6 y , x :2(A2 ⊃ B2), y :A2 ⊃ B2, Γ′′2, Γ′ → ∆2, ∆′

x 6 y , x :2(A2 ⊃ B2), Γ′′2, Γ′ → ∆2, ∆′
L2



Observe that A2 ⊃ B2 is not a translated formula, nor an
atomic one. By hp-invertibility of L⊃ in G3S4* we have

x 6 y , x :2(A2 ⊃ B2), Γ′′2, Γ′ → ∆2, ∆′, y :A2

and
x 6 y , x :2(A2 ⊃ B2), y :B2, Γ′′2, Γ′ → ∆2, ∆′

Now the inductive hypothesis applies. We therefore have the
derivation in G3I*

I.H.

x 6 y , x :A⊃B, Γ′′, Γ′→∆, ∆′, y :A
I.H.

x 6 y , x :A⊃B, y :B, Γ′′, Γ′→∆, ∆′

x 6 y , x :A⊃B, Γ′′, Γ′ → ∆, ∆′
L⊃



Compare the above proof of faithfulness of the embedding with
a (standard) proof of faithfulness of the embedding of Int into
S4 for an unlabelled sequent calculus (Troelstra &
Schwichtenberg 1996)

Faithfulness of the embedding into its (smallest) modal
companion maintained for each of the intermediate logics
characterised by frames satisfying geometric implications.
Well-known modal companions are S4 for Int, S4.2 for Jan,
S4.3 for GD, S5 for Cl.

Core of the above proof, erasure of all 2, reminiscent of an
analogous reduction in the model-theoretic proof of faithfulness
of the embedding of Int into S4: Countermodel for an
unprovable sequent in Int turned into countermodel for the
translation of that sequent in S4; in particular, “it can be treated
as a modal frame isomorphic to its skeleton” (see theorem 3.83
in [CZ]).



Gödel-Löb provability logic
Solovay (1976): GL characterized as the logic of arithmetic
provability; characterization of Kripke models.
Cut elimination for GL
semantic proofs:
1. Sambin & Valentini (1982); 2. Avron (1984)

syntactic proofs:
3. Leivant (1981); 4. Valentini (1983); 5. Borga (1983)
6. Moen (2003)

4 gives a counterexample to 3
6 raises some doubts on 4 but uses a different calculus with
explicit contraction.
In 1–5 calculi with contexts-as-sets; contraction seems to be
the problematic issue.



Lack of harmony: Only one rule (both left and right) for 2

2Γ, Γ, 2A→ A
2Γ, Γ′ → ∆, 2A

Here: Calculus with admissible contraction for sequents
labelled by possible worlds, with left and right rules for 2,
allows for a transparent proof of cut elimination.



Kripke frames for provability logic
Accessibility relation R is

irreflexive
transitive
Noetherian (every R-chain eventually becomes
stationary)

equivalently: transitive and all R-chains are finite
Characterizing frame condition is not first order, so cannot
apply the method of universal / geometric extensions.
But can nevertheless be internalized as follows:



Lemma In irreflexive, transitive, and Noetherian Kripke frames

x  2A ⇔ for all y , from xRy and y  2A follows y  A

“⇒” gives the right rule for 2

xRy , y : 2A, Γ→ ∆, y : A
Γ→ ∆, x : 2A

R2-L

(variable condition: y not in the conclusion)
“⇐” the left rule

x : 2A, xRy , Γ→ ∆, y : 2A y : A, x : 2A, xRy , Γ→ ∆

x : 2A, xRy , Γ→ ∆
L2-L



The systems G3GL
Initial sequents:

x : P, Γ→ ∆, x : P x : 2A, Γ→ ∆, x : 2A

Logical rules:

As in G3K for &, ∨, ⊃, ⊥; L2-L, R2-L

Mathematical rules: Ref, Trans



Preliminary results
• All the rules are sound wrt Kripke semantics.
• The axioms of the axiomatic system are derivable.
• Substitution is height-preserving admissible.
•Weakening is height-preserving admissible.
• The necessitation rule is admissible.
• All the rules are height-preserving invertible.
• The rules of contraction are admissible. Elimination of
contraction does not introduce new worlds in the derivation (i.e.
contraction is range-preserving admissible).



Cut elimination for G3GL
Typical procedure for G3-like systems: Consider topmost
cuts and perform reductions that either decrease the
height (permutations - cut formula not principal in at least one
of the premisses)
or
size (detours - cut formula principal in both premisses)
until cuts reach initial sequents and disappear

With G3GL does not work in the case of detour cuts on x : 2A



Principal cut on x : 2A

xRy ,y:2A,Γ→∆,y:A
Γ→∆,x:2A

R2-L
xRz,x:2A,Γ′→∆′,z:2A z:A,xRz, x:2A,Γ′→∆′

xRz,x:2A,Γ′→∆′
L2-L

xRz,Γ′,Γ→∆,∆′
Cut

The derivation is transformed into one containing four cuts:

1. First, we construct the derivation
Γ→ ∆, x : 2A xRz, x : 2A, Γ′,→ ∆′, z : 2A

xRz, Γ, Γ′ → ∆, ∆′, z : 2A
Cut

using a cut of smaller weight, on the same labelled formula
x : 2A (and thus the same range) but with lower sum of heights
of derivations.
2. Second, we construct the derivation

Γ→ ∆, x : 2A xRz, x : 2A, z : A, Γ′ → ∆′

xRz, z : A, Γ′, Γ→ ∆, ∆′
Cut

reduced in weight in the same way.



3. Third, we use derivation 1. and height-preserving
substitution (z/y) on the premiss of R2-L to obtain

....
xRz, Γ′, Γ→ ∆, ∆′, z : 2A xRz, z : 2A, Γ→ ∆, z : A

xRz, xRz, Γ, Γ′, Γ→ ∆, ∆′, ∆, z : A
Cut

using a cut on the labelled formula z : 2A. This cut, however, is
not reduced according to the usual size/height measure.
4. Fourth, we combine 3. and 2. by a cut on the labelled
formula z : A of smaller size, followed by several contractions:

....
xRz, xRz, Γ′, Γ, Γ→ ∆, ∆, ∆′, z : A

....
xRz, z : A, Γ′, Γ→ ∆, ∆′

xRz, xRz, xRz, Γ′, Γ′, Γ, Γ, Γ→ ∆, ∆, ∆, ∆′, ∆′
Cut

xRz, Γ′, Γ→ ∆, ∆′
Ctr*



Way out: introduce a third parameter
range(x) is the set of labels y such that xRy is in the transitive
closure of relational atoms occurring in antecedents of
sequents in the derivation.
The range satisfies:

I x /∈ range(x)

I If y ∈ range(x) then range(y) ⊂ range(x)

I If y , z ∈ range(x) and y is an eigenvariable, then
range(y) ∪ range(z) ⊂ range(x)

provided we assume (wlog):

I There are no cuts with xRx or xRx1, . . . , xnRx in the
antecedents of their conclusions (if there, they are
eliminated using Irref and Trans).

I Eigenvariables are pure, i.e., appear only in the subtree
above the step introducing them.

Therefore cut is reduced wrt the inductive parameter (size,
range, height)



Lemma All sequents of the form xRy , x : 2A, Γ→ ∆, y : 2A are
derivable in G3GL.

Corollary The standard L2 rule
y : A, xRy , x : 2A, Γ→ ∆

xRy , x : 2A, Γ→ ∆
L2

is derivable in G3GL.

Remark: The two left 2 rules are interderivable, but use of
L2-L seems essential in the proof of cut elimination. If the
standard L2 were used instead, a cut with a (derived) sequent
of the form xRy , x : 2A, Γ→ ∆, y : 2A would be needed.
However, its derivation introduces new worlds, thus breaking
the property of range admissibility of all cut reductions.
Corollary The Löb axiom is derivable in G3GL.

y : 2A ⊃ A, xRy , x : 2(2A ⊃ A), y : 2A→ y : A
xRy , x : 2(2A ⊃ A), y : 2A→ y : A

L2

x : 2(2A ⊃ A)→ x : 2A
R2-L

→ x : 2(2A ⊃ A) ⊃ 2A
R⊃



As an application of the cut-free calculus we get an immediate
proof of the second incompleteness theorem:
The sequent→ x : ¬2⊥ is not derivable in G3GL.
Proof: Proceeding root first, if a derivation exists, it ends with

x : 2⊥→ x :⊥
→ x : 2⊥⊃⊥ R⊃

but no rule of G3GL is applicable to the premiss. QED



Displayable logics
Properly displayable logics are captured by the extension
with rules for geometric implications.
By Kracht’s results, displayable extensions of basic modal logic
are characterized by primitive frame conditions, of the form

(∀R)(∃R)A

∀R . . . . . . ∀y(xRy ⊃ Ay)

∃R . . . . . . ∃y(xRy & Ay)

A built from conjunctions and disjunctions of x = y , xRy , xR−1y
where x and y not both in the scope of an ∃



Displayable logics (cont.)
Through standard conversions of first order logic, primitive
frame conditions convert to the form of a geometric implication:

∀x1(At1(x1) ⊃ (∀x2At2(x1, x2) ⊃ . . . ∃y1(Bt1(y1)&(∃y2Bt2(y2)& . . . )))))

;

∀x1∀x2 . . . ∀xn(At1(x1)&At2(x1, x2) ⊃ ∃y1∃y2Bt1(y1)&Bt2(y1, y2)....))))

Not every geometric implication satisfies the additional
conditions on variables, but those that are needed in our
context do: the existential label licences additional steps if
related to a universal label. If both labels in an atom were
bound by the existential quantifier they would be both fresh in
the geometric rule scheme and thus useless.



First-order modal logic
Quantificational model (Kripke 1963): To every world w is
associated a domain of interpretation of individual variables
D(w).
D ≡

⋃
w∈K D(w)

Valuation of atomic predicates under an assignment extended
to arbitrary formulas by the standard inductive clauses for
propositional connectives. For the quantifiers

w  ∀xA(x) whenever for all a in D(w), w  A(a/x).

w  ∃xA(x) whenever for some a in D(w), w  A(a/x).

Different possible assumptions about the domains D(w) give
rise to different notions of quantificational models.

We add to our calculus expressions of the form a ∈ D(w).



Rules for the quantifiers

a ∈ D(w), Γ→ ∆, w : A(a/x)

Γ→ ∆, w : ∀xA
R∀

w : A(a/x), w : ∀xA, a ∈ D(w), Γ→ ∆

w : ∀xA, a ∈ D(w), Γ→ ∆
L∀

a ∈ D(w), Γ→ ∆, w : ∃xA, w : A(a/x)

a ∈ D(w), Γ→ ∆, w : ∃xA
R∃

a ∈ D(w), w : A(a/x), Γ→ ∆

w : ∃xA, Γ→ ∆
L∃

Rules R∀, L∃ have the condition a /∈ Γ, ∆.



Barcan and the like
In axiomatic approaches to modal logic (e.g. Hughes &
Cresswell) first-order modal logic obtained as an extension of
first-order classical logic;
Mismatch between axiomatization and semantics: universal
instantiation, in the form ∀xA(x) ⊃ A(a), in general is not valid.
Seen through a failed proof search by our rules:

....
w : ∀xA(x)→ w : A(a)

→ w : ∀xA(x) ⊃ A(a)
R⊃

After this single step, no rule is applicable; The only way to
continue would be a step of L∀ but this would require the
additional assumption a ∈ D(w).



Similarly to G3K, we may add to G3Kq properties of the
accessibility relation and obtain, for example, a system for S5
with quantifiers by adding rules Ref, Trans, and Sym.
Also properties of the domain function can be required. For
instance, it can be postulated that for every world, the
corresponding domain of interpretation be non-empty:

∀w∃a a ∈ D(w)

Another condition is that domains are increasing:

∀wo∀a(wRo & a ∈ D(w) ⊃ a ∈ D(o))

They can also be decreasing:

∀wo∀a(wRo & a ∈ D(o) ⊃ a ∈ D(w))



All the above properties follow the geometric rule scheme and
their rule form is a follows, with the variable condition a /∈ Γ, ∆
in the first:

a ∈ D(w), Γ→ ∆

Γ→ ∆
Nonempty

a ∈ D(o), wRo, a ∈ D(w), Γ→ ∆

wRo, a ∈ D(w), Γ→ ∆
Incr

a ∈ D(w), wRo, a ∈ D(o), Γ→ ∆

wRo, a ∈ D(o), Γ→ ∆
Decr



Property of nonemptiness usually part of the ontology of the
intended semantics for quantified systems of logic and implicit
in the rule of elimination of the universal quantifier. We gain a
more flexible approach by not having it inbuilt in the rules.
Formally similar to the property of seriality added to G3K to
obtain deontic logic. This latter characterized by the axiom
2A ⊃ 3A.
Nonemptiness corresponds to the axiom ∀xA ⊃ ∃xA

w : A(a/x), a ∈ D(w), w : ∀xA→ w : ∃xA, w : A(a/x)

w : A(a/x), a ∈ D(w), w : ∀xA→ w : ∃xA
R∃

a ∈ D(w), w : ∀xA→ w : ∃xA
L∀

w : ∀xA→ w : ∃xA
Nonempty

→ w : ∀xA ⊃ ∃xA
R⊃



Properties of permutability of the necessity modality and the
universal quantifier have been the object of a long philosophical
discussion.
Barcan formula ∀x2A ⊃ 2∀xA
Converse Barcan formula 2∀xA ⊃ ∀2xA.
The Barcan formula is derivable in G3Kq+Decr

o : A(a/x), w : 2A(a/x), a ∈ D(w), a ∈ D(o), wRo, w : ∀x2A→o : A(a/x)

w : 2A(a/x), a ∈ D(w), a ∈ D(o), wRo, w : ∀x2A→ o : A(a/x)
L2

a ∈ D(w), a ∈ D(o), wRo, w : ∀x2A→ o : A(a/x)
L∀

a ∈ D(o), wRo, w : ∀x2A→ o : A(a/x)
Decr

wRo, w : ∀x2A→ o : ∀xA
R∀

w : ∀x2A→ w : 2∀xA
R2

→ w : ∀x2A ⊃ 2∀xA
R⊃



Structural properties of G3Kq*
All the structural properties proved for G3Kq* easily extend to
G3Kq*.
In addition to substitution on labels we have substitution on
domain elements:

a ∈ D(w)(b/a) ≡ b ∈ D(w)
a ∈ D(w)(o/w) ≡ a ∈ D(o)

In addition to the weakening and contraction rules of G3K, we
have to consider also weakening and contraction rules that
operate on domain atoms, such as

Γ→ ∆
x ∈ D(w), Γ→ ∆

LWD
a ∈ D(w), a ∈ D(w), Γ→ ∆

a ∈ D(w), Γ→ ∆
L-CtrD



I If Γ→ ∆ is derivable in G3Kq*, then also
Γ(o/w)→ ∆(o/w) and Γ(b/a)→ ∆(b/a) are derivable,
with the same derivation height (substitution of world labels
and of domain elements is heigh-preserving admissible).

I All the structural rules (weakening and contraction, both on
labelled formulas and on relational and domain atoms) are
height-preserving admissible in G3Kq*.

I The rule of necessitation is admissible in G3Kq*.
I The rule of cut is admissible in G3Kq*.
I Direct and uniform completeness proof.

Other approaches: Fitting (1998) and Fitting and Mendelsohn
(1998): tableaux systems; Arlo-Costa and Pacuit (2001):
neighborhoods semantics ; Corsi (2002): unified completeness
theorem; Garson (2005): calculus with existence predicate;
Goldblatt and Mares (2006): general frames.



Systems with transitive closure of accessibility
relations

Linear time
Temporal operator: T, ‘tomorrow’, and G, ‘it will always be the
case that’,
are necessities w.r.t. the accessibility relation of immediate
predecessor x ≺ y and its (reflexive) and transitive closure
x ≤ y .
G has dual F (possibility in the future)
T self-dual under the condition of uniqueness of immediate
successor
x  TA iff for all y , x ≺ yimplies y  A
x  GA iff for all y , x ≤ yimplies y  A
x  FA iff there exists y such that x ≤ yand y  A



Rules for G

y : A, x : GA, x ≤ y , Γ→ ∆

x : GA, x ≤ y , Γ→ ∆
LG

x ≤ y , Γ→ ∆, y : A
Γ→ ∆, x : GA

RG

Rules for F

x ≤ y , y : A, Γ→ ∆

x : FA, Γ→ ∆
LF

x ≤ y , Γ→ ∆, x : FA, y : A
x ≤ y , Γ→ ∆, x : FA

RF

Rules for T

y : A, x : TA, x ≺ y , Γ→ ∆

x : TA, x ≺ y , Γ→ ∆
LT

x ≺ y , Γ→ ∆, y : A
Γ→ ∆, x : TA

RT

(Rules RG, LF and RT have the condition that y is not in Γ, ∆)



Infinitary Rule

{x ≺n y , x ≤ y , Γ→ ∆}n∈N
x ≤ y , Γ→ ∆

T ω

where
x ≺0 y ≡ x = y
x ≺1 y ≡ x ≺ y
x ≺n+1 y ≡ ∃z(x ≺n z & z ≺ y), for n > 0
Two forms of finitization are available (Boretti and Negri 2010):

I Non-standard system: replace rule with a rule that
corresponds to Robinson’s induction. Conservative for the
fragment without G in the positive part and F in the
negative part.

I Finite bound to T ω on the basis of the T-complexity of the
endsequent. Conservative for the fragment without G in
the negative part and F in the positive part.



Completeness
I Kripke (1959) Completeness for 1st-order S5 with equality.

A formula is derivable in S5 if and only if it is valid. Uses an
adaptation to modal logic of Beth’s method of semantical
tableaux. If A1& . . . &An ⊃ B is not valid, the tableau
construction cannot be closed; If the tableau construction
is not closed, then a countermodel is found.

I Kripke (1963) Extension of results of Kripke (1959) to T, B,
S4, and S5. Properties of the accessibility relation not part
of the tableau syntax.
Validity: If the construction for A is closed then A is valid.
Completeness: By a systematic search of a countermodel.
Uses König’s lemma; Applications to decidability.
Modal disjunction property (in S4, if 2A ∨2B derivable,
then 2A is derivable, or 2B is derivable, McKinsey-Tarski
1948, Lemmon 1960) here with “glueing of Kripke models”.



History: Criticisms and their effect
I Arnould Bayart (1966), review of Kripke (1959): Criticizes

lack of determinism in the tableau construction for the
quantifier rules.

I David Kaplan (JSL, 1966), review to Kripke (1963):
Criticizes lack of rigor and use of informal arguments in the
tableau construction. Suggests a completeness proof a’ la
Henkin, as foreseen already by Kanger, as more rigorous.

I Henkin-style completeness
Henkin (1949) for 1st-order logic
Bayart (1958,1959) Sequent calculus, possible worlds
semantics, and Henkin style completeness for 1st- and
2nd-order S5
Lemmon, Scott (Kaplan 1966)
Makinson (1966), Cresswell (1967)



Henkin-style completeness proof for modal logic:

Soundness proved by induction of the derivation in L. If L has
additional axioms then it is proved that they are valid in the
class of frames considered.

Completeness proved by the canonical model construction.
From L a special model is built in which validity and derivability
coincide. The canonical model is a Kripke model in which the
nodes are maximal consistent sets of formulas, the accessibility
relation is such that two nodes Γ, ∆ are related if all the
necessary truths in the former are in the latter and a formula is
forced at a node if it belongs to that node.



Henkin-style completeness proof
Henkin (1949) completeness for 1st-order logic

Basic idea:
A set of formulas ∆ is a maximal set if

- ∆ is consistent
- for every A either A or ¬A is in ∆
equivalently, there is no consistent extension of ∆

The deductive closure of Γ is Γ ≡ {A | Γ ` A}
If ∆ is a maximal set then ∆ = ∆
Fact: Γ ≡

⋂
{∆ maximal set | Γ ⊂ ∆} ≡ Γ∗

In the canonical model V∆(P) = true ≡ P ∈ ∆. By induction
one sees that this is extended to arbitrary formulas (truth
lemma), so Γ |= A means A∗ ⊂ Γ∗

Completeness: If Γ |= A then Γ ` A



Henkin-style completeness proof
Adaptation to modal logic:
Canonical Kripke frame:
K ≡ {s | s maximal set }
sRt ≡ for all A.2A ∈ s implies A ∈ t
s  P ≡ P ∈ s
Truth Lemma: s  A if and only if A ∈ s
The rest is identical to the proof for first-order logic.



Uniform completeness
I The use of a labelled system allows a direct proof of

completeness via Schütte’s method of reduction trees.
I The proof is not constructive (König’s lemma), however ...
I The countermodels of unprovable sequents are obtained

directly from a failed proof search.
I No need for the somewhat artificial constructions of Henkin

sets of formulas and of “bulldozing” methods for imposing
irreflexivity (in systems with irreflexive relations).

I The proof can be adapted to all the systems of
modal/temporal/epistemic logic considered.

I Gives a heuristics for finding frame conditions that
correspond to modal formulas.



Uniform completeness: soundness
Consider a derivation in G3K∗:

K frame with accessibility relation R that satisfies the
properties ∗.
W the set of world labels used in derivations in G3K∗.

Interpretation of W in K ≡ [[·]] : W → K such that,

If wRo in the derivation, then [[w ]]R[[o]] in K .

Valuation of atomic formulas V : AtFrm→ P(K )

w ∈ V(P) iff [[w ]]  P.



Uniform completeness: soundness (cont.)
Valuations extended to arbitrary formulas:

For all w , it is not the case that [[w ]]  ⊥ (abbr.
[[w ]] 1 ⊥);
[[w ]]  A&B if [[w ]]  A and [[w ]]  B;
[[w ]]  A ∨ B if [[w ]]  A or [[w ]]  B;
[[w ]]  A ⊃ B if [[w ]]  A implies [[w ]]  B;
[[w ]]  2A if for all o, [[w ]]R[[o]] implies [[o]]  A;
[[w ]]  3A if there exists o such that [[w ]]R[[o]] and
[[o]]  A.



Uniform completeness: soundness (cont.)
Γ→ ∆ valid for a given interpretation of labels and valuation of
propositional variables in a frame, if for all labelled formulas
w : A and relational atoms oRr in Γ, if [[w ]]  A and [[o]]R[[r ]] in
K , then for some l : B in ∆, [[l]]  B. A sequent is valid if it it
valid for every interpretation and every valuation of
propositional variables in the frame.

Validity: If sequent Γ→ ∆ is derivable in G3K∗, then it is valid.



Uniform completeness: completeness
Completeness: Let Γ→ ∆ be a sequent in the language of
G3K∗. Then either the sequent is derivable in G3K∗ or it has a
Kripke countermodel.
Proof: We define for an arbitrary sequent Γ→ ∆ in the
language of G3K∗ a reduction tree by applying root first the
rules of G3K∗ in all possible ways. If the construction
terminates we obtain a proof, else we obtain an infinite tree. By
König’s lemma an infinite tree has an infinite branch, which is
used to define a countermodel to the endsequent.



Uniform completeness: completeness (cont.)

Construction of the countermodel:
Let Γ0 → ∆0 ≡ Γ→ ∆, Γ1 → ∆1 . . . , Γi → ∆i , . . . be the infinite
branch branch. Consider the sets of labelled formulas and
relational atoms

Γ ≡
⋃
i>0

Γi

∆ ≡
⋃
i>0

∆i

We define a Kripke model that forces all the formulas in Γ and
no formula in ∆ , and is therefore a countermodel to the
sequent Γ→ ∆.



Uniform completeness: completeness (cont.)
Frame K ≡ labels appearing in the relational atoms in Γ

Relation R ≡ all the wRo’s in Γ .

Construction of the reduction tree imposes the frame properties
of the countermodel: For instance, in the system G3S4 the
constructed frame is reflexive and transitive.

Valuation: For all the atomic formulas w : P in Γ , set w  P,
and for all atomic formulas o : Q in ∆ , set o 1 Q.

Finally show inductively on the weight of formulas that A is
forced in the model at node w if w : A is in Γ and A is not forced
at node w if w : A is in ∆ . Therefore we have a countermodel
to the endsequent Γ→ ∆.



Completeness and decidability
The proof of uniform completeness can be turned into a
decision procedure for vast classes of modal logics, with
methods popular in the tableaux literature:

Consider root-first proof search in the labelled calculus for the
given logic

Show that proof search does not need to go on forever.
Saturation of sequents together with loop-detection allow to find
a bound.

Construction of countermodels on saturated sequents.

Advantage here: contrary to tableaux, sequent systems are
completely local.

Decidability for the logic of linear time (Boretti and Negri 2009).



Multi-modal systems for logics of social interaction
I Theories of collective intentionality and social choice theory

study aggregation of individual attitudes (preferences,
judgements) into collective attitudes.

I Summative aggregation: shared beliefs, mutual beliefs,
distributed knowledge, common knowledge (Fagin et al.
1995).

I Non-summative aggregation: group beliefs attributed to the
collectivity, not reducible to individuals beliefs; distinction
between belief and acceptance (Gaudou et al., Lorini et al.).

I Raul Hakli and SN (2008, 2011): Proof theory for the logic
of shared and distributed knowledge and of the logic of
acceptance; formal analysis of voting procedures and
location of sources of inconsistences.

I Systems with actions that modify the models: Dynamic
Epistemic Logic, in particular Public Announcement Logic
(P. Maffezioli and SN 2010).

I Knowability logic: Proof analysis of Fitch’s paradox
(Maffezioli, Naibo and SN 2012).



Knowability logic
Here knowability logic is treated only as a motivating problem for a
methodological extension of the method of proof analysis. For the
specific results, see the paper Maffezioli, Naibo, Negri (2012).
Epistemic conceptions of truth justify the knowability principle:

If A is true, then it is possible to know that A A ⊃ 3KA (KP)

Fitch’s paradox: formal derivation that poses minimal
assumptions on the alethic and epistemic operators, and that
starts from the knowability principle to conclude (collective)
omniscience:

All truths are actually known A ⊃ KA (OP)

The paradox was presented by Fitch (1963) but found by Joe
Salerno and Julien Murzi to have actually been suggested by
Church in a series of referee’s reports that date back to 1945
(Salerno 2009).



Knowability logic
The paradox has given rise to a flourishing and ever expanding
literature (can be found even in social networks). The main goal
has been to show that the paradox does not affect an
intuitionistic conception of truth.
The derivation of the paradox is indeed done in classical logic.
Intuitionistic logic proves its negative version, but to prove
intuitionistic underivability of the positive version, a careful proof
analysis is needed.
So the goal has been to develop a proof theory for knowability
logic: a cut-free sequent system for bimodal logic extended by
the knowability principle.

The knowability principle does not reduce to atomic instances,
so it cannot be translated into rules through the methodology
recalled above, and the more expressive language of labelled
sequent calculi comes to use.



A labelled calculus for knowability logic
The rules for intuitionistic implication and for the modalities from
the forcing clauses of Kripke semantics:

I x  A ⊃ B iff for all y , from x 6 y and y  A follows y  B

I x  KA iff for all y , xRKy implies y  A

I x  3A iff for some y , xR3y and y  A

The clauses are converted into rules:
x 6 y ,y :A,Γ→∆, y :B

Γ→∆, x :A ⊃ B
R⊃

x 6 y,x :A⊃B,Γ→∆,y :A x 6 y,x :A⊃B,y :B,Γ→∆

x 6 y,x :A⊃B,Γ→∆
L⊃

y : A, x : KA, xRKy , Γ→ ∆

x : KA, xRKy , Γ→ ∆
LK

xRKy , Γ→ ∆, y : A
Γ→ ∆, x : KA

RK

xR3y , y : A, Γ→ ∆

x : 3A, Γ→ ∆
L3

xR3y , Γ→ ∆, x : 3A, y : A
xR3y , Γ→ ∆, x : 3A

R3

In R⊃, RK, L3, y does not appear in Γ and ∆



From (modal) axioms to (frame) rules
Various extensions obtained by adding the frame properties
that correspond to the added axioms, for example

Logic Axiom Frame property Rule

T 2A ⊃ A ∀x xRx reflexivity

xRx , Γ→ ∆

Γ→ ∆

4 2A ⊃ 22A ∀xyz(xRy & yRz ⊃ xRz) trans.

xRz,xRy ,yRz, Γ→∆

xRy , yRz, Γ→∆

E 3A ⊃ 23A ∀xyz(xRy & xRz ⊃ yRz) euclid.

yRz,xRy ,xRz, Γ→∆

xRy , xRz, Γ→ ∆

B A ⊃ 23A ∀xy(xRy ⊃ yRx) symmetry

yRx , xRy , Γ→ ∆

xRy , Γ→ ∆

D 2A ⊃ 3A ∀x∃y xRy seriality

xRy , Γ→ ∆

Γ→ ∆
y

2 32A ⊃ 23A ∀xyz(xRy & xRz ⊃ ∃w(yRw & zRw))

yRw, zRw, xRy, xRz, Γ→ ∆

xRy, xRz, Γ→ ∆
w

W 2(2A ⊃ A) ⊃ 2A trans., irref., and no infinite R-chains modified L2 and R2

but knowability is different from all such cases...



Finding the right rules for knowability logic
The calculus itself is used to find the frame condition and the
rules needed, by root-first proof search:

⇒ x : A ⊃ 3KA



Finding the right rules for knowability logic
The calculus itself is used to find the frame condition and the
rules needed, by root-first proof search:

x 6 y , y : A→ y : 3KA
⇒ x : A ⊃ 3KA

R⊃



Finding the right rules for knowability logic
The calculus itself is used to find the frame condition and the
rules needed, by root-first proof search:

x 6 y , yR3z, y : A→ y : 3KA
x 6 y , y : A→ y : 3KA

Ser3

⇒ x : A ⊃ 3KA
R⊃



Finding the right rules for knowability logic
The calculus itself is used to find the frame condition and the
rules needed, by root-first proof search:

x 6 y , yR3z, y : A→ y : 3KA, z : KA
x 6 y , yR3z, y : A→ y : 3KA

R3

x 6 y , y : A→ y : 3KA
Ser3

⇒ x : A ⊃ 3KA
R⊃



Finding the right rules for knowability logic
The calculus itself is used to find the frame condition and the
rules needed, by root-first proof search:

x 6 y , yR3z, zRKw , y : A→ y : 3KA, w : A
x 6 y , yR3z, y : A→ y : 3KA, z : KA

RK

x 6 y , yR3z, y : A→ y : 3KA
R3

x 6 y , y : A→ y : 3KA
Ser3

⇒ x : A ⊃ 3KA
R⊃



Finding the right rules for knowability logic
The calculus itself is used to find the frame condition and the
rules needed, by root-first proof search:

x 6 y , y 6 w , yR3z, zRKw , y : A→ y : 3KA, w : A
x 6 y , yR3z, , zRKw , y : A→ y : 3KA, w : A

3K-Tr

x 6 y , yR3z, y : A→ y : 3KA, z : KA
RK

x 6 y , yR3z, y : A→ y : 3KA
R3

x 6 y , y : A→ y : 3KA
Ser3

⇒ x : A ⊃ 3KA
R⊃

the uppermost sequent is derivable by monotonicity.



Finding the right rules for knowability logic (cont.)
The two extra-logical rules used are:

xR3y , Γ→ ∆

Γ→ ∆
Ser3

x 6 z, xR3y , yRKz, Γ→ ∆

xR3y , yRKz, Γ→ ∆
3K-Tr

Ser3 has the condition y /∈ Γ, ∆. The rules correspond to the
frame properties

∀x∃y .xR3y Ser3

∀x∀y∀z(xR3y & yRKz ⊃ x 6 z) 3K-Tr

The universal frame property 3K-Tr is, however, too strong:
The instance of rule 3K-Tr used in the derivation of KP is not
applied (root first) to an arbitrary sequent, but to one in which
the middle term is the eigenvariable introduced by Ser3. So we
have the requirements:

I 3K-Tr has to be applied above Ser3
I The middle term of 3K-Tr is the eigenvariable of Ser3.



Finding the right rules for knowability logic (cont.)
The move to consider the two rules not independently of each
other, but as a system of rules, coupled together by the side
condition on the eigenvariable.
With this proviso, the system of rules is equivalent to the frame
property

∀x∃y(xR3y &∀z(yRKz ⊃ x 6 z)) KP-Fr

KP-Fr is derivable in a G3-sequent system for intuitionistic
first-order logic extended by the two rules Ser3 and 3K-Tr with
the side condition.
Conversely, any derivation that uses rules Ser3 and 3K-Tr in
compliance with the side condition, can be transformed into a
derivation that uses cuts with KP-Fr.



The system with rules 3K-Tr and Ser3 that respect the side
condition is a cut-free equivalent of the system that employs
KP-Fr as an axiomatic sequent in addition to the structural
rules.
The rules that correspond to KP-Fr do not follow the geometric
rule scheme. However, all the structural rules are still
admissible in the presence of such rules. In particular, cut
elimination holds and the proof follows the usual pattern;
a genuine extension of the method of conversion of
axioms into rules.
The system obtained by the addition of suitable combinations of
these two rules provides a complete contraction- and cut-free
system for the knowability logic G3KP, that is, intuitionistic
bimodal logic extended with KP.
Intuitionistic solution to Fitch’s paradox through an exhaustive
proof analysis in KP: OP is not derivable in G3KP.
Warning: Be careful with the side condition in the system of
rules!
More about the Church-Fitch paradox in the article.
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