Belief Context from Language to Logic

Satoshi Tojo

JAIST

March 7, 2012

Satoshi Tojo Belief Context from Language to Logic

- $\lambda o \gamma o \varsigma$ (word) \Longrightarrow logic.
- Tense and aspect
- Negation
- Quantification and anaphora
- Knowledge and Belief
- Mood and modality
- Implicature

What's wrong?

- $P \rightarrow Q$ and $Q \rightarrow R$ implies $Q \rightarrow R$.
 - 'If it rained hard, it rained.'
 - 'If it rained, it didn't rain hard.'
 - Therefore, 'if it rained hard, it didn't rain hard.'
- $P \rightarrow Q$ implies $\neg Q \rightarrow \neg P$.
 - 'If she wrote a letter to Santa Claus, she didn't get an answer.'
 - Therefore, 'if she got an answer from Santa Claus, she didn't write a letter to him.'
- $P \rightarrow Q$ implies $P \wedge P' \rightarrow Q$.
 - 'If Betty had been at the party, Bill would have had a good time.'
 - Therefore, 'if Betty had been at the party and Bill had broken his leg, Bill would have had a good time.'

- 'Anna doesn't know who the democrat candidate is.'
- 'Her favorite TV star is the democrat candidate.'
- Therefore, 'Anna doesn't know who her favorite TV star is.'

Categorial Grammar

A/B: the category becomes A, biting B. (function $B \rightarrow A$)

> John: e Mary: e loves: (t/e)/e

> > $\label{eq:marginal} \underbrace{ \begin{array}{ccc} John: \ e \end{array} } \frac{Mary: \ e \quad loves: \ (t/e)/e}{loves \ Mary: \ t/e} \\ \hline \\ John \ loves \ Mary: \ t \end{array} }$

cf. Context-Free Grammar

 $S \rightarrow NP VP$ $NP \rightarrow N$ $VP \rightarrow V N$

Categories

(individual)		е
sentence	S	t
common noun	Ν	t/e
verb phrase	VP	t/e
intransitive verb	IV	t/e
transitive verb	ΤV	(t/e)/(t/(t/e))
noun phrase / pro	oper no	un
	NP	(t/(t/e))
preposition	Prep	((t/e)/(t/e))/(t/(t/e))
(verb) adverb	Adv	(t/e)/(t/e)
sentence adverb	Adv	t/t
determiner	Det	(t/(t/e))/(t/e)
conjunction	Conj	(t/t)/t

- e an entity a member of U
- t a sentence a truth value

 $\begin{array}{ll} \langle e,t\rangle: \text{ a type of function, biting } e \text{ and returning } t \text{ (predicate)} \\ \langle \langle e,t\rangle,t\rangle & \text{from } \langle e,t\rangle \text{ to } t \\ \langle \langle e,t\rangle,\langle e,t\rangle\rangle & \text{from } \langle e,t\rangle \text{ to } \langle e,t\rangle \\ \langle \langle e,\langle e,t\rangle\rangle,\langle e,t\rangle\rangle & \text{from } \langle e,\langle e,t\rangle\rangle \text{ to } \langle e,t\rangle \\ \cdot & \cdot & \cdot \end{array}$

 $\lambda x[p(x)]$

where x is an input, an argument, a parameter, a set $\{x \mid p(x)\}$, or whatsoever.

• α -conversion

$$\lambda x[p(x)] = \lambda y[p(y)]$$

• β -conversion

$$\begin{cases} \lambda x[p(x)]: \langle A, B \rangle \\ a: A \\ \lambda x[p(x)]](a) = p(a): B \end{cases}$$

• η -conversion

 $\lambda x[p(x)] = p$ if x does not appear free in p

Ex. John loves Mary.

$$[\lambda y \lambda x [love(y)(x)](j)](m)$$

= $\lambda x [love(m)(x)](j)$

$$=$$
 love(m)(j)

$$\frac{j: e}{\frac{\lambda y \lambda x [love(y)(x)]: \langle e, \langle e, t \rangle \rangle \quad m: e}{\lambda x [love(m)(x)]: \langle e, t \rangle}}{love(m)(j): t}$$

Translation function: $f_0(A/B) = \langle f_0(B), f_0(A) \rangle$. (italic: type)

 $f_0((t/e)/(t/(t/e))) = \langle \langle \langle e, t \rangle, t \rangle, \langle e, t \rangle \rangle.$

natural langugae	formal language
categorial grammar	typed lambda calculus
category	type

$$\begin{array}{rcl} \text{every} & \Rightarrow & \lambda Q \lambda P \forall x [Q(x) \to P(x)] \colon \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \\ \text{man} & \Rightarrow & \lambda x [man(x)] \colon \langle e, t \rangle \\ \text{walks} & \Rightarrow & \lambda x [walk(x)] \colon \langle e, t \rangle \\ & & \frac{\lambda Q \lambda P \forall x [Q(x) \to P(x)] & \text{man}}{\langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle & \langle e, t \rangle} \\ & & \frac{\langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle & \langle e, t \rangle}{\lambda P \forall x [man(x) \to P(x)]} & \text{walk} \\ & & \frac{\langle \langle e, t \rangle, t \rangle & \langle e, t \rangle}{\forall x [man(x) \to walk(x)]} \end{array}$$

some
$$\Rightarrow \lambda P \lambda Q \exists x [P(x) \land Q(x)] : \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$$

no $\Rightarrow \lambda P \lambda Q \neg \exists x [P(x) \land Q(x)] : \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$

Type raising

$$j: e \longrightarrow \lambda P[P(j)]: \langle \langle e, t \rangle, t \rangle$$

The meaning of John = The whole set of features and actions of John (λP).

This type-raising is to make the type same as that with 'every student', 'some woman, 'no person', and so on.

$$\begin{array}{rcl} \text{John: } \mathbf{e} &\Rightarrow j: \mathbf{e} \\ \text{walks: } \mathbf{t/e} &\Rightarrow \lambda x[walk(x)]: \langle \mathbf{e}, t \rangle \\ && \frac{\lambda x[walk(x)]: \langle \mathbf{e}, t \rangle \ j: \mathbf{e}}{walk(j): t} \\ && \Downarrow \\ \text{John: } \mathbf{t/(t/e)} &\Rightarrow j: \langle \langle \mathbf{e}, t \rangle, t \rangle \\ && \text{walks: } \mathbf{t/e} &\Rightarrow \lambda x[walk(x)]: \langle \mathbf{e}, t \rangle \\ && \frac{\lambda P[P(j)]: \langle \langle \mathbf{e}, t \rangle, t \rangle \ \lambda x[walk(x)]: \langle \mathbf{e}, t \rangle}{\frac{\lambda x[walk(x)](j): t}{walk(j): t}} \end{array}$$

"A problem about the environment preoccupies every serious politician."

 $\exists y [problem(y) \land \forall x [politician(x) \rightarrow preoccupies(y, x)]]$

 $\forall x [politician(x) \rightarrow \exists y [problem(y) \land preoccupies(y, x)]]$

$$\begin{array}{lll} \text{every} & \Rightarrow & \lambda P \lambda Q \forall x [P(x) \to Q(x)] \colon \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle \\ & \text{a} & \Rightarrow & \lambda P \lambda Q \exists x [P(x) \land Q(x)] \colon \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle \\ & \text{politician} & \Rightarrow & \lambda x [pl(x)] \colon \langle e, t \rangle \\ & \text{problem} & \Rightarrow & \lambda x [pr(x)] \colon \langle e, t \rangle \\ & \text{preoccupies} & \Rightarrow & \lambda y \lambda x [preoc(y)(x)] \colon \langle e, \langle e, t \rangle \rangle \end{array}$$

(ii) Each politician has his own problem.

de re = extensional = reference (Bedeutung) de dicto = intensional = sense (Sinn)

s is an index of a possible world, and the meaning of α depends upon w.

$$\begin{array}{l} \alpha \colon \textbf{a} \leftrightarrow \widehat{} \colon \langle \textbf{s}, \textbf{a} \rangle \leftrightarrow \widehat{} \stackrel{\circ}{\alpha} \colon \textbf{a} \\ \gamma\{x\} \equiv \widehat{} \gamma(x) \text{ (Brace convention)} \end{array}$$

Translation function f_1 :

$$\begin{array}{l} f_1(t) = t \\ f_1(e) = \langle s, e \rangle \\ f_1(t/e) = \langle e, t \rangle \quad (\text{by Bennet}) \\ f_1(A/B) = \langle \langle s, f_1(B) \rangle, f_1(A) \rangle \end{array}$$

(individual) е S t sentence $\langle e, t \rangle$ N common noun verb phrase/ intransitive verb IV $\langle e, t \rangle$ transitive verb (find, love, eat) $IV/(t/IV) \quad \langle \langle s, \langle \langle s, \langle e, t \rangle \rangle, t \rangle \rangle, \langle e, t \rangle \rangle$ transitive verb (believe, assert) IV/t $\langle \langle s, t \rangle, \langle e, t \rangle \rangle$ noun phrase/ proper noun t/IV $\langle \langle s, \langle e, t \rangle \rangle, t \rangle$ Det $\langle \langle s, \langle e, t \rangle \rangle, \langle \langle s, \langle e, t \rangle \rangle, t \rangle \rangle$ determiner

(i) An imaginary decmocrat would win.

(ii) The decmocrat on the TV would win.

He needs someone to talk with.

$$\frac{\lambda P \lambda Q \exists x [P\{x\} \land Q\{x\}] \quad f}{\lambda Q \exists x [f(x) \land Q\{x\}]}$$

$$\frac{\lambda P[P\{j\}] \quad \underbrace{\frac{seek(\lambda Q \exists x [f(x) \land Q\{x\}])}{seek(\lambda Q \exists x [f(x) \land Q\{x\}])}}_{seek(\lambda Q \exists x [f(x) \land Q\{x\}])(j)}$$

Where is he hiding?

 $\frac{\lambda P \lambda Q \exists x [P\{x\} \land Q\{x\}] \quad f}{\frac{\lambda Q \exists x [f(x) \land Q\{x\}]}{\exists x [f(x) \land seek(^{\lambda}P[P\{x_0\}])}} \frac{\lambda P[P\{j\}] \quad \frac{seek \quad \lambda P[P\{x_0\}]}{seek(^{\lambda}P[P\{x_0\}])(j)}}{seek(^{\lambda}P[P\{x_0\}])(j)]}$

• John seeks a wallet/unicorn.

- $B_a^{\exists x[democrat(x) \land win(x)]}$
- $\exists x [democrat(x) \land B_a^win(x)]$
- $\exists x [B_a^{(democrat(x) \land win(x))}]$

- partiality of information
- dynamics: the succeeding sentence affects on the preceding one.
- DRS (Discourse Representation Structure)

"Jones owns Ulysses. It fascinates him."

"Jones teaches linguistics. If he owns a book on semnantics, then he uses it."

External referents 'x' can be accessible from internal structures. Also, 'u' and 'z' can be referred through ' \Rightarrow '.

"Bill owns a Porsche or Fred owns it."

- deictic reading refers what exists in the world.
- anaphoric reading refers the preceding word, not necessarily an object in the world.

"Either Jones doesn't own a car or else he hides it."

Generalized Quantifier

"Susan has found most books which Bill needs."

left: restrictor, to supply candidate set mid (◊) : quantifier right: scope [[restrictor referent]] ⊇ [[scope referent]]. 'y' can be referred through ◊. "The lawyers hired a secretary they liked." "Each lawyer employed a secretary, respectively."

Upper case: abstraction (non-atomic object)

Collective readings

"A group of lawyers employed a common secretary."

"Few lawyers hired a secretary they liked." - cannot be read collective.

"Three lawyers hired a new secretary."

"Every farmer who owns a donkey beats it."

"Three students drank three bottles of beer."

We can refer 'target' by 'trigger' if they are mapped by 'connector.'

- "Plato is on the top shelf."
- "The mushroom omelet left without paying the bill."
- "Plato is on the top shelf. It is bound in leather."
- "Plato is on the top shelf. He is a very interesting author."
 Open connector: both target and trigger can be a pronoun.
- * "The mushroom omelet was too spicy. It left without paying."
 - Closed connector: only the target can be a pronoun.
- "Norman Mailer likes to read himself."
- * "Norman Mailer likes to read itself."
- 'Norman Mailer is not, in itself, a great dissertation topic."

Although \subset is defined in the mother space and the daughter space, $a \in M, M \subset N$ does not necessarily imply $a \in N$. "<u>Max believes</u>_M that in Len's picture_M, the flowers are yellow."

 $R(\text{speaker's real world}) \supset M' \supset M$

mother	daughter	connector
R	"he thinks"	from 'real world' to 'belief'
R	"in Len's picture"	from the model to the picture
R	"in that movie"	from the actor to the movie world

Opaque/transparent reading

"Oedipus believes that the queen of Thebes is a spy."

• transparent reading

• opaque reading

Pierre's Londres, Vizet and Verdi

"Pierre believes that Londres is pretty but London is ugly."

"If Bizet and Verdi had been compatriots, Bizet would have been Italian/ Verdi would have been French."

"George thinks the winner will go to Hong Kong."

space introduction (M)	"George thinks"
attribute (P)	"will go to Hong Kong."
role (r)	the winner
connector (F)	maps from R to M

- P(r): George doesn't know who is the winner. Only he knows the winner will go to HK.
- P(r(M)): Someone George knows is the winner in George's mind, and he will go to HK.
- P(F(r(R))): George doesn't know if 'he' is the winner, though 'he' is actually the winner.

"In 1961, the president was a baby."

space introduction (M)"In 1961"attribute (P)"was a baby."role (r)the presidentconnector (F)maps from R to M

- P(r): In 1961, a president was elected from babies.
- P(r(M)): In 1961, a certain baby was the president.
- P(F(r(R))): The current president was a baby in 1961.

A role can be a label/a name used in metonymy while an attribute is not. But, in translation into first-oder logic, both of them become predicates.

cf. Anna believes that a Democrat would win.

attribute (P) 'will win.' role (r) 'Democrat'

> $M \Vdash \exists x [democrat(x) \land win(x)])$ $\Rightarrow M \Vdash \exists (x : democrat)[win(x)])$ $\Rightarrow M \Vdash \exists x [win(democrat(x))])$

"<u>Hob thinks_{M_1}</u> a witch has killed Bob's horse, and <u>Nob believes_{$M_2}</u> that she killed Cob's pig." (Geach 1972)</u></sub>$

- transparent reading: a certain person in R killed the pic and the horse.
- there exists a certain person in M_1 , and the correspondent person exists in M_2
- a person whose role is 'witch' exists in M_1 , and a person of the same role exists also in M_2 .

"Everybody believes that a witch killed the horse."

- whether 'witch' is in belief or not.
- whether is 'every' collective or distributive.
- whether is 'witch' a role or a person, while the role is common in every mental space.

(a) A woman exists, and everyone believes that she is a witch. The person who killed the horse is she.

(b) Everyone believes that there exists a witch, whose image and features are common among them. The witch killed horses.

(c) Hob believes that a witch is a cute girl with short hair. He believes that the girl killed the horse. Nob believes that a witch is an ugly old woman. She committed the crime.

(d) Everyone believes in witch; but none has seen her, and it is an abstract existence. Everyone just regards that the ominous incident is caused by a witch.

(e) There are two women called Hilda and Brünhilde. Hob believes that Hilda killed the horse, and Nob believes that Brünhilde did it.

- Default Logic & Extension [R. Reiter (1980). A logic for default reasoning. Artificial Intelligence, 13:81-132]
- Predicate Completion & Circumscription [J. McCarthy (1980). Circumscription - A form of non-monotonic reasoning. Artificial Intelligence, 13:27-39.]
- Belief Revision [P. Gardenfors (1988). Knowledge in Flux. The MIT Press.]
- Defeasible reasoning [H. Prakken(1997). Logical Tools for Modelling Legal Argument. Kluwer Academic Press.]

 $K_a \varphi$ agent *a* knows φ $B_a \varphi$ agent *a* believes φ Logic of K $I K_a \varphi \to \varphi (\mathsf{T})$ 2 $K_a \varphi \rightarrow K_a K_a \varphi$ (4) Logic of B $A B_{-}(\rho \rightarrow B_{-}B_{-}(\rho (4)$

- $B_a \forall x [bordeaux(x) \rightarrow mellow(x)]$
- $B_a B_b[bordeaux(c) \land mellow(c)]$
- $B_a \forall j [snob(j) \rightarrow B_j \forall y [bordeaux(y) \rightarrow mellow(y)]]$
- $B_a \forall j D_j \neg I_a president(a)$
- $B_a \forall j \neg D_j I_a president(a)$
- $B_a \exists x [bordeaux(x) \land mellow(x)]$
- $\exists x [bordeaux(x) \land B_a mellow(x)]$
- $\exists x B_a[bordeaux(x) \land mellow(x)]$

- Noam Chomsky: Generative Grammar
- Statistical method: machine learning via the Internet
- Exodus from the Galapaos Islands
- Logic of Name, Label, and Individual constants