Introduction to Hybrid Logic from Semantic Viewpoints

Katsuhiko Sano

School of Information Science JAIST v-sano@jaist.ac.jp

JAIST Spring School @ Kanazawa, Ishikawa 7th March, 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Outline

- Downarrow Binder
- How Can We Combine Hybrid Logics?
 Kripke Semantics
 - Topological Semantics
 - Coalgebraic Semantics

Outline

Outline

- Basic Hybrid Logic
- Downarrow Binder

2 How Can We Combine Hybrid Logics?

- Kripke Semantics
- Topological Semantics
- Coalgebraic Semantics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basic Hybrid Logic Downarrow Binder

Outline

- Pow Can We Combine Hybrid Logics?
 - Kripke Semantics
 - Topological Semantics
 - Coalgebraic Semantics

• p is true at w:

- *p* holds at the world *w*.
- *p* holds at the point of time *w*.
- *p* holds at the coordinate *w*.

• $\Box p$ is true at w:

- p is true at all possible worlds relative to w.
- $p = \rho$ is true at all points of time later than w.
- p is true at all coordinates within 2km from w.

• p is true at w:

- p holds at the world w.
- *p* holds at the point of time *w*.
- *p* holds at the coordinate *w*.

• $\Box p$ is true at w:

- p is true at all possible worlds relative to w.
- o p is true at all points of time later than w
- p is true at all coordinates within 2km from w.

- p is true at w:
 - *p* holds at the world *w*.
 - *p* holds at the point of time *w*.
 - p holds at the coordinate w.
- $\Box p$ is true at w:
 - p is true at all possible worlds relative to w.
 p is true at all points of time later than w.
 p is true at all coordinates within 2km from w

- *p* is true at *w*:
 - *p* holds at the world *w*.
 - *p* holds at the point of time *w*.
 - *p* holds at the coordinate *w*.

• $\Box p$ is true at w:

p is true at all possible worlds relative to w.
 p is true at all points of time later than w.
 p is true at all coordinates within 2km from w

- *p* is true at *w*:
 - *p* holds at the world *w*.
 - *p* holds at the point of time *w*.
 - *p* holds at the coordinate *w*.

• $\Box p$ is true at w:

- *p* is true at all possible worlds relative to *w*.
- *p* is true at all points of time later than *w*.
- p is true at all coordinates within 2km from w.

- *p* is true at *w*:
 - *p* holds at the world *w*.
 - *p* holds at the point of time *w*.
 - *p* holds at the coordinate *w*.
- $\Box p$ is true at w:
 - *p* is true at all possible worlds relative to *w*.
 - p is true at all points of time later than w.
 - *p* is true at all coordinates within 2km from *w*.

- *p* is true at *w*:
 - *p* holds at the world *w*.
 - *p* holds at the point of time *w*.
 - *p* holds at the coordinate *w*.
- $\Box p$ is true at w:
 - *p* is true at all possible worlds relative to *w*.
 - *p* is true at all points of time later than *w*.
 - *p* is true at all coordinates within 2km from *w*.

- *p* is true at *w*:
 - *p* holds at the world *w*.
 - *p* holds at the point of time *w*.
 - *p* holds at the coordinate *w*.
- $\Box p$ is true at w:
 - *p* is true at all possible worlds relative to *w*.
 - *p* is true at all points of time later than *w*.
 - *p* is true at all coordinates within 2km from *w*.

- *p* is true at *w*:
 - *p* holds at the world *w*.
 - *p* holds at the point of time *w*.
 - *p* holds at the coordinate *w*.
- $\Box p$ is true at w:
 - *p* is true at all possible worlds relative to *w*.
 - *p* is true at all points of time later than *w*.
 - *p* is true at all coordinates within 2km from *w*.

Basic Hybrid Logic Downarrow Binder

Fathers/Mothers of Hybrid Logics

Katsuhiko Sano Introduction to Hybrid Logic

Basic Hybrid Logic Downarrow Binder

Fathers/Mothers of Hybrid Logics

Prior

Katsuhiko Sano

Basic Hybrid Logic Downarrow Binder

Fathers/Mothers of Hybrid Logics

Prior

Gargov-Passy-Tinchev

Katsuhiko Sano

Introduction to Hybrid Logic

Naming Points

Katsuhiko Sano Introduction to Hybrid Logic

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Basic Hybrid Logic Downarrow Binder

Basic Hybrid Logic Downarrow Binder

Hybrid Formalism by Examples

• Nominal *i* is true at *w* iff *i* is a name of *w*.

- time: 17:00,07/03/2012,2012,etc.
- space: Hirokasa Hall, Kanazawa, Japan, etc.

• @_ip is true at w iff p is true at the world named by i.

- @_{16:20}(Mary runs)
- @London(Games of the XXX Olympiad are held)

Basic Hybrid Logic Downarrow Binder

Hybrid Formalism by Examples

• Nominal *i* is true at *w* iff *i* is a name of *w*.

- time: 17:00,07/03/2012,2012,etc.
- space: Hirokasa Hall, Kanazawa, Japan, etc.

• @_ip is true at w iff p is true at the world named by i.

- @_{16:20}(Mary runs)
- @London(Games of the XXX Olympiad are held)

Basic Hybrid Logic Downarrow Binder

Hybrid Formalism by Examples

• Nominal *i* is true at *w* iff *i* is a name of *w*.

- time: 17:00,07/03/2012,2012,etc.
- space: Hirokasa Hall, Kanazawa, Japan, etc.
- @_ip is true at w iff p is true at the world named by i.
 @_{16,20}(Mary runs)
 - @_{London}(Games of the XXX Olympiad are held))

Basic Hybrid Logic Downarrow Binder

Hybrid Formalism by Examples

• Nominal *i* is true at *w* iff *i* is a name of *w*.

- time: 17:00,07/03/2012,2012,etc.
- space: Hirokasa Hall, Kanazawa, Japan, etc.

• @_ip is true at w iff p is true at the world named by i.

- @_{16:20}(Mary runs)
- @_{London}(Games of the XXX Olympiad are held)

Basic Hybrid Logic Downarrow Binder

Hybrid Formalism by Examples

- Nominal *i* is true at *w* iff *i* is a name of *w*.
 - time: 17:00,07/03/2012,2012,etc.
 - space: Hirokasa Hall, Kanazawa, Japan, etc.
- @_ip is true at w iff p is true at the world named by i.
 - @ 16:20(Mary runs)
 - @_{London}(Games of the XXX Olympiad are held)

Basic Hybrid Logic Downarrow Binder

Hybrid Formalism by Examples

- Nominal *i* is true at *w* iff *i* is a name of *w*.
 - time: 17:00,07/03/2012,2012,etc.
 - space: Hirokasa Hall, Kanazawa, Japan, etc.
- @_ip is true at w iff p is true at the world named by i.
 - @ 16:20(Mary runs)
 - @London(Games of the XXX Olympiad are held)

First Merit of Hybrid Logic

• 08/03/2012 is future.

- He/she drinks much on 08/03/2012.
- Thus: He/she will drink much.

 Hybrid Logic enables us to formalize the inference containing both local & global information!

First Merit of Hybrid Logic

- 08/03/2012 is future.
- He/she drinks much on 08/03/2012.
- Thus: He/she will drink much.

 Hybrid Logic enables us to formalize the inference containing both local & global information!

First Merit of Hybrid Logic

- 08/03/2012 is future.
- He/she drinks much on 08/03/2012.
- Thus: He/she will drink much.

 Hybrid Logic enables us to formalize the inference containing both local & global information!

First Merit of Hybrid Logic

- 08/03/2012 is future.
- He/she drinks much on 08/03/2012.
- Thus: He/she will drink much.

Within hybrid logic, we can prove the following as a theorem:

 $\langle \text{Future} \rangle i \land @_i p \rightarrow \langle \text{Future} \rangle p$,

where i = (08/03/2012) and p = (He/she drinks much).

• Hybrid Logic enables us to formalize the inference containing both local & global information!

< ロ ト < 母 ト < 臣 ト < 臣 ト 三日 の Q ()</p>

First Merit of Hybrid Logic

- 08/03/2012 is future.
- He/she drinks much on 08/03/2012.
- Thus: He/she will drink much.

Within hybrid logic, we can prove the following as a theorem:

 $\langle \text{Future} \rangle i \land @_i p \rightarrow \langle \text{Future} \rangle p$,

where i = (08/03/2012) and p = (He/she drinks much).

• Hybrid Logic enables us to formalize the inference containing both local & global information!

< □ > < 同 > < 臣 > < 臣 > 三目 → ○ < ○ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Second Merit of HL: Past and Pefect Expressions

• I drink (Present Tense)

*p*I drank (Past)
I had drunk (Pluperfect)
I have drunk (Pefect)
I drink (Present Tense) p I drank (Past) (Past)p I had drunk (Pluperfect) I have drunk (Pefect)

• I drink (Present Tense)

• p

• I drank (Past)

〈 Past 〉p
I had drunk (Pluperfect)
I have drunk (Pefect)

- I drink (Present Tense)
 - p
- I drank (Past)
 - Past >p
- I had drunk (Pluperfect)
 (Past)(Past)p
 I have drunk (Pefect)

- I drink (Present Tense)
 - p
- I drank (Past)
 - 〈Past 〉p
- I had drunk (Pluperfect)
- 〈 Past 〉〈 Past 〉
 I have drunk (Pefect)

- I drink (Present Tense)
 - p
- I drank (Past)
- I had drunk (Pluperfect)
 - < Past >< Past >p
- I have drunk (Pefect)
 (Past)p? or p?

- I drink (Present Tense)
 - p
- I drank (Past)
 - 〈Past 〉p
- I had drunk (Pluperfect)
 - < Past >< Past >p
- I have drunk (Pefect)
 - < Past >p? or p?

- I drink (Present Tense)
 - p
- I drank (Past)
 - 〈Past 〉p
- I had drunk (Pluperfect)
 - A Past \ Past
- I have drunk (Pefect)
 - A Past >p? or p?

Basic Hybrid Logic Downarrow Binder

Katsuhiko Sano Introduction to Hybrid Logic

Basic Hybrid Logic Downarrow Binder

Basic Hybrid Logic Downarrow Binder

Hans Reichenbach (1891 - 1953)

Basic Hybrid Logic Downarrow Binder

Hans Reichenbach (1891 - 1953)

Elements of Symbolic Logic (1947)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Basic Hybrid Logic Downarrow Binder

Reichenbachian Tense Analysis

Key ingredients are:

- Point of speech (S)
- Point of event (E)
- Point of reference (R)

Basic Hybrid Logic Downarrow Binder

Reichenbachian Tense Analysis (Cont.)

Expression	Reichenbach	
I drank (Past)	E = R < S	
I have drunk (Pefect)	$E < \mathbf{R} = S$	
I drink (Present)	$E = \mathbf{R} = S$	

Katsuhiko Sano Introduction to Hybrid Logic

Basic Hybrid Logic Downarrow Binder

Reichenbachian Tense Analysis (Cont.)

Expression	Reichenbach	HL
I drank (Past)	E = R < S	$\langle \text{Past} \rangle (p \land i)$
I have drunk (Pefect)	$E < \mathbf{R} = S$	$i \land \langle \text{Past} \rangle p$
I drink (Present)	$E = \mathbf{R} = S$	<u>i</u> ∧ p

Katsuhiko Sano Introduction to Hybrid Logic

Properties	ML	HL
Reflexivity	$\Box p ightarrow p$	
Transitivity	$\Box p \rightarrow \Box \Box p$	
Irreflexivity	Undefinable	
Antisymmetry	Undefinable	
$\exists x, y.[xRy\&x \neq y]$	Undefinable	

• Note: $@_i j$ expresses 'i = j' and $@_i \diamond j$ expresses 'iRj'.

• φ is pure if φ contains no ordinary proposition variables.

Properties	ML	HL
Reflexivity	$\Box p ightarrow p$	
Transitivity	$\Box p \rightarrow \Box \Box p$	
Irreflexivity	Undefinable	
Antisymmetry	Undefinable	
$\exists x, y.[xRy\&x \neq y]$	Undefinable	

• Note: $@_i j$ expresses 'i = j' and $@_i \diamond j$ expresses 'iRj'.

• φ is pure if φ contains no ordinary proposition variables.

< ロ ト < 母 ト < 臣 ト < 臣 ト 三日 の Q ()</p>

Properties	ML	HL
Reflexivity	$\Box p ightarrow p$	@ _i 令i
Transitivity	$\Box p \rightarrow \Box \Box p$	$(@_i \diamond j \land @_j \diamond k) \to @_i \diamond k$
Irreflexivity	Undefinable	¬@ _i ◊i
Antisymmetry	Undefinable	$@_i \diamond j \land @_j \diamond i \to @_i j$
$\exists x, y.[xRy\&x \neq y]$	Undefinable	Undefinable

• Note: $@_i j$ expresses 'i = j' and $@_i \diamond j$ expresses 'iRj'.

• φ is pure if φ contains no ordinary proposition variables.

< ロ ト < 母 ト < 臣 ト < 臣 ト 三日 の Q ()</p>

Properties	ML	HL
Reflexivity	$\Box p ightarrow p$	@ _i \$i
Transitivity	$\Box p \rightarrow \Box \Box p$	$(@_i \diamond j \land @_j \diamond k) \to @_i \diamond k$
Irreflexivity	Undefinable	¬@ _i ◊i
Antisymmetry	Undefinable	$@_i \diamond j \land @_j \diamond i \to @_i j$
$\exists x, y.[xRy\&x \neq y]$	Undefinable	Undefinable

- Note: $@_i j$ expresses i = j and $@_i \diamond j$ expresses iRj.
- φ is pure if φ contains no ordinary proposition variables.

Pure Completeness wrt Kripke Semantics

Let $\mathbf{K}_{\mathcal{H}}$ be the axiomatization of HL.

Pure Completeness wrt Kripke Frames For any set Λ of pure formulas, $\mathbf{K}_{\mathcal{H}} + \Lambda$ (as new axioms) is strongly complete wrt the class of frames defined by Λ .

E.g.: φ is valid on any SPOs iff φ is a theorem of $\mathbf{K}_{\mathcal{H}} + \{\neg @_i \diamond i, (@_i \diamond j \land @_j \diamond k) \rightarrow @_i \diamond k\}.$

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シッペ

Basic Hybrid Logic Downarrow Binder

Rules with Side-condition in $K_{\mathcal{H}}$

(Name) $\vdash i \rightarrow \varphi \Rightarrow \vdash \varphi$, where *i* does not occur in φ . (BG) $\vdash @_i \diamondsuit j \rightarrow @_j \varphi \Rightarrow \vdash @_i \Box \varphi$, where *j* does not appear in $@_i \Box \varphi$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 </

Basic Hybrid Logic Downarrow Binder

Rules with Side-condition in $K_{\mathcal{H}}$

Recall:

$$\frac{\vdash \varphi \to \psi}{\vdash \exists x. \varphi \to \psi},$$

where *x* does not occur free in $\exists x. \varphi \rightarrow \psi$.

Basic Hybrid Logic Downarrow Binder

Rules with Side-condition in $K_{\mathcal{H}}$

$$\begin{array}{l} (\textbf{Name}) \hspace{0.1cm} \vdash \hspace{0.1cm} i \rightarrow \varphi \Rightarrow \vdash \varphi, \hspace{0.1cm} \text{where } i \hspace{0.1cm} \text{does not occur in } \varphi. \\ (\textbf{BG}) \hspace{0.1cm} \vdash \hspace{0.1cm} @_i \Diamond j \rightarrow @_j \varphi \Rightarrow \vdash @_i \Box \varphi, \\ \hspace{0.1cm} \text{where } j \hspace{0.1cm} \text{does not appear in } @_i \Box \varphi. \end{array}$$

Recall:

$$\frac{\vdash \varphi \to \psi}{\vdash \exists x. \varphi \to \psi},$$

where *x* does not occur free in $\exists x. \varphi \rightarrow \psi$.

These are TABELEAU RULES!

Basic Hybrid Logic Downarrow Binder

Intuitive Meaning of (Name)

 (Name) If φ is consistent, then i ∧ φ is consistent for some fresh i.

Basic Hybrid Logic Downarrow Binder

Intuitive Meaning of (BG)

(BG) If @_i◊φ is consistent, then @_i◊j ∧ @_jφ is consistent for some fresh j.

Basic Hybrid Logic Downarrow Binder

Outline

- Pow Can We Combine Hybrid Logics?
 - Kripke Semantics
 - Topological Semantics
 - Coalgebraic Semantics

Basic Hybrid Logic Downarrow Binder

Until-operator

•
$$w \models \mathcal{U}(\varphi, \psi)$$
 iff

$\exists w'.[wRw' \text{ and } w' \models \varphi \text{ and} \\ \forall w''.((wRw'' \text{ and } w''Rw') \text{ implies } w'' \models \varphi)]$

Basic Hybrid Logic Downarrow Binder

Until-operator

•
$$w \models \mathcal{U}(\varphi, \psi)$$
 iff

$\exists w'.[wRw' \text{ and } w' \models \varphi \text{ and} \\ \forall w''.((wRw'' \text{ and } w''Rw') \text{ implies } w'' \models \varphi)]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Until-operator

- $w \models \mathcal{U}(\varphi, \psi)$ iff
 - $\exists w'.[wRw' \text{ and } w' \models \varphi \text{ and} \\ \forall w''.((wRw'' \text{ and } w''Rw') \text{ implies } w'' \models \varphi)]$

Until-operator

• $w \models \mathcal{U}(\varphi, \psi)$ iff

$\exists w'.[wRw' \text{ and } w' \models \varphi \text{ and} \\ \forall w''.((wRw'' \text{ and } w''Rw') \text{ implies } w'' \models \varphi)]$

Until-operator

• $w \models \mathcal{U}(\varphi, \psi)$ iff

$\exists w'.[wRw' \text{ and } w' \models \varphi \text{ and} \\ \forall w''.((wRw'' \text{ and } w''Rw') \text{ implies } w'' \models \varphi)]$

Basic Hybrid Logic Downarrow Binder

Downarrow Binder

Basic Hybrid Logic Downarrow Binder

Downarrow Binder

Basic Hybrid Logic Downarrow Binder

Downarrow Binder

Katsuhiko Sano Introduction to Hybrid Logic

Basic Hybrid Logic Downarrow Binder

Until in terms of $\mathop{\downarrow}$

Katsuhiko Sano Introduction to Hybrid Logic

Basic Hybrid Logic Downarrow Binder

Until in terms of \downarrow

Katsuhiko Sano Introduction to Hybrid Logic

Basic Hybrid Logic Downarrow Binder

Until in terms of \downarrow

Katsuhiko Sano Introduction to Hybrid Logic
Basic Hybrid Logic Downarrow Binder

Until in terms of \downarrow

Basic Hybrid Logic Downarrow Binder

Until in terms of \downarrow

$w \models \downarrow i.\langle \text{Future } \rangle (\downarrow j.(\varphi \land @_i(\langle \text{Future } \rangle j \to \psi)))$

Katsuhiko Sano Introduction to Hybrid Logic

Pure Completeness with Downarrow

- We can capture the behavior of \downarrow by the axiom: $@_i(\downarrow j. \varphi \leftrightarrow \varphi[i/j]).$
- Pure Completeness holds.

< ロ ト < 母 ト < 臣 ト < 臣 ト 三日 の Q ()</p>

Basic Hybrid Logic Downarrow Binder

Comments on Decidability

• Adding *i* and @*i* to Basic ML preserves decidability.

- Satisfiablity problem of Basic HL on the class of all frames is still PSPACE-complete (Areces, Blackburn & Marx 199
- HL with ↓ '=' the generated-submodel-invariant fragment of FOL.
- Adding 1 to Basic HL gives rise to undecidability result (Areces, Blackburn & Marx 1999).

Comments on Decidability

- Adding *i* and @*i* to Basic ML preserves decidability.
- Satisfiablity problem of Basic HL on the class of all frames is still PSPACE-complete (Areces, Blackburn & Marx 1999).
- HL with \$\geq\$ '=' the generated-submodel-invariant fragment of FOL.
- Adding ↓ to Basic HL gives rise to undecidability result (Areces, Blackburn & Marx 1999).

Comments on Decidability

- Adding *i* and @*i* to Basic ML preserves decidability.
- Satisfiablity problem of Basic HL on the class of all frames is still PSPACE-complete (Areces, Blackburn & Marx 1999).
- HL with ↓ '=' the generated-submodel-invariant fragment of FOL.
- Adding ↓ to Basic HL gives rise to undecidability result (Areces, Blackburn & Marx 1999).

Comments on Decidability

- Adding *i* and @*i* to Basic ML preserves decidability.
- Satisfiablity problem of Basic HL on the class of all frames is still PSPACE-complete (Areces, Blackburn & Marx 1999).
- HL with ↓ '=' the generated-submodel-invariant fragment of FOL.
- Adding ↓ to Basic HL gives rise to undecidability result (Areces, Blackburn & Marx 1999).

Kripke Semantics Topological Semantics Coalgebraic Semantics

Outline

2 How Can We Combine Hybrid Logics?

- Kripke Semantics
- Topological Semantics
- Coalgebraic Semantics

Suppose that you are in a downstairs room of H-Hall on 4th March. Let us consider the following scenario:

• How can we formalize this inference?

Suppose that you are in a downstairs room of H-Hall on 4th March. Let us consider the following scenario:

"You recieved a reminder from your Google calendar: JAIST-SS starts on 5th March at Hirosaka Hall. 5th March is still future. H-Hall is an upstairs room of this place. So, JAIST-SS will start in the room overhead."

• How can we formalize this inference?

Suppose that you are in a downstairs room of H-Hall on 4th March. Let us consider the following scenario:

"You recieved a reminder from your Google calendar: JAIST-SS starts on 5th March at Hirosaka Hall. 5th March is still future. H-Hall is an upstairs room of this place. So, JAIST-SS will start in the room overhead."

• How can we formalize this inference?

Suppose that you are in a downstairs room of H-Hall on 4th March. Let us consider the following scenario:

"You recieved a reminder from your Google calendar: JAIST-SS starts on 5th March at Hirosaka Hall. 5th March is still future. H-Hall is an upstairs room of this place. So, JAIST-SS will start in the room overhead."

• How can we formalize this inference?

 $@_i@_ap \land \langle \text{Future} \rangle i \land \langle \text{Upstairs} \rangle a \rightarrow \langle \text{Future} \rangle \langle \text{Upstairs} \rangle p$,

where i = (05/03.), a = (H-Hall) & p = (JAIST-SS) starts'.

Suppose that you are in a downstairs room of H-Hall on 4th March. Let us consider the following scenario:

"You recieved a reminder from your Google calendar: JAIST-SS starts on 5th March at Hirosaka Hall. 5th March is still future. H-Hall is an upstairs room of this place. So, JAIST-SS will start in the room overhead."

• How can we formalize this inference?

 $@_i@_ap \land \langle \text{Future} \rangle i \land \langle \text{Upstairs} \rangle a \rightarrow \langle \text{Future} \rangle \langle \text{Upstairs} \rangle p$,

where i = (05/03.), a = (H-Hall) & p = (JAIST-SS) starts'.

Suppose that you are in a downstairs room of H-Hall on 4th March. Let us consider the following scenario:

"You recieved a reminder from your Google calendar: JAIST-SS starts on 5th March at Hirosaka Hall. 5th March is still future. H-Hall is an upstairs room of this place. So, JAIST-SS will start in the room overhead."

• How can we formalize this inference?

 $@_i @_a p \land \langle \text{Future } \rangle i \land \langle \text{Upstairs } \rangle a \rightarrow \langle \text{Future } \rangle \langle \text{Upstairs } \rangle p$,

where i = (05/03.), a = (H-Hall) & p = (JAIST-SS) starts'.

Suppose that you are in a downstairs room of H-Hall on 4th March. Let us consider the following scenario:

"You recieved a reminder from your Google calendar: JAIST-SS starts on 5th March at Hirosaka Hall. 5th March is still future. H-Hall is an upstairs room of this place. So, JAIST-SS will start in the room overhead."

• How can we formalize this inference?

 $@_i @_a p \land \langle \text{Future} \rangle i \land \langle \text{Upstairs} \rangle a \rightarrow \langle \text{Future} \rangle \langle \text{Upstairs} \rangle p$,

where i = (05/03.), a = (H-Hall) & p = (JAIST-SS) starts'.

Suppose that you are in a downstairs room of H-Hall on 4th March. Let us consider the following scenario:

"You recieved a reminder from your Google calendar: JAIST-SS starts on 5th March at Hirosaka Hall. 5th March is still future. H-Hall is an upstairs room of this place. So, JAIST-SS will start in the room overhead."

• How can we formalize this inference?

 $@_i @_a p \land \langle \text{Future} \rangle i \land \langle \text{Upstairs} \rangle a \rightarrow \langle \text{Future} \rangle \langle \text{Upstairs} \rangle p$,

where i = (05/03.), a = (H-Hall) & p = (JAIST-SS) starts'.

Formalism for Hybrid Product

• We need two kinds of Boxes:

- \square_1 (e.g. for time)
- \square_2 (e.g. for space)

• We also need two kinds of nominals:

- *i*-nominals: *i*, *j*, *k*,
- s-nominals: a, b, c,....
- Each kind of nominals has its satisfaction operators:
 - $\circ \circ \circ \circ_{i_1} \circ \circ_{j_2} \circ \circ_{k_1 \cdots k_i}$
- But, we have only one kind of proposition letters.

Formalism for Hybrid Product

• We need two kinds of Boxes:

- \square_1 (e.g. for time)
- □₂ (e.g. for space)

• We also need two kinds of nominals:

- t-nominals: i, j, k,
- s-nominals: a, b, c,
- Each kind of nominals has its satisfaction operators
 - $\circ : @_i, @_j, @_k, \dots$
 - $o : \mathcal{O}_a, \mathcal{O}_b, \mathcal{O}_b, \cdots$
- But, we have only one kind of proposition letters.

Formalism for Hybrid Product

• We need two kinds of Boxes:

- \square_1 (e.g. for time)
- □₂ (e.g. for space)

• We also need two kinds of nominals:

- t-nominals: i, j, k, ...
- s-nominals: a, b, c,
- Each kind of nominals has its satisfaction operators:
- But, we have only one kind of proposition letters.

Formalism for Hybrid Product

• We need two kinds of Boxes:

- \square_1 (e.g. for time)
- □₂ (e.g. for space)

• We also need two kinds of nominals:

- *t*-nominals: *i*, *j*, *k*, ...
- s-nominals: a, b, c, ...
- Each kind of nominals has its satisfaction operators:

But, we have only one kind of proposition letters.

Formalism for Hybrid Product

• We need two kinds of Boxes:

- \square_1 (e.g. for time)
- □₂ (e.g. for space)

• We also need two kinds of nominals:

- *t*-nominals: *i*, *j*, *k*, ...
- *s*-nominals: *a*, *b*, *c*, ...
- Each kind of nominals has its satisfaction operators:

But, we have only one kind of proposition letters.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Formalism for Hybrid Product

• We need two kinds of Boxes:

- \square_1 (e.g. for time)
- □₂ (e.g. for space)

• We also need two kinds of nominals:

- *t*-nominals: *i*, *j*, *k*, ...
- *s*-nominals: *a*, *b*, *c*, ...
- Each kind of nominals has its satisfaction operators:

 ^(a) _(b) ^(a)
 ^(b)
- But, we have only one kind of proposition letters.

Formalism for Hybrid Product

• We need two kinds of Boxes:

- \square_1 (e.g. for time)
- □₂ (e.g. for space)
- We also need two kinds of nominals:
 - *t*-nominals: *i*, *j*, *k*, ...
 - *s*-nominals: *a*, *b*, *c*, ...
- Each kind of nominals has its satisfaction operators:
 - $@_i, @_j, @_k, \ldots$
 - @_a, @_b, @_c, ...

• But, we have only one kind of proposition letters.

Formalism for Hybrid Product

• We need two kinds of Boxes:

- \square_1 (e.g. for time)
- □₂ (e.g. for space)
- We also need two kinds of nominals:
 - *t*-nominals: *i*, *j*, *k*, ...
 - *s*-nominals: *a*, *b*, *c*, ...
- Each kind of nominals has its satisfaction operators:
 - $@_i, @_j, @_k, \ldots$
 - $a_{a}, a_{b}, a_{c}, \dots$

• But, we have only one kind of proposition letters.

Formalism for Hybrid Product

• We need two kinds of Boxes:

- \square_1 (e.g. for time)
- □₂ (e.g. for space)
- We also need two kinds of nominals:
 - *t*-nominals: *i*, *j*, *k*, ...
 - *s*-nominals: *a*, *b*, *c*, ...
- Each kind of nominals has its satisfaction operators:
 - $@_i, @_j, @_k, \ldots$
 - @_a, @_b, @_c, ...

• But, we have only one kind of proposition letters.

Formalism for Hybrid Product

• We need two kinds of Boxes:

- \square_1 (e.g. for time)
- □₂ (e.g. for space)
- We also need two kinds of nominals:
 - *t*-nominals: *i*, *j*, *k*, ...
 - *s*-nominals: *a*, *b*, *c*, ...
- Each kind of nominals has its satisfaction operators:

•
$$@_i, @_j, @_k, \ldots$$

- @_a, @_b, @_c, ...
- But, we have only one kind of proposition letters.

Kripke Semantics Topological Semantics Coalgebraic Semantics

An Example: Product of Kripke Frames

Space: $\langle X, S \rangle$ Time: $\langle T, R \rangle$

Product of Kripke Frames

 $\mathfrak{F} = \langle T, R \rangle, \mathfrak{G} = \langle X, S \rangle$: Kripke frames. Then, we define the product of Kripke frames $\mathfrak{F} \times \mathfrak{G} = \langle T \times X, R_h, R_v \rangle$ by:

- $\langle t, x \rangle R_h \langle t', x' \rangle$ iff tRt' and x = x'.
- $\langle t, x \rangle R_v \langle t', x' \rangle$ iff t = t' and xSx'.

What is a valuation *V* on $\mathfrak{F} \times \mathfrak{G}$?

Product of Kripke Frames

 $\mathfrak{F} = \langle T, R \rangle, \mathfrak{G} = \langle X, S \rangle$: Kripke frames. Then, we define the product of Kripke frames $\mathfrak{F} \times \mathfrak{G} = \langle T \times X, R_h, R_v \rangle$ by:

- $\langle t, x \rangle R_h \langle t', x' \rangle$ iff tRt' and x = x'.
- $\langle t, x \rangle R_v \langle t', x' \rangle$ iff t = t' and xSx'.

What is a valuation *V* on $\mathfrak{F} \times \mathfrak{G}$?

Kripke Semantics Topological Semantics Coalgebraic Semantics

A Valuation of Product of Kripke Frames

For any *p*, it suffices to define $V(p) \subseteq T \times X$, i.e. a subset of '2D-plane'. How about nominals?

Katsuhiko Sano Introduction to Hybrid Logic

Kripke Semantics Topological Semantics Coalgebraic Semantics

A Valuation of Product of Kripke Frames

For any *p*, it suffices to define $V(p) \subseteq T \times X$, i.e. a subset of '2D-plane'. How about nominals?

Kripke Semantics Topological Semantics Coalgebraic Semantics

Naming Lines

Katsuhiko Sano Introduction to Hybrid Logic

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Kripke Semantics Topological Semantics Coalgebraic Semantics

Semantic Idea behind Two Nominals

Katsuhiko Sano Introduction to Hybrid Logic

Kripke Semantics Topological Semantics Coalgebraic Semantics

Semantic Idea behind Two Nominals (Cont.)

To s-nominal a, we assign a horizontal line $T \times \{a^V\}$, $\mathbb{R} \to \mathbb{R}$

Katsuhiko Sano Introduction to Hybrid Logic

Kripke Semantics Topological Semantics Coalgebraic Semantics

Truth Condition for Satisfaction Operators

• $@_i @_a p$ is true at $\langle x, y \rangle$

- iff $@_a p$ is true at $\langle i^V, y \rangle$
- iff p is true at $\langle i^V, a^V \rangle$

< ロ ト < 母 ト < 臣 ト < 臣 ト 三日 の Q ()</p>

Kripke Semantics Topological Semantics Coalgebraic Semantics

Truth Condition for Satisfaction Operators

- $@_i@_ap$ is true at $\langle x, y \rangle$
- iff $@_a p$ is true at $\langle i^V, y \rangle$
- iff *p* is true at $\langle i^V, a^V \rangle$
Kripke Semantics Topological Semantics Coalgebraic Semantics

Truth Condition for Satisfaction Operators

- $@_i@_ap$ is true at $\langle x, y \rangle$
- iff $@_a p$ is true at $\langle i^V, y \rangle$
- iff *p* is true at $\langle i^V, a^V \rangle$

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シッペ

Kripke Semantics Topological Semantics Coalgebraic Semantics

Semantic Understanding of Our Example (1)

 $@_i@_ap \land \langle \text{Future} \rangle i \land \langle \text{Upstairs} \rangle a \rightarrow \langle \text{Future} \rangle \langle \text{Upstairs} \rangle p.$ $@_i@_ap$ is true at $\langle t, x \rangle$ iff:

Kripke Semantics Topological Semantics Coalgebraic Semantics

Semantic Understanding of Our Example (2)

 \langle Future $\rangle i$ is true at $\langle t, x \rangle$ iff:

Kripke Semantics Topological Semantics Coalgebraic Semantics

Semantic Understanding of Our Example (3)

 $\langle \text{Upstairs} \rangle a$ is true at $\langle t, x \rangle$ iff:

Kripke Semantics Topological Semantics Coalgebraic Semantics

Semantic Understanding of Our Example (4)

Thus, \langle Future $\rangle \langle$ Upstairs $\rangle p$ is true at $\langle t, x \rangle$.

Roughly, we need the two kinds of axioms and rules: $\mathbf{K}_{\mathcal{H}}$ for \Box_1 and $@_i \& \mathbf{K}_{\mathcal{H}}$ for \Box_2 and $@_a$.

Furthermore, we also need the five 'interaction' axioms:

• $@_a@_ip \leftrightarrow @_i@_ap$.

• $@_{\text{H-Hall}} @_{05/03} p \leftrightarrow @_{05/03} @_{\text{H-Hall}} p.$

• $\diamond_1 @_a p \leftrightarrow @_a \diamond_1 p.$

• $\langle Future \rangle @_{H-Hall} \rho \leftrightarrow @_{H-Hall} \langle Future \rangle \rho.$

• $\diamond_2 @_i p \leftrightarrow @_i \diamond_2 p$.

• $\langle \text{Upstairs} \rangle @_{05/03} p \leftrightarrow @_{05/03} \langle \text{Upstairs} \rangle p.$

- $@_i a \leftrightarrow a$.
- @_ai ↔ i.

Roughly, we need the two kinds of axioms and rules: $\mathbf{K}_{\mathcal{H}}$ for \Box_1 and $@_i \& \mathbf{K}_{\mathcal{H}}$ for \Box_2 and $@_a$.

Furthermore, we also need the five 'interaction' axioms:

- $@_a@_i p \leftrightarrow @_i@_a p$.
 - $@_{\text{H-Hall}} @_{05/03} p \leftrightarrow @_{05/03} @_{\text{H-Hall}} p.$
- $\diamond_1 @_a p \leftrightarrow @_a \diamond_1 p.$

• $\langle Future \rangle @_{H-Hall} \rho \leftrightarrow @_{H-Hall} \langle Future \rangle \rho.$

• $\diamond_2 @_i p \leftrightarrow @_i \diamond_2 p$.

• $\langle \text{Upstairs} \rangle @_{05/03} p \leftrightarrow @_{05/03} \langle \text{Upstairs} \rangle p.$

- $@_i a \leftrightarrow a$.
- @_ai ↔ i.

Roughly, we need the two kinds of axioms and rules: $\mathbf{K}_{\mathcal{H}}$ for \Box_1 and $@_i \& \mathbf{K}_{\mathcal{H}}$ for \Box_2 and $@_a$.

Furthermore, we also need the five 'interaction' axioms:

- $@_a@_i p \leftrightarrow @_i@_a p$.
 - $@_{\text{H-Hall}} @_{05/03} p \leftrightarrow @_{05/03} @_{\text{H-Hall}} p$.
- $\diamond_1 @_a \rho \leftrightarrow @_a \diamond_1 \rho$.

• $\langle Future \rangle @_{H-Hall} \rho \leftrightarrow @_{H-Hall} \langle Future \rangle \rho.$

• $\diamond_2@_i p \leftrightarrow @_i \diamond_2 p$.

• $\langle \text{Upstairs} \rangle @_{05/03} p \leftrightarrow @_{05/03} \langle \text{Upstairs} \rangle p.$

- $@_i a \leftrightarrow a$.
- @_ai ↔ i.

Roughly, we need the two kinds of axioms and rules: $\mathbf{K}_{\mathcal{H}}$ for \Box_1 and $@_i \& \mathbf{K}_{\mathcal{H}}$ for \Box_2 and $@_a$.

Furthermore, we also need the five 'interaction' axioms:

• $@_a@_i p \leftrightarrow @_i@_a p$.

• $@_{\text{H-Hall}} @_{05/03} p \leftrightarrow @_{05/03} @_{\text{H-Hall}} p.$

• $\diamond_1 @_a \rho \leftrightarrow @_a \diamond_1 \rho$.

• $\langle Future \rangle @_{H-Hall} \rho \leftrightarrow @_{H-Hall} \langle Future \rangle \rho.$

• $\diamond_2 @_i p \leftrightarrow @_i \diamond_2 p.$

• $\langle \text{Upstairs} \rangle @_{05/03} p \leftrightarrow @_{05/03} \langle \text{Upstairs} \rangle p.$

- @_ia ↔ a.
- @_ai ↔ i.

< ロ ト < 母 ト < 臣 ト < 臣 ト 三日 の Q ()</p>

Roughly, we need the two kinds of axioms and rules: $\mathbf{K}_{\mathcal{H}}$ for \Box_1 and $@_i \& \mathbf{K}_{\mathcal{H}}$ for \Box_2 and $@_a$.

Furthermore, we also need the five 'interaction' axioms:

• $@_a@_ip \leftrightarrow @_i@_ap$.

• $@_{\text{H-Hall}} @_{05/03} p \leftrightarrow @_{05/03} @_{\text{H-Hall}} p$.

• $\diamond_1 @_a \rho \leftrightarrow @_a \diamond_1 \rho$.

• $\langle Future \rangle @_{H-Hall} p \leftrightarrow @_{H-Hall} \langle Future \rangle p.$

• $\diamond_2@_i p \leftrightarrow @_i \diamond_2 p$.

• $\langle \text{Upstairs} \rangle @_{05/03} p \leftrightarrow @_{05/03} \langle \text{Upstairs} \rangle p.$

- @_ia ↔ a.
- $@_ai \leftrightarrow i.$

Roughly, we need the two kinds of axioms and rules: $\mathbf{K}_{\mathcal{H}}$ for \Box_1 and $@_i \& \mathbf{K}_{\mathcal{H}}$ for \Box_2 and $@_a$.

Furthermore, we also need the five 'interaction' axioms:

• $@_a@_ip \leftrightarrow @_i@_ap$.

• $@_{\text{H-Hall}} @_{05/03} p \leftrightarrow @_{05/03} @_{\text{H-Hall}} p.$

• $\diamond_1 @_a \rho \leftrightarrow @_a \diamond_1 \rho$.

• $\langle \text{Future} \rangle @_{\text{H-Hall}} p \leftrightarrow @_{\text{H-Hall}} \langle \text{Future} \rangle p.$

• $\diamond_2@_ip \leftrightarrow @_i\diamond_2p$.

• $\langle \text{Upstairs} \rangle @_{05/03} \rho \leftrightarrow @_{05/03} \langle \text{Upstairs} \rangle \rho.$

- $@_i a \leftrightarrow a$.
- $@_ai \leftrightarrow i.$

Roughly, we need the two kinds of axioms and rules: $\mathbf{K}_{\mathcal{H}}$ for \Box_1 and $@_i \& \mathbf{K}_{\mathcal{H}}$ for \Box_2 and $@_a$.

Furthermore, we also need the five 'interaction' axioms:

• $@_a@_i p \leftrightarrow @_i@_a p$.

• $@_{\text{H-Hall}} @_{05/03} p \leftrightarrow @_{05/03} @_{\text{H-Hall}} p$.

• $\diamond_1 @_a \rho \leftrightarrow @_a \diamond_1 \rho$.

• $\langle Future \rangle @_{H-Hall} p \leftrightarrow @_{H-Hall} \langle Future \rangle p.$

- $\diamond_2 @_i p \leftrightarrow @_i \diamond_2 p.$
 - $\langle \text{Upstairs} \rangle @_{05/03} p \leftrightarrow @_{05/03} \langle \text{Upstairs} \rangle p.$
- @_ia ↔ a.
- $@_ai \leftrightarrow i.$

Roughly, we need the two kinds of axioms and rules: $\mathbf{K}_{\mathcal{H}}$ for \Box_1 and $@_i \& \mathbf{K}_{\mathcal{H}}$ for \Box_2 and $@_a$.

Furthermore, we also need the five 'interaction' axioms:

• $@_a@_i p \leftrightarrow @_i@_a p$.

• $@_{\text{H-Hall}} @_{05/03} p \leftrightarrow @_{05/03} @_{\text{H-Hall}} p.$

• $\diamond_1 @_a \rho \leftrightarrow @_a \diamond_1 \rho$.

• $\langle Future \rangle @_{H-Hall} p \leftrightarrow @_{H-Hall} \langle Future \rangle p.$

• $\diamond_2 @_i p \leftrightarrow @_i \diamond_2 p.$

• $\langle \text{Upstairs} \rangle @_{05/03} p \leftrightarrow @_{05/03} \langle \text{Upstairs} \rangle p.$

- $@_i a \leftrightarrow a$.
- $@_a i \leftrightarrow i$.

Interaction Axioms for Two kinds of Nominals

We explain $a \to @_i a$ alone. Assume that a is true at $\langle t, x \rangle$.

Kripke Semantics Topological Semantics Coalgebraic Semantics

Interaction Axioms for Two kinds of Nominals (Cont.)

Then, *a* is true also at $\langle i^{\vee}, x \rangle$, i.e. $@_i a$ is true at $\langle t, x \rangle$.

Main Result: Pure Completeness of Hybrid Products

Let $[\textbf{K}_{\mathcal{H}}, \textbf{K}_{\mathcal{H}}]$ be our axiomatization of hybrid products.

Pure Completeness wrt Product Frames (S.2010)

For any set Λ of pure formulas, $[\mathbf{K}_{\mathcal{H}}, \mathbf{K}_{\mathcal{H}}] + \Lambda$ (as new axioms) is strongly complete wrt the class of product Kripke frames defined by Λ .

K. Sano

Axiomatizing Hybrid Products.

Journal of Applied Logic, Vol.8, pp.459-474, 2010

Main Result: Pure Completeness of Hybrid Products

Let $[K_{\mathcal{H}}, K_{\mathcal{H}}]$ be our axiomatization of hybrid products.

Pure Completeness wrt Product Frames (S.2010) For any set Λ of pure formulas, $[\mathbf{K}_{\mathcal{H}}, \mathbf{K}_{\mathcal{H}}] + \Lambda$ (as new axioms) is strongly complete wrt the class of product Kripke frames defined by Λ .

K. Sano

Axiomatizing Hybrid Products.

Journal of Applied Logic, Vol.8, pp.459-474, 2010

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シッペ

Kripke Semantics Topological Semantics Coalgebraic Semantics

Heart of Our Proof

Henkin

Katsuhiko Sano Introduction to Hybrid Logic

Kripke Semantics Topological Semantics Coalgebraic Semantics

Product of Modal Logics

When we want to take the product of modal logics, e.g. **K** and **K**, we need the following two axioms:

- (com) $\diamond_1 \diamond_2 p \leftrightarrow \diamond_2 \diamond_1 p$
- (chr) $\diamond_1 \Box_2 p \rightarrow \Box_2 \diamond_1 p$

Kripke Semantics Topological Semantics Coalgebraic Semantics

Product of Modal Logics

When we want to take the product of modal logics, e.g. **K** and **K**, we need the following two axioms:

- (com) $\diamond_1 \diamond_2 p \leftrightarrow \diamond_2 \diamond_1 p$
- (chr) $\diamond_1 \Box_2 p \rightarrow \Box_2 \diamond_1 p$

Note that our axiomatization does not contain these guys! But, our completeness results assure us that these are theorems of $[\mathbf{K}_{\mathcal{H}}, \mathbf{K}_{\mathcal{H}}]$.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シッペ

Kripke Semantics Topological Semantics Coalgebraic Semantics

Outline

Pow Can We Combine Hybrid Logics?

- Kripke Semantics
- Topological Semantics
- Coalgebraic Semantics

Kripke Semantics Topological Semantics Coalgebraic Semantics

Nominals and Satisfaction Operators

Structures (relational, topological) on the domain are irrelevant to a hybridization.

Katsuhiko Sano

Introduction to Hybrid Logic

Kripke Semantics Topological Semantics Coalgebraic Semantics

Nominals and Satisfaction Operators

Structures (relational, topological) on the domain are irrelevant to a hybridization.

Katsuhiko Sano

Introduction to Hybrid Logic

Kripke Semantics Topological Semantics Coalgebraic Semantics

Overview of Hybrid Product Methods

Katsuhiko Sano Introduction to Hybrid Logic

Kripke Semantics Topological Semantics Coalgebraic Semantics

Overview of Hybrid Product Methods

Time \ Space	Rel. $\langle X, S \rangle$	Top. $\langle X, \sigma \rangle$
Rel. $\langle T, R \rangle$	(Sano 2010)	??
Top. $\langle T, \tau \rangle$??	??

Kripke Semantics Topological Semantics Coalgebraic Semantics

Overview of Hybrid Product Methods

Time \ Space	Rel. $\langle X, S \rangle$	Top. $\langle X, \sigma \rangle$
Rel. $\langle T, R \rangle$	(Sano 2010)	??
Top. $\langle T, \tau \rangle$??	??

- $\bigcirc @_a@_ip \leftrightarrow @_i@_ap$
- $\bigcirc \ \diamond_1 @_a p \leftrightarrow @_a \diamond_1 p$
- @_ia ↔ a
- 5 @_ai ↔ i

Kripke Semantics Topological Semantics Coalgebraic Semantics

What is Topological Space?

Katsuhiko Sano Introduction to Hybrid Logic

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Kripke Semantics Topological Semantics Coalgebraic Semantics

What is Topological Space?

Kripke Semantics Topological Semantics Coalgebraic Semantics

What is Topological Space?

Kripke Semantics Topological Semantics Coalgebraic Semantics

What is Topological Space?

$\tau(\mathbf{W}) \subseteq \mathcal{P}(\mathbf{W})$

Katsuhiko Sano

Introduction to Hybrid Logic

Kripke Semantics Topological Semantics Coalgebraic Semantics

Product of Topologies (Van Benthem, et. al. 2006, S.2011)

- Let $\langle W_l, \tau_l \rangle$ (l = 1, 2) be a topological space.
- Define the horizontal topological space τ_h by:

$$P \in \tau_h(x, y)$$
 iff ???

Kripke Semantics Topological Semantics Coalgebraic Semantics

Product of Topologies (Van Benthem, et. al. 2006, S.2011)

- Let $\langle W_l, \tau_l \rangle$ (l = 1, 2) be a topological space.
- Define the horizontal topological space τ_h by:

$$P \in \tau_h(x, y)$$
 iff ???

Kripke Semantics Topological Semantics Coalgebraic Semantics

Product of Topologies (Van Benthem, et. al. 2006, S.2011)

- Let $\langle W_l, \tau_l \rangle$ (l = 1, 2) be a topological space.
- Define the horizontal topological space τ_h by:

Katsuhiko Sano

Introduction to Hybrid Logic

Kripke Semantics Topological Semantics Coalgebraic Semantics

Product of Topologies (Van Benthem, et. al. 2006, S.2011)

- Let $\langle W_l, \tau_l \rangle$ (l = 1, 2) be a topological space.
- Define the horizontal topological space τ_h by:

Kripke Semantics Topological Semantics Coalgebraic Semantics

Semantic Clauses on Product of Topologies

$w \models \Box \varphi \quad \text{iff} \quad \llbracket \varphi \rrbracket \in \tau(w).$

Katsuhiko Sano Introduction to Hybrid Logic

Kripke Semantics Topological Semantics Coalgebraic Semantics

Semantic Clauses on Product of Topologies

$w \models \Box \varphi \quad \text{iff} \quad \llbracket \varphi \rrbracket \in \tau(w).$ $(x, y) \models \Box_1 \varphi \quad \text{iff} \quad \llbracket \varphi \rrbracket \in \tau_h(x, y)$ $\text{iff} \quad \text{where} \quad \llbracket \varphi \rrbracket \coloneqq \{(x, y) \mid (x, y) \models \varphi\}$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ■ ● ● ●
Kripke Semantics Topological Semantics Coalgebraic Semantics

Semantic Clauses on Product of Topologies

$w \models \Box \varphi \quad \text{iff} \quad \llbracket \varphi \rrbracket \in \tau(w).$

 $\begin{array}{ll} (x,y) \models \Box_1 \varphi \quad \text{iff} \quad \llbracket \varphi \rrbracket \in \tau_h(x,y) \\ & \text{iff} \quad \llbracket \varphi \rrbracket_y \in \tau_1(x), \end{array}$ where $\llbracket \varphi \rrbracket \coloneqq \{ (x,y) \, | \, (x,y) \models \varphi \}$

- Our five interaction axioms are all valid on any product of topologies.
- There is a problem on **BG**.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Intuitive Meaning of BG on Kripke Frame

BG: If @_i◊φ is consistent, then @_i◊j ∧ @_jφ is consistent for some fresh *j*.

'BG = Kripke Frames' in Topological Setting

- **S4**-frame = $\langle W, \tau \rangle$ s.t. $\tau(w)$ has the smallest element.
- On ℝ², we can consider the smaller and smaller neighbhorhood around w.

Ten Cate & Litak (2007)

(**BG**) characterizes the notion of **S4**-frames (Alexandrov spaces) within the class of topological spaces.

So, we should drop two kinds of **BG** from our axiomatization.

Pure completeness wrt Products of Topologies

Let $\mathbf{S4}_{\mathcal{H}}^{-} = (\mathbf{K}_{\mathcal{H}} - \mathbf{BG}) + \{\Box p \to p, \Box p \to \Box \Box p\}.$

Pure Completeness for Product of Topologies

For any set Λ of pure formulas, $[\mathbf{S4}_{\mathcal{H}}^{-}, \mathbf{S4}_{\mathcal{H}}^{-}] + \Lambda$ is strongly complete wrt the class of product of topologies defined by Λ .

Pure completeness wrt Products of Topologies

Let $\mathbf{S4}_{\mathcal{H}}^{-} = (\mathbf{K}_{\mathcal{H}} - \mathbf{BG}) + \{ \Box p \to p, \Box p \to \Box \Box p \}.$

Pure Completeness for Product of Topologies

For any set Λ of pure formulas, $[\mathbf{S4}_{\mathcal{H}}^{-}, \mathbf{S4}_{\mathcal{H}}^{-}] + \Lambda$ is strongly complete wrt the class of product of topologies defined by Λ .

If we put $\Lambda = \emptyset$, we obtain:

Pure completeness wrt Products of Topologies

Let $\mathbf{S4}_{\mathcal{H}}^{-} = (\mathbf{K}_{\mathcal{H}} - \mathbf{BG}) + \{ \Box p \to p, \Box p \to \Box \Box p \}.$

Pure Completeness for Product of Topologies

For any set Λ of pure formulas, $[\mathbf{S4}_{\mathcal{H}}^{-}, \mathbf{S4}_{\mathcal{H}}^{-}] + \Lambda$ is strongly complete wrt the class of product of topologies defined by Λ .

If we put $\Lambda = \emptyset$, we obtain:

Cor.

 $[\mathbf{S4}_{\mathcal{H}}^{-},\mathbf{S4}_{\mathcal{H}}^{-}]$ is strongly complete wrt the class of all products of topologies.

Topological Definability in Hybrid Logic

Here 'definability' means definability by a single formula.

Properties	ML	HL
T ₀	Undef.	$@_i \diamond j \land @_j \diamond i \to @_i j$
T_1	Undef.	$\Diamond i \rightarrow i$
<i>T</i> ₂	Undef.	Undef. by Sustretov (2005)
density-in-itself	Undef.	- <i>□i</i>
compactness	Undef.	Undef.
discreteness	$\Diamond p \rightarrow p$	$\Diamond \rho ightarrow \rho$

- Undef. in ML is due to the result of McKinsey-Tarski.
- T_1 says that $\{x\}$ (e.g. [x, x]) is closed.
- Density-in-itself says $\{x\} \notin \tau(x)$.

Kripke Semantics Topological Semantics Coalgebraic Semantics

Overview of Hybrid Product Methods

Time \ Space	Rel. $\langle X, S \rangle$	Top. $\langle X, \sigma \rangle$
Rel. $\langle T, R \rangle$	(Sano 2010)	Delete BG for □ ₂
Top. $\langle T, \tau \rangle$	Delete BG for \Box_1	Delete two BG s

- $\bigcirc @_a@_ip \leftrightarrow @_i@_ap$
- $\bigcirc \ \diamond_1 @_a p \leftrightarrow @_a \diamond_1 p$
- @_ia ↔ a
- 5 @_ai ↔ i

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Overview of Hybrid Product Methods

Time \ Space	Rel. $\langle X, S \rangle$	Top. $\langle X, \sigma \rangle$
Rel. $\langle T, R \rangle$	(Sano 2010)	Delete BG for \square_2
Top. $\langle T, \tau \rangle$	Delete BG for □ ₁	Delete two BG s

- $\bigcirc @_a@_ip \leftrightarrow @_i@_ap$
- ② $\diamond_1 @_a p \leftrightarrow @_a \diamond_1 p$: Time str. is independent of Space
- $\diamond_2@_i p \leftrightarrow @_i \diamond_2 p$: Space str. is independent of Time
- @_ia ↔ a
- 🧿 @_ai ↔ i

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 </

The accessible space-area may vary with the time:
 yS(t)y' rather than ySy'.

The accessible space-area may vary with the time:
 yS(t)y' rather than ySy'.

◊₂@_ip ↔ @_i◊₂p is invalid, @_i◊₂@_ip ↔ @_i◊₂p is valid.
A pure completeness result still holds.

The accessible space-area may vary with the time:
 yS(t)y' rather than ySy'.

◊₂@_ip ↔ @_i◊₂p is invalid, @_i◊₂@_ip ↔ @_i◊₂p is valid.
A pure completeness result still holds.

The accessible space-area may vary with the time:
 yS(t)y' rather than ySy'.

- $\diamond_2 @_i p \leftrightarrow @_i \diamond_2 p$ is invalid, $@_i \diamond_2 @_i p \leftrightarrow @_i \diamond_2 p$ is valid.
- A pure completeness result still holds.

• Spatial topology might depend on Time.

• Then, our spatial topology and semantics should be defined as:

 $(\sigma_t: X \to \mathcal{PP}(X))_{t \in T}.$

 $\langle t, x \rangle \models \Box_2 \varphi \text{ iff } \llbracket \varphi \rrbracket_t \in \sigma_t(x).$

- Syntactically, this change corresponds to:
- We can still establish a pure completeness result.

- Spatial topology might depend on Time.
- Then, our spatial topology and semantics should be defined as:

 $(\sigma_t : X \to \mathcal{PP}(X))_{t \in T}.$

 $\langle \, t,x \, \rangle \models \square_2 \varphi \text{ iff } \llbracket \varphi \rrbracket_t \in \sigma_t(x).$

- Syntactically, this change corresponds to:
 Optimize (Corresponds to Corresponds to Correspond to
- We can still establish a pure completeness result.

- Spatial topology might depend on Time.
- Then, our spatial topology and semantics should be defined as:

 $(\sigma_t : X \to \mathcal{PP}(X))_{t \in T}.$

 $\langle t, x \rangle \models \Box_2 \varphi \text{ iff } \llbracket \varphi \rrbracket_t \in \sigma_t(x).$

- Syntactically, this change corresponds to:
 - $\diamond_2@_ip \leftrightarrow @_i\diamond_2p$: Invalid
 - $@_i \diamond_2 @_i p \leftrightarrow @_i \diamond_2 p$: Valid

We can still establish a pure completeness result.

- Spatial topology might depend on Time.
- Then, our spatial topology and semantics should be defined as:

 $(\sigma_t : X \to \mathcal{PP}(X))_{t \in T}.$

 $\langle t, x \rangle \models \Box_2 \varphi \text{ iff } \llbracket \varphi \rrbracket_t \in \sigma_t(x).$

- Syntactically, this change corresponds to:
 - $\diamond_2@_ip \leftrightarrow @_i\diamond_2p$: Invalid
 - $@_i \diamond_2 @_i p \leftrightarrow @_i \diamond_2 p$: Valid

We can still establish a pure completeness result.

- Spatial topology might depend on Time.
- Then, our spatial topology and semantics should be defined as:

 $(\sigma_t : X \to \mathcal{PP}(X))_{t \in T}.$

 $\langle t, x \rangle \models \Box_2 \varphi \text{ iff } \llbracket \varphi \rrbracket_t \in \sigma_t(x).$

- Syntactically, this change corresponds to:
 - $\diamond_2@_ip \leftrightarrow @_i\diamond_2p$: Invalid
 - $@_i \diamond_2 @_i p \leftrightarrow @_i \diamond_2 p$: Valid

• We can still establish a pure completeness result.

- Spatial topology might depend on Time.
- Then, our spatial topology and semantics should be defined as:

 $(\sigma_t : X \to \mathcal{PP}(X))_{t \in T}.$

 $\langle t, x \rangle \models \Box_2 \varphi \text{ iff } \llbracket \varphi \rrbracket_t \in \sigma_t(x).$

- Syntactically, this change corresponds to:
 - $\diamond_2@_ip \leftrightarrow @_i\diamond_2p$: Invalid
 - $@_i \diamond_2 @_i p \leftrightarrow @_i \diamond_2 p$: Valid

• We can still establish a pure completeness result.

Overview of Hybrid Product Methods

Time \ Space	Rel. $\langle X, (S_t)_{t \in T} \rangle$	Top. $\langle X, (\sigma_t)_{t \in T} \rangle$
Rel. $\langle T, (R_x)_{x \in X} \rangle$	(Sano 2010)	Delete BG for □ ₂
Top. $\langle T, (\tau_{\chi})_{\chi \in \chi} \rangle$	Delete BG for □ ₁	Delete two BG s

- $\bigcirc @_a@_ip \leftrightarrow @_i@_ap$
- 2 $@_a \diamond_1 @_a p \leftrightarrow @_a \diamond_1 p$: Time str. depends on Space
- ③ $@_i \diamond_2 @_i p \leftrightarrow @_i \diamond_2 p$: Space str. depends on Time
- @_ia ↔ a
- 🧿 @_ai ↔ i

Kripke Semantics Topological Semantics Coalgebraic Semantics

Outline

Provide the combine Hybrid Logics?

- Kripke Semantics
- Topological Semantics
- Coalgebraic Semantics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Kripke Semantics Topological Semantics Coalgebraic Semantics

Coalgebraic View on Kripke Semantics for ML

$$\begin{split} w \vDash \Box p \quad \text{iff} \quad R(w) \subseteq \llbracket p \rrbracket, \\ \text{iff} \quad R(w) \in \{ X \subseteq W \mid X \subseteq \llbracket p \rrbracket \}, \\ \text{iff} \quad R(w) \in \llbracket \Box \rrbracket_W(\llbracket p \rrbracket), \end{split}$$

where $\llbracket \Box \rrbracket_W(A) := \{ X \subseteq W | X \subseteq A \}.$

Kripke Semantics Topological Semantics Coalgebraic Semantics

 $\|\Box\|_W$ $R: W \to \mathscr{P}(W)$ **Modal Logic** via Kripke Sem. $\mathscr{P}(W)$

Kripke Semantics Topological Semantics Coalgebraic Semantics

Katsuhiko Sano Introduction to Hybrid Logic

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Kripke Semantics Topological Semantics Coalgebraic Semantics

Kripke Semantics Topological Semantics Coalgebraic Semantics

Recall: Semantic Clauses on Product of Nbhd Frames

$$\begin{array}{ll} (x,y) \models \Box_1 \varphi & \text{iff} & \llbracket \varphi \rrbracket \in \tau_h(x,y) \\ & \text{iff} & \llbracket \varphi \rrbracket_y \in \tau_1(x). \end{array}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Kripke Semantics Topological Semantics Coalgebraic Semantics

Recall: Semantic Clauses on Product of Nbhd Frames

$$\begin{aligned} (x,y) &\models \Box_1 \varphi \quad \text{iff} \quad \llbracket \varphi \rrbracket \in \tau_h(x,y) \\ \quad \text{iff} \quad \llbracket \varphi \rrbracket_y \in \tau_1(x). \end{aligned}$$

An essence for the semantic clause –
 You can use the original transition map.

Kripke Semantics Topological Semantics Coalgebraic Semantics

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

〈 W₁, γ 〉: a T₁-coalgebra & 〈 W₂, δ 〉: a T₂-coalgebra.
We should define:

 $(x,y) \models \heartsuit_1 \varphi \text{ iff } \gamma_h(x,y) \in \llbracket \heartsuit_1 \rrbracket_{W_1 \times W_2}(\llbracket \varphi \rrbracket),$

where $\llbracket \varphi \rrbracket = \{ (x', y') \mid (x', y') \models \varphi \} \subseteq W_1 \times W_2.$

• It suffices to have:

$(x,y)\models \bigtriangledown_1 \varphi \text{ iff } \gamma(x)\in [\![\heartsuit_1]\!]_{W_1}(???).$

• We can also define γ_h (Tensorial Strength (Kock 1972), suggested by Dirk Pattinson and Fredrik Dahlqvist).

〈 W₁, γ 〉: a T₁-coalgebra & 〈 W₂, δ 〉: a T₂-coalgebra.
We should define:

 $(x,y)\models \heartsuit_1\varphi \text{ iff } \gamma_h(x,y)\in [\![\heartsuit_1]\!]_{W_1\times W_2}([\![\varphi]\!]),$

where $\llbracket \varphi \rrbracket = \{ (x', y') \mid (x', y') \models \varphi \} \subseteq W_1 \times W_2.$

• It suffices to have:

 $(x,y)\models \heartsuit_1\varphi \text{ iff } \gamma(x)\in [\![\heartsuit_1]\!]_{W_1}(???).$

• We can also define γ_h (Tensorial Strength (Kock 1972), suggested by Dirk Pattinson and Fredrik Dahlqvist).

〈 W₁, γ 〉: a T₁-coalgebra & 〈 W₂, δ 〉: a T₂-coalgebra.
We should define:

 $(x,y)\models \heartsuit_1\varphi \text{ iff } \gamma_h(x,y)\in [\![\heartsuit_1]\!]_{W_1\times W_2}([\![\varphi]\!]),$

where $\llbracket \varphi \rrbracket = \{ (x', y') \mid (x', y') \models \varphi \} \subseteq W_1 \times W_2.$

It suffices to have:

$$(x,y)\models \heartsuit_1\varphi \text{ iff } \gamma(x)\in [\![\heartsuit_1]\!]_{W_1}(???).$$

• We can also define γ_h (Tensorial Strength (Kock 1972), suggested by Dirk Pattinson and Fredrik Dahlqvist).

〈 W₁, γ 〉: a T₁-coalgebra & 〈 W₂, δ 〉: a T₂-coalgebra.
We should define:

 $(x,y)\models \heartsuit_1\varphi \text{ iff } \gamma_h(x,y)\in [\![\heartsuit_1]\!]_{W_1\times W_2}([\![\varphi]\!]),$

where $\llbracket \varphi \rrbracket = \{ (x', y') \mid (x', y') \models \varphi \} \subseteq W_1 \times W_2.$

It suffices to have:

$$(x,y)\models \heartsuit_1\varphi \text{ iff } \gamma(x)\in [\![\heartsuit_1]\!]_{W_1}([\![\varphi]\!]_y).$$

• We can also define γ_h (Tensorial Strength (Kock 1972), suggested by Dirk Pattinson and Fredrik Dahlqvist).

〈 W₁, γ 〉: a T₁-coalgebra & 〈 W₂, δ 〉: a T₂-coalgebra.
We should define:

$$(x,y)\models \heartsuit_1\varphi \text{ iff } \gamma_h(x,y)\in [\![\heartsuit_1]\!]_{W_1\times W_2}([\![\varphi]\!]),$$

where $\llbracket \varphi \rrbracket = \{ (x', y') \mid (x', y') \models \varphi \} \subseteq W_1 \times W_2.$

It suffices to have:

$$(x,y)\models \heartsuit_1\varphi \text{ iff } \gamma(x)\in \llbracket \heartsuit_1\rrbracket_{W_1}(\llbracket \varphi\rrbracket_y).$$

• We can also define γ_h (Tensorial Strength (Kock 1972), suggested by Dirk Pattinson and Fredrik Dahlqvist).

Kripke Semantics Topological Semantics Coalgebraic Semantics

Semantic Summary

- $\langle W_1, \gamma \rangle$: a T_1 -coalgebra & $\langle W_2, \delta \rangle$: a T_2 -coalgebra.
- Given any valuation:

$$\begin{aligned} (x, y) &\models \heartsuit_1 \varphi \quad \text{iff} \quad \gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket \varphi \rrbracket_y) \\ (x, y) &\models \heartsuit_2 \varphi \quad \text{iff} \quad \delta(y) \in \llbracket \heartsuit_2 \rrbracket_{W_2}(\llbracket \varphi \rrbracket_x) \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Kripke Semantics Topological Semantics Coalgebraic Semantics

Five Interaction Axioms

$$\circ_1 @_a p \leftrightarrow @_a \circ_1 p$$

$$\circ _2 @_i p \leftrightarrow @_i \heartsuit_2 p$$

are valid on all products of T_1 -coalgebra and T_2 -coalgebra.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
Kripke Semantics Topological Semantics Coalgebraic Semantics

Validity of Five Interaction Axioms

Let us focus on $\heartsuit_1 @_a p \leftrightarrow @_a \heartsuit_1 p$.

- $(x, y) \models \heartsuit_1 @_a p$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket @_a p \rrbracket_y)$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket p \rrbracket_{a^V})$
 - $= \left[\left[\rho \right]_{a^{\prime}} \left[\left[\varphi_{a} \rho \right]_{b^{\prime}} \right]_{a^{\prime}} \right]$ $= \left[\left[\rho \right]_{a^{\prime}} \right] \left[\left[\left[\left[\left[\varphi_{a} \rho \right]_{b^{\prime}} \right]_{a^{\prime}} \right]_{b^{\prime}} \right]_{b^{\prime}} \right]_{a^{\prime}} \right]$
 - $(x,a') \models p \text{ iff } (x,y) \models \mathcal{O}_a p.$
- iff $(x, a^V) \models \heartsuit_1 p$
- iff $(x, y) \models @_a \heartsuit_1 p$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Kripke Semantics Topological Semantics Coalgebraic Semantics

Validity of Five Interaction Axioms

Let us focus on $\heartsuit_1 @_a p \leftrightarrow @_a \heartsuit_1 p$.

- $(x, y) \models \heartsuit_1 @_a p$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket @_a p \rrbracket_y)$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket p \rrbracket_{a^V})$
 - ∵ [[p]]_av = [[@_ap]]_y. ● ∵ x ∈ [p]_av iff x ∈ [@_ap]
 - $(x, a^V) \models p$ iff $(x, y) \models @_a p$.
- iff $(x, a^V) \models \heartsuit_1 p$
- iff $(x, y) \models @_a \heartsuit_1 p$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Kripke Semantics Topological Semantics Coalgebraic Semantics

Validity of Five Interaction Axioms

Let us focus on $\heartsuit_1@_a p \leftrightarrow @_a \heartsuit_1 p$.

- $(x, y) \models \heartsuit_1 @_a p$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket @_a p \rrbracket_y)$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket p \rrbracket_{a^v})$
 - $\therefore \llbracket p \rrbracket_{a^V} = \llbracket @_a p \rrbracket_y.$
 - $\therefore x \in \llbracket p \rrbracket_{a^V}$ iff $x \in \llbracket @_a p \rrbracket_y$.
 - $(x, a^V) \models p$ iff $(x, y) \models @_a p$.
- iff (x, a^V) ⊨ ♡₁p
- iff $(x, y) \models @_a \heartsuit_1 p$

Kripke Semantics Topological Semantics Coalgebraic Semantics

Validity of Five Interaction Axioms

Let us focus on $\heartsuit_1@_a p \leftrightarrow @_a \heartsuit_1 p$.

- $(x, y) \models \heartsuit_1 @_a p$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket @_a p \rrbracket_y)$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket p \rrbracket_{a^{\vee}})$
 - $\therefore \llbracket p \rrbracket_{a^V} = \llbracket @_a p \rrbracket_y.$
 - $\therefore x \in \llbracket p \rrbracket_{a^V}$ iff $x \in \llbracket @_a p \rrbracket_y$.
 - $(x, a^V) \models p$ iff $(x, y) \models @_a p$.
- iff $(x, a^V) \models \heartsuit_1 p$
- iff $(x, y) \models @_a \heartsuit_1 p$

Kripke Semantics Topological Semantics Coalgebraic Semantics

Validity of Five Interaction Axioms

Let us focus on $\heartsuit_1@_a p \leftrightarrow @_a \heartsuit_1 p$.

- $(x, y) \models \heartsuit_1 @_a p$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket @_a p \rrbracket_y)$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket p \rrbracket_{a^{\vee}})$
 - $\bullet :: \llbracket p \rrbracket_{a^V} = \llbracket @_a p \rrbracket_y.$
 - $\therefore x \in \llbracket p \rrbracket_{a^{\vee}}$ iff $x \in \llbracket @_a p \rrbracket_y$.
 - $(x, a^V) \models p$ iff $(x, y) \models @_a p$.
- iff $(x, a^V) \models \heartsuit_1 p$
- iff $(x, y) \models @_a \heartsuit_1 p$

Kripke Semantics Topological Semantics Coalgebraic Semantics

Validity of Five Interaction Axioms

Let us focus on $\heartsuit_1@_a p \leftrightarrow @_a \heartsuit_1 p$.

- $(x, y) \models \heartsuit_1 @_a p$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket @_a p \rrbracket_y)$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket p \rrbracket_{a^{\vee}})$
 - $\bullet :: \llbracket p \rrbracket_{a^V} = \llbracket @_a p \rrbracket_y.$
 - $\therefore x \in \llbracket p \rrbracket_{a^{\vee}}$ iff $x \in \llbracket @_a p \rrbracket_{y}$.
 - $(x, a^V) \models p$ iff $(x, y) \models @_a p$.
- iff $(x, a^V) \models \heartsuit_1 p$
- iff $(x, y) \models @_a \heartsuit_1 p$

Kripke Semantics Topological Semantics Coalgebraic Semantics

Validity of Five Interaction Axioms

Let us focus on $\heartsuit_1@_a p \leftrightarrow @_a \heartsuit_1 p$.

- $(x, y) \models \heartsuit_1 @_a p$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket @_a p \rrbracket_y)$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket p \rrbracket_{a^{\vee}})$
 - $\bullet :: \llbracket p \rrbracket_{a^V} = \llbracket @_a p \rrbracket_y.$
 - $\therefore x \in \llbracket p \rrbracket_{a^{\vee}}$ iff $x \in \llbracket @_a p \rrbracket_{y}$.
 - $(x, a^V) \models p$ iff $(x, y) \models @_a p$.
- iff $(x, a^V) \models \heartsuit_1 p$
- iff $(x, y) \models @_a \heartsuit_1 p$

Validity of Five Interaction Axioms

Let us focus on $\heartsuit_1@_a p \leftrightarrow @_a \heartsuit_1 p$.

- $(x, y) \models \heartsuit_1 @_a p$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket @_a p \rrbracket_y)$
- iff $\gamma(x) \in \llbracket \heartsuit_1 \rrbracket_{W_1}(\llbracket p \rrbracket_{a^{\vee}})$

•
$$\therefore \llbracket p \rrbracket_{a^V} = \llbracket @_a p \rrbracket_y.$$

- $\therefore x \in \llbracket p \rrbracket_{a^{\vee}}$ iff $x \in \llbracket @_a p \rrbracket_y$.
- $(x, a^V) \models p$ iff $(x, y) \models @_a p$.
- iff $(x, a^V) \models \heartsuit_1 p$
- iff $(x, y) \models @_a \heartsuit_1 p$

If each R_{*i*} is strongly one-step complete, the corresponding product of hybrid logics is strongly complete. (S.2011)

 Schröder, L. and Pattinson, D.
'Named models in Coalgebraic Hybrid Logic', Proceedings of STACS 2010, 2010, pp.645-656.

Kripke Semantics Topological Semantics Coalgebraic Semantics

Summary

- I have shown you how to combine two hybrid logics. A key idea is: Naming Lines.
- My method of hybrid product is modular. We can cover various ways of 'combining' logics.
- My method is also robust for completeness results. ANY way of 'combining' hybrid logics always enjoys a general completeness result (pure completeness). It can be generalize to a coalgebraic level (S.2011).

Summary

- I have shown you how to combine two hybrid logics. A key idea is: Naming Lines.
- My method of hybrid product is modular. We can cover various ways of 'combining' logics.
- My method is also robust for completeness results. ANY way of 'combining' hybrid logics always enjoys a general completeness result (pure completeness). It can be generalize to a coalgebraic level (S.2011).

< □ > < 同 > < 臣 > < 臣 > 三目 → ○ < ○ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

- I have shown you how to combine two hybrid logics. A key idea is: Naming Lines.
- My method of hybrid product is modular. We can cover various ways of 'combining' logics.
- My method is also robust for completeness results. ANY way of 'combining' hybrid logics always enjoys a general completeness result (pure completeness). It can be generalize to a coalgebraic level (S.2011).

< □ > < 同 > < 臣 > < 臣 > 三目 → ○ < ○ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Further Directions

- Decidability is still open, even for hybrid product of Kripke frames.
- Construct Gentzen-style sequent calculus and establish cut elimination theorem possibly extended with geometric theory.
- Build a corresponding first-order langauge for product of modal/hybrid logic over Kripke frames and invesitigate modal model theory, e.g. Van Benthen Characterization Theorem.
- Explore a link of this work with:

Seligman, J.; Ulu, F. and Girard, F. 'LOGIC in the COMMUNITY';

Further Directions

- Decidability is still open, even for hybrid product of Kripke frames.
- Construct Gentzen-style sequent calculus and establish cut elimination theorem possibly extended with geometric theory.
- Build a corresponding first-order langauge for product of modal/hybrid logic over Kripke frames and invesitigate modal model theory, e.g. Van Benthen Characterization Theorem.
- Explore a link of this work with:

Further Directions

- Decidability is still open, even for hybrid product of Kripke frames.
- Construct Gentzen-style sequent calculus and establish cut elimination theorem possibly extended with geometric theory.
- Build a corresponding first-order langauge for product of modal/hybrid logic over Kripke frames and invesitigate modal model theory, e.g. Van Benthen Characterization Theorem.
- Explore a link of this work with:

Seligman, J., Liu, F. and Girard, P. (LOGIC in the COMMUNITY);

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Further Directions

- Decidability is still open, even for hybrid product of Kripke frames.
- Construct Gentzen-style sequent calculus and establish cut elimination theorem possibly extended with geometric theory.
- Build a corresponding first-order langauge for product of modal/hybrid logic over Kripke frames and invesitigate modal model theory, e.g. Van Benthen Characterization Theorem.
- Explore a link of this work with:

 Seligman, J., Liu, F. and Girard, P.
'LOGIC in the COMMUNITY', LNCS, 6521, 178-188, 2011.

Further Directions

- Decidability is still open, even for hybrid product of Kripke frames.
- Construct Gentzen-style sequent calculus and establish cut elimination theorem possibly extended with geometric theory.
- Build a corresponding first-order langauge for product of modal/hybrid logic over Kripke frames and invesitigate modal model theory, e.g. Van Benthen Characterization Theorem.
- Explore a link of this work with:

 Seligman, J., Liu, F. and Girard, P.
'LOGIC in the COMMUNITY', LNCS, 6521, 178-188, 2011.

Kripke Semantics Topological Semantics Coalgebraic Semantics

Katsuhiko Sano Introduction to Hybrid Logic

Take-home Message

Naming Lines provides a modular and robust way of combining two hybrid logics

Take-home Message

Naming Lines provides a modular and robust way of combining two hybrid logics

Thank You

Katsuhiko Sano Introduction to Hybrid Logic

Hilbert-style Axiomatization of HL

In addition to (**BG**) + (**Name**), **K** plus $(\mathsf{K}@) @_i(\mathsf{p}\to\mathsf{q})\to (@_i\mathsf{p}\to@_i\mathsf{q}).$ (Self-Dual) $\neg @_i p \leftrightarrow @_i \neg p$. (Ref) @*i*. (Intro) $i \wedge p \rightarrow @_i p$. (Back) $@_i p \rightarrow \Box @_i p$. (Agree) $@_i @_i p \rightarrow @_i p$. (Nec@) From φ , we may infer $@_i\varphi$. (Hsub) From φ , we may infer $\sigma(\varphi)$, where σ is a *H*-uniform substitution, eg.:

$$\frac{(i \land p) \to (q \to p)}{(j \land \varphi) \to (\psi \to \varphi))}$$

Tensorial Strength on Sets

- Define $\iota_y : W_1 \to W_1 \times W_2$ by $\iota_y(x) := (x, y) \ (y \in W_2)$.
- Tensorial strength st_{W1,W2}: $T_1(W_1) \times W_2 \rightarrow T_1(W_1 \times W_2)$ is defined by

$$\mathrm{st}_{W_1,W_2}(t,y):=T_1(\iota_y)(t),$$

where $T_1(\iota_y)$: $T_1(W_1) \rightarrow T_1(W_1 \times W_2)$.

• Define $\gamma_h :=$

$$W_1 \times W_2 \xrightarrow{\gamma \times \mathrm{id}} T_1(W_1) \times W_2 \xrightarrow{\mathrm{st}_{W_1,W_2}} T_1(W_1 \times W_2)$$

• This gives us the same definitions as R_h and τ_h .