
JAIST Spring School 2012
Formal Reasoning: Theory and Application

Kanazawa, 5-9 March

Program Extraction

Ulrich Berger
Swansea

1 / 68

Overview

I Extracting concrete programs from abstract mathematics

II Program extraction in analysis

III Projects

IV Programs from classical proofs

2 / 68

I Extracting concrete programs from abstract
mathematics

3 / 68

Some reasons for formalizing mathematics

1 Verify mathematics

2 Solve mathematical problems

3 Provide a new foundation for mathematics

4 Verify programs

5 Extract verified programs

1-4 require big systems.

For 5 one can get away with a surprisingly light-weight system.

4 / 68

Some reasons for formalizing mathematics

1 Verify mathematics

2 Solve mathematical problems

3 Provide a new foundation for mathematics

4 Verify programs

5 Extract verified programs

1-4 require big systems.

For 5 one can get away with a surprisingly light-weight system.

4 / 68

Some reasons for formalizing mathematics

1 Verify mathematics

2 Solve mathematical problems

3 Provide a new foundation for mathematics

4 Verify programs

5 Extract verified programs

1-4 require big systems.

For 5 one can get away with a surprisingly light-weight system.

4 / 68

Why formalization for program extraction is easy

I We can import a lot of trusted mathematics.

I Only those parts of a proof that carry computationally
relevant information need to be formalized. These parts are
often rather small.

I Data structures and programs are not part of the proof system
- they are generated by the extraction process.

I Extracted programs don’t need to be read, understood, or
maintained. Therefore, they can be rather low level. It is
enough to understand proofs.

5 / 68

The Curry-Howard Correspondence

Disjunction

Proof of formula Term and its type

A ∨+LA ∨ B
B ∨+RA ∨ B

M : A
L(M) : A + B

M : B
R(M) : A + B

A ∨ B A ` C B ` C ∨−
C

K : A + B a : A ` N1 : C b : B ` N2 : C

caseK of{L(a)→ N1 ; R(b)→ N2 } : C

Computation: case L(M) of{L(a)→ N1 ; R(b)→ N2 } = N1[M/a]
caseR(M) of{L(a)→ N1 ; R(b)→ N2 } = N2[M/b]

6 / 68

Curry-Howard ctd.

Implication

A ` B →+
A→ B

a : A ` M : B
λa.M : A→ B

A→ B A →−B
M : A→ B N : A

MN : B

Computation: (λa.M)N = M[N/a]

7 / 68

Curry-Howard Isomorphism?

For minimal propositional logic the Curry-Howard correspondence
is an isomorphism:

I Programs (i.e. typed λ-terms) can be understood as term
notations for proofs.

I Computation corresponds to proof normalization or
cut-elimination.

I What about full (classical) predicate logic?

I What about “real” programs?

8 / 68

Curry-Howard Isomorphism?

For minimal propositional logic the Curry-Howard correspondence
is an isomorphism:

I Programs (i.e. typed λ-terms) can be understood as term
notations for proofs.

I Computation corresponds to proof normalization or
cut-elimination.

I What about full (classical) predicate logic?

I What about “real” programs?

8 / 68

Example: Real numbers (R, 0, 1,+, ∗, <)

Axioms

x + 0 = x
x + y = y + x
. . .
x 6= 0→ ∃y (x ∗ y = 1)
x > 0→ ∃y (x = y ∗ y)
. . .

Real numbers are viewed as an abstract structure described by
axioms.

For the purpose of program extraction any “true” disjunction-free
first-order formula in the language 0, 1,+, ∗, < is allowed as axiom.

9 / 68

Natural numbers N = {0, 1, 2, . . .} ⊆ R

The natural numbers are inductively defined by

N µ
= {x | x = 0 ∨ ∃y (y ∈ N ∧ x = y + 1)}

This means that N is the least subset of R satisfying the equation.

The datatype corresponding to N is defined recursively:

Nat = N(1 + Nat)

where 1 is the unit type containing only one element, say Nil, and
N is a constructor.

10 / 68

Proof rules and computations for natural numbers

Closure and Induction

t = 0 ∨ ∃y (y ∈ N ∧ t = y + 1)
Clos

t ∈ N
M : 1 + Nat
NM : Nat

x = 0 ∨ ∃y (A(y) ∧ x = y + 1) ` A(x)
Ind

x ∈ N ` A(x)

b : 1 + A ` M : A

n : Nat ` It[λb.M, n] : A

Computation: Zero :≡ N(L(Nil)), Succ(n) :≡ N(R(n)).

It[λb.M,Zero] = M[L(Nil)/b]

It[λb.M,Succ(n) = M[R(It[λb.M, n])/b]

11 / 68

Extracting natural numbers from proofs

Theorem 0. 0 ∈ N.

Proof.

Axiom
0 = 0 ∨+L0 = 0 ∨ ∃y (y ∈ N ∧ 0 = y + 1)

Clos
0 ∈ N

Extracted Program: N(L(Nil)) ≡ Zero.

12 / 68

Theorem 1. x ∈ N ` x + 1 ∈ N.

Proof.

x ∈ N Axiom
x + 1 = x + 1

∧+x ∈ N ∧ x + 1 = x + 1
∃+∃y (y ∈ N ∧ x + 1 = y + 1)

∨+Rx + 1 = 0 ∨ ∃y (y ∈ N ∧ x + 1 = y + 1)
Clos

x + 1 ∈ N

Extracted Program: a : Nat ` N(R(a)) i.e. a : Nat ` Succ(a).

13 / 68

Theorem 2. 2 ∈ N

Proof.

Theorem 0
0 ∈ N

Theorem 1
1 ∈ N

Theorem 1
2 ∈ N

Extracted Program: Succ(Succ(Zero))).

14 / 68

Induction on natural numbers

Theorem 3.

A(0) A(x) ` A(x + 1)
Ind-N, x

x ∈ N ` A(x)

Proof.

A(0)
Eq

z = 0 ` A(z)

A(x) ` A(x + 1)
∃−∃x (A(x) ∧ z = x + 1) ` A(z)
∨−

z = 0 ∨ ∃x (A(x) ∧ z = x + 1) ` A(z)
Ind

x ∈ N ` A(x)

15 / 68

Recursion on unary notation

Extracted Program:

M0 : A a : A ` M : A

n : Nat ` ItN[a0, λa.M, n] : A

where

ItN[M0, λa.M, n] :≡ It[λb.case b of{L→ M0 ; R(a)→ M1 }, n].

Computation:

ItN[M0, λa.M1,Zero] = M0

ItN[M0, λa.M1, Succ(n)] = M1[ItN[M0, λa.M1, n]/a]

16 / 68

Theorem 4. x ∈ N, y ∈ N ` x + y ∈ N.

Proof.

x ∈ N Ax,Eq
x + 0 ∈ N Theorem 1

x + y ∈ N ` x + y + 1 ∈ N
Ind-N, y

y ∈ N ` x + y ∈ N

Extracted Program:

a : Nat, b : Nat ` ItN[a,Succ, b]

17 / 68

Theory: Formulas

P(~t) P predicate constant, ~t first-order terms,
(examples =, <, ⊥)

X (~t) X predicate variable
(example N; we wrote x ∈ N for N(x))

A ◦ B ◦ ∈ {∧,∨,→}

∃x A, ∀x A

let X
∗
= P in B ∗ ∈ {µ, ν}, P ≡ {~x | A}, A positive in X

(inductive and coinductive definitions)

P ≡ {~x | A} is called a comprehension term.
We will use the notation P(~t) for A[~t/~x].

18 / 68

Proofs

I Natural deduction rules of intuitionistic first-order logic.

I Arbitrary (true) axioms and rules such that the formulas
involved ar non-computational (nc), i.e. contain neither
disjunctions nor predicate variables (for example the rules for
equality).

I The let-rule:

X
α
= P ` B

let
let X

∗
= P in B

I Induction and coinduction (next slides).

19 / 68

Induction and coinduction

X
µ
= P ` P(~t)

Closure
X

µ
= P ` X (~t)

X
µ
= P,P[Q/X](~x) ` Q(~x)

Induction
X

µ
= P,X (~x) ` Q(~x)

X
ν
= P ` X (~t)

Coclosure
X

ν
= P ` P(~t)

X
ν
= P,Q(~x) ` P[Q/X](~x)

Coinduction
X

ν
= P,Q(~x) ` X (~x)

20 / 68

Types

1 unit type

α type variables (example Nat)

ρ ◦ σ ◦ ∈ {×,+,→}

let α = ρ in σ where free occurrences of α in ρ and σ
become bound (recursive types)

21 / 68

The type of a formula
We assign to every predicate symbol X a new type variable αX .
First some easy special cases:

τ(A) ≡ 1 if A is nc
τ(A ∧ B) ≡ τ(B) if A is nc, but B isn’t
τ(A ∧ B) ≡ τ(A) if B is nc, but A isn’t
τ(A→ B) ≡ τ(B) if A is nc, but B isn’t

Now we assume that none of the shown formulas is nc:

τ(X (~t)) ≡ αX

τ(A ∧ B) ≡ τ(A)× τ(B)
τ(A ∨ B) ≡ τ(A) + τ(B)
τ(A→ B) ≡ τ(A)→ τ(B)
τ(∀x A) ≡ τ(A)
τ(∃x A) ≡ τ(A)

τ(let X
∗
= {~x | A} in B)) ≡ let αX = τ(A) in τ(B)

22 / 68

Programs

a, b, c variables

C (M1, . . . ,Mn) constructor terms,
C ∈ {1,L,R,Pair, In}

caseM of{C1(~a1)→ R1 ; . . . ; Cn(~an)→ Rn} case analysis/
pattern matching

λa.M lambda-abstraction

M N application

rec a .M recursion

23 / 68

Semantics

The calculus can be axiomatized by

caseCi (~K) of{C1(~x1)→ R1 ; . . .} = Ri [~K/~ai]

(λa.M)N = M[N/a]

rec a .M = M[rec a .M/a]

and given an operational semantics that is adequate w.r.t. a
domain-theoretic denotational semantics:

Adequacy Theorem [Seisenberger, B] If [[M]] = d , where d is
domain element built from constructors only, then M =⇒ d .

Note that programs and their semantics are type free.

24 / 68

Typing (selection of rules)

M : ρ N : σ

Pair(M,N) : ρ× σ

M : ρ× σ x1 : ρ, x2 : σ ` N : τ

caseM of{Pair(x1, x2)→ N} : τ

M : ρ

L(M) : ρ+ σ
M : σ

R(M) : ρ+ σ

M : ρ+ σ x1 : ρ ` M1 : τ x2 : σ ` M2 : τ

caseM of{L(x1)→ M1 ;R(x2)→ M2} : τ

25 / 68

Typing (ctd.)

α = ρ ` M : σ

M : let α = ρ in σ

α = ρ ` M : ρ

α = ρ ` Inρ(M) : α

α = ρ ` M : α α = ρ, x : ρ ` N : σ

α = ρ ` caseM of{Inρ(x)→ N} : τ

26 / 68

Program extraction

I We ignore the first-order part, i.p. quantifier rules.

I The extracted program is determined completely by the
propositional rules and is extracted as expected.

27 / 68

Correctness

I The extracted programs represent intuitively the
computational content of proofs.

I What does this mean exactly?

I How can we prove that ignoring the first-order part doesn’t
compromise correctness?

Type-theoretic answer (Coq): One has a reduction procedure
for proofs and shows that each reduction step of a program can be
traced by one or more reduction steps of the proofs.

Logical answer (Kleene, Kreisel, Gödel): One defines when a
program “realizes” a formula (by recursion on formulas) and show
that every extracted program realizes the proven formula (by
recursion on terms).

28 / 68

Realizability
We assign to every predicate variable X a new predicate variable X̃
which has one extra argument place for realizers.

a rA ≡ A ∧M = Nil if A is nc
a r (A ∧ B) ≡ A ∧ (a rB) if A is nc, but B isn’t
a r (A ∧ B) ≡ (a rA) ∧ B if B is nc, but A isn’t
a r (A→ B) ≡ A→ (a rB) if A is nc, but B isn’t

Now we assume that none of the shown formulas is nc:

a rX (~t) ≡ X̃ (a,~t)
c r (A ∧ B) ≡ ∃a, b (c = Pair(a, b) ∧ a rA ∧ b rB)
c r (A ∨ B) ≡ ∃a (c = L(a) ∧ a rA) ∨ ∃b (c = R(b) ∧ b rB)
c r (A→ B) ≡ ∃f (c = abst(f) ∧ ∀a (a rA→ f (a) rB))
a r ∀x A ≡ ∀x (a rA)
a r ∃x A ≡ ∃x (a rA)

b r (let X
∗
= {~x | A} in B) ≡ let X̃

∗
= {(a,~x) | a rA} in b rB

29 / 68

Soundness

Soundness Theorem.

From a proof of a formula A using assumptions B1, . . . ,Bn, one
can extract a program term M, possibly containing variables
b1, . . . , bn, such that M r (A) is provable from the assumptions
b1 rB1, . . . , r(bn)Bn.

Furthermore one can prove M : τ(A), where τ(A) is the type
naturally assigned to the formula A.

The proof yields in fact more: To every sub-program M ′ of M a
formula A′ is assigned and a proof of M ′ rA′.

This means that one has specifications and correctness proofs of all
sub-programs.

30 / 68

Proof of the Soundness Theorem

The proof is (as usual) by induction on proofs and in general rather
straightforward, except for induction and coinduction.

The first soundness proof for coinductive definitions appears to be
due to Makoto Tatsuta:

M. Tatsuta, Realizability of Monotone Coinductive Definitions
and Its Application to Program Synthesis. Proc. MPC,
LNCS 1422, 338–364, 1998

31 / 68

Realizing natural numbers

One can easily see that for every natural number x ∈ N:

a r x ⇔ a is the unary notation of x

Hence for our extracted program

a : Nat, b : Nat ` ItN[a,Succ, b]

the Soundness Theorem says:

If a, b are the unary notations of x , y ∈ N,

then ItN[a,Succ, b] is the unary notation of x + y .

.

32 / 68

II Program extraction in analysis

33 / 68

Approximating real numbers by rationals

We are looking for properties of real numbers which give us
realizers that can be used ad data structures for exact real number
computation:

Cauchy :≡ {x | ∀n ∈ N ∃p ∈ Q (|x − p| ≤ 2−n)}

where Q :≡ {p | ∃k , l ,m ∈ N (m > 0 ∧ p = (k − l)/m)}

τ(Q) =

Nat3

τ(Cauchy) = Nat→ Nat3

A realizer of the formula Cauchy(x) is an infinite sequence of
(representations of) rational numbers converging to x at an
exponential rate.

34 / 68

Approximating real numbers by rationals

We are looking for properties of real numbers which give us
realizers that can be used ad data structures for exact real number
computation:

Cauchy :≡ {x | ∀n ∈ N ∃p ∈ Q (|x − p| ≤ 2−n)}

where Q :≡ {p | ∃k , l ,m ∈ N (m > 0 ∧ p = (k − l)/m)}

τ(Q) = Nat3

τ(Cauchy) =

Nat→ Nat3

A realizer of the formula Cauchy(x) is an infinite sequence of
(representations of) rational numbers converging to x at an
exponential rate.

34 / 68

Approximating real numbers by rationals

We are looking for properties of real numbers which give us
realizers that can be used ad data structures for exact real number
computation:

Cauchy :≡ {x | ∀n ∈ N ∃p ∈ Q (|x − p| ≤ 2−n)}

where Q :≡ {p | ∃k , l ,m ∈ N (m > 0 ∧ p = (k − l)/m)}

τ(Q) = Nat3

τ(Cauchy) = Nat→ Nat3

A realizer of the formula Cauchy(x) is an infinite sequence of
(representations of) rational numbers converging to x at an
exponential rate.

34 / 68

Signed digit streams

Set

I := [−1, 1] = {x | −1 ≤ x ≤ 1}
SD := {−1, 0, 1} = {x | x = −1 ∨ x = 0 ∨ x = 1}

avd(x) := (x + d)/2

C0
ν
= {x | x ∈ I ∧ ∃d ∈ SD ∃y ∈ C0 (x = avd(y))}

τ(I) =

1

τ(SD) = 1 + 1 + 1 ≈ SD

τ(C0) = let SDS = SD× SDS in SDS

Hence SDS is the type of infinite streams of signed digits.

35 / 68

Signed digit streams

Set

I := [−1, 1] = {x | −1 ≤ x ≤ 1}
SD := {−1, 0, 1} = {x | x = −1 ∨ x = 0 ∨ x = 1}

avd(x) := (x + d)/2

C0
ν
= {x | x ∈ I ∧ ∃d ∈ SD ∃y ∈ C0 (x = avd(y))}

τ(I) = 1

τ(SD) =

1 + 1 + 1 ≈ SD

τ(C0) = let SDS = SD× SDS in SDS

Hence SDS is the type of infinite streams of signed digits.

35 / 68

Signed digit streams

Set

I := [−1, 1] = {x | −1 ≤ x ≤ 1}
SD := {−1, 0, 1} = {x | x = −1 ∨ x = 0 ∨ x = 1}

avd(x) := (x + d)/2

C0
ν
= {x | x ∈ I ∧ ∃d ∈ SD ∃y ∈ C0 (x = avd(y))}

τ(I) = 1

τ(SD) = 1 + 1 + 1 ≈ SD

τ(C0) =

let SDS = SD× SDS in SDS

Hence SDS is the type of infinite streams of signed digits.

35 / 68

Signed digit streams

Set

I := [−1, 1] = {x | −1 ≤ x ≤ 1}
SD := {−1, 0, 1} = {x | x = −1 ∨ x = 0 ∨ x = 1}

avd(x) := (x + d)/2

C0
ν
= {x | x ∈ I ∧ ∃d ∈ SD ∃y ∈ C0 (x = avd(y))}

τ(I) = 1

τ(SD) = 1 + 1 + 1 ≈ SD

τ(C0) = let SDS = SD× SDS in SDS

Hence SDS is the type of infinite streams of signed digits.

35 / 68

Signed digits vs. Cauchy sequences

One easily sees

d rCauchy(x) ⇔ x =
∞∑
0

di ∗ 2i+1

I.e. d is a signed digit representation of x .

Theorem 5

C0 = Cauchy.

From a proof of Theorem 5 one extracts programs translating
between the signed-digit- and the Cauchy-representation.

36 / 68

Signed digits vs. Cauchy sequences

One easily sees

d rCauchy(x) ⇔ x =
∞∑
0

di ∗ 2i+1

I.e. d is a signed digit representation of x .

Theorem 5

C0 = Cauchy.

From a proof of Theorem 5 one extracts programs translating
between the signed-digit- and the Cauchy-representation.

36 / 68

Extracting exact real arithmetic

Theorem 6 If x , y ∈ C0 then x+y
2 ∈ C0.

Theorem 7 If x , y ∈ C0 then xy ∈ C0.

From these theorems one extracts implementations of addition and
multiplication w.r.t. the signed digit representation.

Similar implementations were studied by Edalat, Potts, Heckmann,
Escardo, Ciaffaglione, Gianantonio, e.t.c.

The difference is that we extract the programs
– together with their correctness proofs.

37 / 68

Extracting exact real arithmetic

Theorem 6 If x , y ∈ C0 then x+y
2 ∈ C0.

Theorem 7 If x , y ∈ C0 then xy ∈ C0.

From these theorems one extracts implementations of addition and
multiplication w.r.t. the signed digit representation.

Similar implementations were studied by Edalat, Potts, Heckmann,
Escardo, Ciaffaglione, Gianantonio, e.t.c.

The difference is that we extract the programs
– together with their correctness proofs.

37 / 68

Extracting exact real arithmetic

Theorem 6 If x , y ∈ C0 then x+y
2 ∈ C0.

Theorem 7 If x , y ∈ C0 then xy ∈ C0.

From these theorems one extracts implementations of addition and
multiplication w.r.t. the signed digit representation.

Similar implementations were studied by Edalat, Potts, Heckmann,
Escardo, Ciaffaglione, Gianantonio, e.t.c.

The difference is that we extract the programs
– together with their correctness proofs.

37 / 68

Extracting exact real arithmetic

Theorem 6 If x , y ∈ C0 then x+y
2 ∈ C0.

Theorem 7 If x , y ∈ C0 then xy ∈ C0.

From these theorems one extracts implementations of addition and
multiplication w.r.t. the signed digit representation.

Similar implementations were studied by Edalat, Potts, Heckmann,
Escardo, Ciaffaglione, Gianantonio, e.t.c.

The difference is that we extract the programs
– together with their correctness proofs.

37 / 68

Approaching real functions coinductively

We are looking for descriptions of real functions as stream
processors.
The idea is as follows: For reals x ∈ I and signed digit streams
d : SDS we have

d rC0(x) ⇔ x =
∞∑
0

di ∗ 2i+1

⇔ x = avd0 ◦ avd1 ◦ avd2 ◦ . . .

Hence for f : I→ I and x as above

f (x) = f ◦ avd0 ◦ avd1 ◦ avd2 ◦ . . .
= (f ◦ avd0) ◦ avd1 ◦ avd2 ◦ . . .

which means we read digit d0.

38 / 68

Approaching real functions coinductively

But, if we are lucky, we can as well do, setting vae(x) := 2x − d
(the inverse of avd),

f (x) = f ◦ avd0 ◦ avd1 ◦ avd2 ◦ . . .
= ave ◦ (vae ◦ f) ◦ avd0 ◦ avd1 ◦ avd2 ◦ . . .

This means we are writing the digit e. However, this is only
possible if the function vae ◦ f maps I to I. The latter is the case if
and only if f [I] ⊆ Ie := [e/2− 1/2, e/2 + 1/2] which is not
necessarily the case.

However, if f is continuous, this will be eventually the case after
finitely many reading steps (because reading makes the function
flatter).

39 / 68

Coinductive/Inductive real functions

Hence we define C1 ⊆ II by a nested inductive/coinductive
definition as follows:

C1
ν
= let J

µ
= {f : I→ I | (∃e ∈ SDvae ∈ C1) ∨

(∀d ∈ SD f ◦ avd ∈ J)} in J

40 / 68

Memo tries for continuous functions

Theorem 8 h is uniformly continuous iff h ∈ C1.

From the proof of this theorem one extracts programs translating
between realisers of “f is continuous” (where continuity has to be
defined in a constructively meaningful way) and realisers of
“f ∈ C1”.

What is a realiser of “f ∈ C1”?

It is a finitely branching non-wellfounded tree describing when f
emits and absorbs digits. I.p. it is a data structure, not a function.

Similar trees have been studied by P. Hancock, D. Pattinson, N.
Ghani.
P. Hancock, D. Pattinson, N. Ghani. Representations of Stream
Processors Using Nested Fixed Points, LMCS 5, 2009.

41 / 68

Memo tries for continuous functions

Theorem 8 h is uniformly continuous iff h ∈ C1.

From the proof of this theorem one extracts programs translating
between realisers of “f is continuous” (where continuity has to be
defined in a constructively meaningful way) and realisers of
“f ∈ C1”.

What is a realiser of “f ∈ C1”?

It is a finitely branching non-wellfounded tree describing when f
emits and absorbs digits. I.p. it is a data structure, not a function.

Similar trees have been studied by P. Hancock, D. Pattinson, N.
Ghani.
P. Hancock, D. Pattinson, N. Ghani. Representations of Stream
Processors Using Nested Fixed Points, LMCS 5, 2009.

41 / 68

Memo tries for continuous functions

Theorem 8 h is uniformly continuous iff h ∈ C1.

From the proof of this theorem one extracts programs translating
between realisers of “f is continuous” (where continuity has to be
defined in a constructively meaningful way) and realisers of
“f ∈ C1”.

What is a realiser of “f ∈ C1”?

It is a finitely branching non-wellfounded tree describing when f
emits and absorbs digits. I.p. it is a data structure, not a function.

Similar trees have been studied by P. Hancock, D. Pattinson, N.
Ghani.
P. Hancock, D. Pattinson, N. Ghani. Representations of Stream
Processors Using Nested Fixed Points, LMCS 5, 2009.

41 / 68

Memo tries for continuous functions

Theorem 8 h is uniformly continuous iff h ∈ C1.

From the proof of this theorem one extracts programs translating
between realisers of “f is continuous” (where continuity has to be
defined in a constructively meaningful way) and realisers of
“f ∈ C1”.

What is a realiser of “f ∈ C1”?

It is a finitely branching non-wellfounded tree describing when f
emits and absorbs digits. I.p. it is a data structure, not a function.

Similar trees have been studied by P. Hancock, D. Pattinson, N.
Ghani.
P. Hancock, D. Pattinson, N. Ghani. Representations of Stream
Processors Using Nested Fixed Points, LMCS 5, 2009.

41 / 68

Memo tries for continuous functions

Theorem 8 h is uniformly continuous iff h ∈ C1.

From the proof of this theorem one extracts programs translating
between realisers of “f is continuous” (where continuity has to be
defined in a constructively meaningful way) and realisers of
“f ∈ C1”.

What is a realiser of “f ∈ C1”?

It is a finitely branching non-wellfounded tree describing when f
emits and absorbs digits. I.p. it is a data structure, not a function.

Similar trees have been studied by P. Hancock, D. Pattinson, N.
Ghani.
P. Hancock, D. Pattinson, N. Ghani. Representations of Stream
Processors Using Nested Fixed Points, LMCS 5, 2009.

41 / 68

Tree of the logistic map, fa(x) = a(1− x2)− 1, with
a = 2/3

N

N

P

Z

N Z Z

Z

P

N Z Z

Z

P

N Z Z

Z

P

Z

Z Z N

Z

P

Z Z N

Z

Z Z N

N

P

Figure: An initial segment of the tree of f (x) = 2
3 (1− x2)− 1.

42 / 68

Extracting memoized exact real arithmetic

The definition of C1 ⊆ II can be generalised to Cn ⊆ I(In).

Theorem 9 The average function lies in C2.

Theorem 10 Multiplication lies in C2.

From Theorems 5,6 one extracts implementations of addition and
multiplication as memo-tries (relation to work by Hinze and
Altenkirch?)

Experiments show considerable speed-up when sampling “hard”
functions (e.g. high iterations of the logistic map) on a very fine
grid.

Problems in Coq with the nested inductive/coinductive definition
of C1:

Coq accepts the definition, but rejects the attempted coinductive
proofs as not formally guarded.

43 / 68

Extracting memoized exact real arithmetic

The definition of C1 ⊆ II can be generalised to Cn ⊆ I(In).

Theorem 9 The average function lies in C2.

Theorem 10 Multiplication lies in C2.

From Theorems 5,6 one extracts implementations of addition and
multiplication as memo-tries (relation to work by Hinze and
Altenkirch?)

Experiments show considerable speed-up when sampling “hard”
functions (e.g. high iterations of the logistic map) on a very fine
grid.

Problems in Coq with the nested inductive/coinductive definition
of C1:

Coq accepts the definition, but rejects the attempted coinductive
proofs as not formally guarded.

43 / 68

Extracting memoized exact real arithmetic

The definition of C1 ⊆ II can be generalised to Cn ⊆ I(In).

Theorem 9 The average function lies in C2.

Theorem 10 Multiplication lies in C2.

From Theorems 5,6 one extracts implementations of addition and
multiplication as memo-tries (relation to work by Hinze and
Altenkirch?)

Experiments show considerable speed-up when sampling “hard”
functions (e.g. high iterations of the logistic map) on a very fine
grid.

Problems in Coq with the nested inductive/coinductive definition
of C1:

Coq accepts the definition, but rejects the attempted coinductive
proofs as not formally guarded.

43 / 68

Extracting memoized exact real arithmetic

The definition of C1 ⊆ II can be generalised to Cn ⊆ I(In).

Theorem 9 The average function lies in C2.

Theorem 10 Multiplication lies in C2.

From Theorems 5,6 one extracts implementations of addition and
multiplication as memo-tries (relation to work by Hinze and
Altenkirch?)

Experiments show considerable speed-up when sampling “hard”
functions (e.g. high iterations of the logistic map) on a very fine
grid.

Problems in Coq with the nested inductive/coinductive definition
of C1:

Coq accepts the definition, but rejects the attempted coinductive
proofs as not formally guarded.

43 / 68

Extracting memoized exact real arithmetic

The definition of C1 ⊆ II can be generalised to Cn ⊆ I(In).

Theorem 9 The average function lies in C2.

Theorem 10 Multiplication lies in C2.

From Theorems 5,6 one extracts implementations of addition and
multiplication as memo-tries (relation to work by Hinze and
Altenkirch?)

Experiments show considerable speed-up when sampling “hard”
functions (e.g. high iterations of the logistic map) on a very fine
grid.

Problems in Coq with the nested inductive/coinductive definition
of C1:

Coq accepts the definition, but rejects the attempted coinductive
proofs as not formally guarded.

43 / 68

Extracting memoized exact real arithmetic

The definition of C1 ⊆ II can be generalised to Cn ⊆ I(In).

Theorem 9 The average function lies in C2.

Theorem 10 Multiplication lies in C2.

From Theorems 5,6 one extracts implementations of addition and
multiplication as memo-tries (relation to work by Hinze and
Altenkirch?)

Experiments show considerable speed-up when sampling “hard”
functions (e.g. high iterations of the logistic map) on a very fine
grid.

Problems in Coq with the nested inductive/coinductive definition
of C1:

Coq accepts the definition, but rejects the attempted coinductive
proofs as not formally guarded.

43 / 68

Extracting memoized exact real arithmetic

The definition of C1 ⊆ II can be generalised to Cn ⊆ I(In).

Theorem 9 The average function lies in C2.

Theorem 10 Multiplication lies in C2.

From Theorems 5,6 one extracts implementations of addition and
multiplication as memo-tries (relation to work by Hinze and
Altenkirch?)

Experiments show considerable speed-up when sampling “hard”
functions (e.g. high iterations of the logistic map) on a very fine
grid.

Problems in Coq with the nested inductive/coinductive definition
of C1:

Coq accepts the definition, but rejects the attempted coinductive
proofs as not formally guarded.

43 / 68

Extracting memoized exact real arithmetic

The definition of C1 ⊆ II can be generalised to Cn ⊆ I(In).

Theorem 9 The average function lies in C2.

Theorem 10 Multiplication lies in C2.

From Theorems 5,6 one extracts implementations of addition and
multiplication as memo-tries (relation to work by Hinze and
Altenkirch?)

Experiments show considerable speed-up when sampling “hard”
functions (e.g. high iterations of the logistic map) on a very fine
grid.

Problems in Coq with the nested inductive/coinductive definition
of C1:

Coq accepts the definition, but rejects the attempted coinductive
proofs as not formally guarded.

43 / 68

Integration

Let
∫
f denote the definite integral

∫ 1
−1 f (x)dx .

We assume the following “axioms” about
∫
f :

(a)
∫
f = 1

2

∫
(vad ◦ f) + d where vad(x) := 2x − d .

(b)
∫
f = 1

2(
∫

(f ◦ av−1) +
∫

(f ◦ av1)).

Theorem 7 If f ∈ C1, then ∀n ∈ N ∃q ∈ Q |
∫
f − q| ≤ 2−n.

The extracted program has some similarity with A. Simpson’s, but
is more efficient because the functions to be integrated are
represented differently.

44 / 68

Integration

Let
∫
f denote the definite integral

∫ 1
−1 f (x)dx .

We assume the following “axioms” about
∫
f :

(a)
∫
f = 1

2

∫
(vad ◦ f) + d where vad(x) := 2x − d .

(b)
∫
f = 1

2(
∫

(f ◦ av−1) +
∫

(f ◦ av1)).

Theorem 7 If f ∈ C1, then ∀n ∈ N ∃q ∈ Q |
∫
f − q| ≤ 2−n.

The extracted program has some similarity with A. Simpson’s, but
is more efficient because the functions to be integrated are
represented differently.

44 / 68

Integration

Let
∫
f denote the definite integral

∫ 1
−1 f (x)dx .

We assume the following “axioms” about
∫
f :

(a)
∫
f = 1

2

∫
(vad ◦ f) + d where vad(x) := 2x − d .

(b)
∫
f = 1

2(
∫

(f ◦ av−1) +
∫

(f ◦ av1)).

Theorem 7 If f ∈ C1, then ∀n ∈ N∃q ∈ Q |
∫
f − q| ≤ 2−n.

The extracted program has some similarity with A. Simpson’s, but
is more efficient because the functions to be integrated are
represented differently.

44 / 68

Integration

Let
∫
f denote the definite integral

∫ 1
−1 f (x)dx .

We assume the following “axioms” about
∫
f :

(a)
∫
f = 1

2

∫
(vad ◦ f) + d where vad(x) := 2x − d .

(b)
∫
f = 1

2(
∫

(f ◦ av−1) +
∫

(f ◦ av1)).

Theorem 7 If f ∈ C1, then ∀n ∈ N ∃q ∈ Q |
∫
f − q| ≤ 2−n.

The extracted program has some similarity with A. Simpson’s, but
is more efficient because the functions to be integrated are
represented differently.

44 / 68

Integration

Let
∫
f denote the definite integral

∫ 1
−1 f (x)dx .

We assume the following “axioms” about
∫
f :

(a)
∫
f = 1

2

∫
(vad ◦ f) + d where vad(x) := 2x − d .

(b)
∫
f = 1

2(
∫

(f ◦ av−1) +
∫

(f ◦ av1)).

Theorem 7 If f ∈ C1, then ∀n ∈ N ∃q ∈ Q |
∫
f − q| ≤ 2−n.

The extracted program has some similarity with A. Simpson’s, but
is more efficient because the functions to be integrated are
represented differently.

44 / 68

III Projects

45 / 68

Proof system for program extraction

All the exisiting proof systems are rather general purpose than
specialized to program extraction.

We are developing a small system exclusively dedicated to program
extraction in the form sketched previously.

The question whether to use typed or untyped relizers has been
partly answered: It doesn’t matter, both have, essentially, the same
semantics.

B., T. Hou. Typed vs Untyped Realizability. Submitted to
MFPS 2012.

46 / 68

Minlog implementation of program extraction in analysis

Several results in constructive analysis, based on a Cauchy
representation of reals, were implemented in Minlog and programs
have been extracted, e.g. Intermediate Value Theorem, Inverse
Function Theorem.

H. Schwichtenberg. Realizability interpretation of proofs in
constructive analysis, TOCS 43, 2008.

Recently, K. Miyamoto and H. Schwichtenberg have started to
implement the coinductive approach to analysis in Minlog:

K. Miyamoto and H. Schwichtenberg. Program extraction in
exact real arithmetic. Submitted.

47 / 68

Extracting normalization by evaluation

Tait’s strong normalization proof for the simply typed
lambda-calculus has been formalized was shown to have the
normalization-by-evaluation method as computational content:

B. Program extraction from normalization proofs. LNCS 664,
1993.

This was implemented in Coq, Isabelle and Minlog:

B., S. Berghofer, P. Letouzey, H. Schwichtenberg. Program
extraction from normalization proofs. Studia Logica 82, 2006.

48 / 68

Extracting programs from transfinite induction

Gentzen showed that transfinite induction below ε0 can be proven
in Peano Arithmetic (in fact Heyting Arithmetic).

Formalizing his proof one obtains higher type Gödel primitive
recursive programs for functions originally defined by transifinite
recursion.

The extracted higher type implementations (originally due to
H. Schwichtenberg) turned out to be significantly more efficient
than the one using transfinite recursion.

B. Program extraction from Gentzen’s proof of transfinite
induction up to ε0. LNCS 2183, 2001.

49 / 68

Extracting in-place Quicksort

We have extracted in-place Quicksort from a proof that every list
can be sorted. The extracted program can be directly viewed as
imperative code.

B., M. Seisenberger, G. Woods. A Case Study in Imperative
Program Extraction: In-Place Quicksort. Submitted to ITP
2012.

50 / 68

Extracting a DPLL SAT-solver

We have proven in Minlog the following theorem:

Every CNF has a DPLL refutation or a model

The extracted program is improved drastically in size and efficiency
by the use of uniform quantifiers.

B., A. Lawrence, M. Seisenberger. Extracting a DPLL
Algorithm. Submitted to MFPS 2012.

51 / 68

IV Programs from classical proofs

52 / 68

The general problem

Assume

Γ `c ∃x A0(x)

where A0(x) is atomic.

We wish to extract a term t such that

∆ `i A0(t)

for some “true” assumptions ∆.

In many cases the combined Gödel/Gentzen/Friedman translation
works.

53 / 68

The Gödel/Gentzen/Friedman translation

BA :≡ Bg[A/⊥] i.e.

⊥A ≡ A

BA ≡ (B → A)→ A (B atomic ,B 6= ⊥)

(∃y B)A ≡ ((∃y BA)→ A)→ A

(B ∨ C)A ≡ ((BA ∨ CA)→ A)→ A

(B ◦ C)A ≡ BA ◦ CA (◦ ∈ {∧,→})
(∀y B)A ≡ ∀y (BA)

One has in general:

If Γ `c C , then ΓA `i CA

54 / 68

Program extraction in classical arithmetic

A :≡ ∃x A0(x).

PA `c A

PAA `i AA

PA `i A

Since PA `i PAA and `i AA → A.

Now apply program extraction from intuitionistic proofs.

55 / 68

Why does PA `i PAA

B(0) ∧ ∀x (B(x)→ B(x + 1))→ ∀x B(x)

B(0)A ∧ ∀x (B(x)A → B(x + 1)A)→ ∀x B(x)A

The translation of an induction axiom is again an induction axiom
because the induction scheme doesn’t mention atomic formulas, ∨,
or ∃ explicitely.

But: The logical complexity of the translated axiom is higher!

Parsons showed that for Σ0
2-induction the complexity can be kept.

C. Parsons. On n-quantifier induction. JSL 37, 1972.

56 / 68

Wolves in the sheep skin: Countable and Dependent
Choice

AC ∀n ∃x B(n, x)→ ∃f ∀n B(n, fn)

DC ∀n ∀x ∃y A(n, x , y)→ ∃f ∀n A(n, fn, f (n + 1))

AC and DC are intuitionistically weak (conservative over Heyting
Arithmetic), but classically strong (they yield full classical analysis).

Gödel/Gentzen/Friedman translation of AC:

∀n ((∃x B(n, x)A → A)→ A)→ ((∃f ∀n B(n, fn))→ A)→ A

ACA and DCA are classically true, but not provable in arithmetic.

57 / 68

Alternative: Open Induction

Let U(α) be an open property of infinite sequences α : N→ ρ, i.e.
U(α) depends on a finite initial segment of α only.

Let < be a decidable wellfounded binary relation on ρ.

Define the lexicographic extension, <lex, on N→ ρ by

β <lex α :≡ ∃n (βn = αn ∧ βn < αn)

Open induction (OI)

∀α (∀β <lex αU(β)→ U(α))→ ∀αU(α)

Open induction was first formulated by Raoult.

J-C Raoult. Proving open properties by induction.
Information processing letters 29, 1988.

58 / 68

Induction on a non-welfounded relation!

The wellfoundedness of < does not imply the wellfoundedness of
<lex:

1111111 . . . >lex 0111111 . . . >lex 0011111

59 / 68

Update induction

An important special case of open induction is update induction

Let α, β be partial sequences (in ρ) with decidable domain, i.e
α, β : Nat→ 1 + ρ.

β is an update of α (β <up α) if β is the same as α except that at
one argument α is undefined, but β is defined.

Update induction (UI)

∀α (∀β <up αU(β)→ U(α))→ ∀αU(α)

where U ranges over open predicates.

Proposition

DC, OI and UI are classically (i.e. provably in PAω) equivalent.

60 / 68

A generalized notion of ‘open’

In order to for open induction to be closed under negative
translation we need to define ‘open’ (intuitionistically) slightly
more general than usual:

A predicate U(α) is open, if it is of the form

U(α) ≡ ∀n C (αn)→ ∃n B(αn)

where C is arbitrary and B is a Σ-formula, that is, B is → ∀ free
and all predicates in B have no function arguments.

61 / 68

Equivalences

Proposition

Open (Update) induction is closed under the GGF-translation.

Corollary

If UI(OI)(DC) `c ∃x B(x), then UI `i ∃x B(x) for every
Σ-formula B(x).

(B as above)

62 / 68

Update recursion (UR)

Ruf α =τ f α(n, x 7→ if(n 6∈ domαRuf αx
n, 0

τ))

where τ is → free.

Theorem Cont + UI + UR `i ΦmrUI

for some term Φ explicitely defined from UR.

Where Cont states continuity for functionals:

∀F , α ∃n ∀β (αn =ρ βn→ Fα =Nat Fβ)

(holds in all constructively meaningful models)

63 / 68

Normalization

Theorem

Every closed update recursive term M of a → free type reduces to
a numeral (canonical term).

Proof

1. Interpret terms in the Scott-Ershov model Ĉ of partial
continuous functionals and show that all terms have a total
value (the totality of Ru is proved by update induction).

2. Use Plotkin’s adequacy result (TCS 5).

64 / 68

Program extraction with classical choice

Theorem

From a derivation DC `c ∀xρ ∃y τ A(x , y) where A(x , y) is a
Σ-formula and τ is a data type one can extract a closed update
recursive term Φρ→τ such that for each closed term rρ the term
Φr reduces to a numeral n such that A(r , n) holds in the total
continuous (Kleene-Kreisel) functionals C.

65 / 68

Other computational interpretations of classical countable
choice

Spector Dialectica interpretation of AC¬¬ and DC¬¬ using
Bar recursion in finite types.

Berardi/Bezem/Coquand Special realizability interpretation of
AC¬¬ and DC¬¬ using a kind of ‘update recursion’.

Oliva/B Modified realizability interpretation of (AC¬¬)A and
(DC¬¬)A using modified bar recursion.

Escardo/Oliva Products of selection functions

Krivine Machine oriented interpretation (“classical
realizability”).

66 / 68

The End

Thanks for your attention!

67 / 68

68 / 68

