
A Unified View of Pure Type Systems’ Conversion
JAIST Spring School 2012

Vincent Siles

Göteborg University, Sweden

March 7, 2012

V. Siles, GU-Chalmers Pure Type Systems Conversion

Simply Typed λ-Calculus

M,N ::= x | λxA.M | M N
A,B ::= a | A→ B

Γ ::= ∅ | Γ, x : A

Γ(x) = A
Γ ` x : A

Γ, x : A ` M : B

Γ ` λxA.M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` M N : B

id A == λxA.x : A→ A

V. Siles, GU-Chalmers Pure Type Systems Conversion

System-F

M,N ::= x | λxA.M | M N | Λa.M | M A
A,B ::= a | A→ B | ∀a,B

Γ ::= ∅ | Γ, x : A

Γ(x) = A
Γ ` x : A

Γ, x : A ` M : B

Γ ` λxA.M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` M N : B

Γ ` M : B
Γ ` Λa.M : ∀,a B

Γ ` M : ∀A,B
Γ ` M A : B[A/a]

id == ΛA.λxA.x : ∀A,A→ A

V. Siles, GU-Chalmers Pure Type Systems Conversion

Calculus of Constructions

M,N,A,B ::= Prop | Type | x | λxA.M | M N | Πx : A.B
Γ ::= ∅ | Γ, x : A

. . .

V. Siles, GU-Chalmers Pure Type Systems Conversion

1 Pure Type Systems

2 Equivalence and Typed Reduction

3 Proof formalization

V. Siles, GU-Chalmers Pure Type Systems Conversion

Pure Type Systems

Pure Type Systems have been built to unify all these different
presentations in a single system:

M,N,A,B ::= x | λxA.M | M N | ΠxA.B | s
Γ ::= ∅ | Γ, x : A

PTSs are an abstraction of Barendregt’s λ-cube, presented
independently by Berardi and Terlouw.
To be able to deal with all the different type systems, PTSs have
parameters that describe which type is valid: Sorts,Ax and Rel .

V. Siles, GU-Chalmers Pure Type Systems Conversion

Pure Type Systems

Pure Type Systems have been built to unify all these different
presentations in a single system:

M,N,A,B ::= x | λxA.M | M N | ΠxA.B† | s
Γ ::= ∅ | Γ, x : A

PTSs are an abstraction of Barendregt’s λ-cube, presented
independently by Berardi and Terlouw.

To be able to deal with all the different type systems, PTSs have
parameters that describe which type is valid: Sorts,Ax and Rel .

†We write A → B when B does not depend on the input.
V. Siles, GU-Chalmers Pure Type Systems Conversion

Pure Type Systems

Pure Type Systems have been built to unify all these different
presentations in a single system:

M,N,A,B ::= x | λxA.M | M N | ΠxA.B† | s
Γ ::= ∅ | Γ, x : A

PTSs are an abstraction of Barendregt’s λ-cube, presented
independently by Berardi and Terlouw.
To be able to deal with all the different type systems, PTSs have
parameters that describe which type is valid: Sorts,Ax and Rel .

†We write A → B when B does not depend on the input.
V. Siles, GU-Chalmers Pure Type Systems Conversion

Typing Rules

∅wf

Γ ` A : s x /∈ Dom(Γ)

(Γ, x : A)wf

Γwf (s, t) ∈ Ax
Γ ` s : t

Γwf Γ(x) = A
Γ ` x : A

Γ ` A : s Γ, x : A ` B : t
(s, t ,u) ∈ Rel Γ, x : A ` M : B

Γ ` λxA.M : ΠxA.B

Γ ` A : s Γ, x : A ` B : t (s, t ,u) ∈ Rel

Γ ` ΠxA.B : u

Γ ` M : ΠxA.B Γ ` N : A
Γ ` MN : B[N/x]

Γ ` M : A A
β
≡ B Γ ` B : s

Γ ` M : B

V. Siles, GU-Chalmers Pure Type Systems Conversion

Difference with STLC

STLC PTS

Γ, x : A ` M : B

Γ ` λxA.M : A→ B ⇒
Γ ` ΠxA.B : s Γ, x : A ` M : B

Γ ` λxA.M : ΠxA.B

Γ ` M : A→ B Γ ` N : A
Γ ` M N : B ⇒

Γ ` M : ΠxA.B Γ ` N : A
Γ ` M N : B[N/x]

Γ ` M : A A =β B Γ ` B : s
Γ ` M : B

CONV

V. Siles, GU-Chalmers Pure Type Systems Conversion

Difference with STLC

STLC PTS

Γ, x : A ` M : B

Γ ` λxA.M : A→ B ⇒
Γ ` ΠxA.B : s Γ, x : A ` M : B

Γ ` λxA.M : ΠxA.B

Γ ` M : A→ B Γ ` N : A
Γ ` M N : B ⇒

Γ ` M : ΠxA.B Γ ` N : A
Γ ` M N : B[N/x]

Γ ` M : A A =β B Γ ` B : s
Γ ` M : B

CONV

V. Siles, GU-Chalmers Pure Type Systems Conversion

Why a conversion rule ?

Let’s consider the type of lists of N of length n: list n.

What is the result and the type of concat l l ?
Πnnat .Πmnat. list n→ list m→ list (n + m)

l = [1,3,5,7] : list 4
concat 4 4 l l =β [1,3,5,7,1,3,5,7] : list (4+4)

The conversion rule is here to compute at the level of types and
change list (4+4) into list 8.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Why a conversion rule ?

Let’s consider the type of lists of N of length n: list n.
What is the result and the type of concat l l ?
Πnnat .Πmnat. list n→ list m→ list (n + m)

l = [1,3,5,7] : list 4
concat 4 4 l l =β [1,3,5,7,1,3,5,7] : list (4+4)

The conversion rule is here to compute at the level of types and
change list (4+4) into list 8.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Why a conversion rule ?

Let’s consider the type of lists of N of length n: list n.
What is the result and the type of concat l l ?
Πnnat .Πmnat. list n→ list m→ list (n + m)

l = [1,3,5,7] : list 4

concat 4 4 l l =β [1,3,5,7,1,3,5,7] : list (4+4)

The conversion rule is here to compute at the level of types and
change list (4+4) into list 8.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Why a conversion rule ?

Let’s consider the type of lists of N of length n: list n.
What is the result and the type of concat l l ?
Πnnat .Πmnat. list n→ list m→ list (n + m)

l = [1,3,5,7] : list 4
concat 4 4 l l =β [1,3,5,7,1,3,5,7] : list (4+4)

The conversion rule is here to compute at the level of types and
change list (4+4) into list 8.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Facts about PTSs

For example:

Type Correctness
If Γ ` M : T then there is s ∈ Sorts such that T ≡ s or Γ ` T : s.

A more complex one:

Subject Reduction
If Γ ` M : T and M →β M ′ then Γ ` M ′ : T .

V. Siles, GU-Chalmers Pure Type Systems Conversion

Facts about PTSs

For example:

Type Correctness
If Γ ` M : T then there is s ∈ Sorts such that T ≡ s or Γ ` T : s.

A more complex one:

Subject Reduction
If Γ ` M : T and M →β M ′ then Γ ` M ′ : T .

V. Siles, GU-Chalmers Pure Type Systems Conversion

Π-injectivity

The proof of Subject-Reduction relies on the following property:

Injectivity of products

If ΠxA.B =β ΠxC .D then A =β C and B =β D.

Proof.
By Confluence of β-reduction, there is M such that ΠxA.B �β M and
ΠxC .D �β M. By definition of�β, this implies that M is of the shape
ΠxK .L and that A�β K , C �β K , B �β L and D �β L.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

Γ ` M : A A =β B Γ ` B : s
Γ ` M : B (λxA′

.P) Q =β P[Q/x]

V. Siles, GU-Chalmers Pure Type Systems Conversion

Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

Let’s consider P to be the following proof of Γ ` M : B.

P1 P2 P3

V. Siles, GU-Chalmers Pure Type Systems Conversion

Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

By Confluence:

P1 P3P'2 P"2

V. Siles, GU-Chalmers Pure Type Systems Conversion

Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

By Type Correctness and Subject Reduction:

P1

P3

P'2

P"2
SR

V. Siles, GU-Chalmers Pure Type Systems Conversion

Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

But Subject Reduction introduces new harmful conversions:

P1

P3

P'2

P"2

SR

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS with typed equality (PTSe)

To avoid this possibility, we can type every step of the conversion.
They are called semantical PTSs or PTSs with typed
equality [Geuvers93]. We have now two typing judgments:

One for terms: Γ `e M : T
One for equalities: Γ `e M =β N : T

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS with typed equality (PTSe)

To avoid this possibility, we can type every step of the conversion.
They are called semantical PTSs or PTSs with typed
equality [Geuvers93]. We have now two typing judgments:

One for terms: Γ `e M : T

One for equalities: Γ `e M =β N : T

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS with typed equality (PTSe)

To avoid this possibility, we can type every step of the conversion.
They are called semantical PTSs or PTSs with typed
equality [Geuvers93]. We have now two typing judgments:

One for terms: Γ `e M : T
One for equalities: Γ `e M =β N : T

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS with typed equality (PTSe)

To avoid this possibility, we can type every step of the conversion.
They are called semantical PTSs or PTSs with typed
equality [Geuvers93]. We have now two typing judgments:

One for terms: Γ `e M : T
One for equalities: Γ `e M =β N : T

Γ ` M : A A =β B Γ ` B : s
Γ ` M : B

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS with typed equality (PTSe)

To avoid this possibility, we can type every step of the conversion.
They are called semantical PTSs or PTSs with typed
equality [Geuvers93]. We have now two typing judgments:

One for terms: Γ `e M : T
One for equalities: Γ `e M =β N : T

Γ `e M : A Γ `e A =β B : s
Γ `e M : B

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS with typed equality

Untyped β-equality is quite “small”:

(λxA.M) N =β M[N/x]

A =β A′ M =β M ′

λxA.M =β λxA′
.M ′

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS with typed equality

Typed β-equality is notably “bigger”:

Γ, x : A `e M : B Γ `e N : A
Γ `e A : s Γ, x : A `e B : t (s, t ,u) ∈ Rel

Γ `e (λxA.M)N =β M[N/x] : B[N/x]

Γ `e A =β A′ : s Γ, x : A `e M =β M ′ : B
Γ, x : A `e B : t (s, t ,u) ∈ Rel

Γ `e λxA.M =β λxA′
.M ′ : ΠxA.B

V. Siles, GU-Chalmers Pure Type Systems Conversion

Facts about PTSe

Almost all the properties that we know about PTSs are easily proved
valid for PTSe, and there are new ones:

Left-hand/Right-hand reflexivity
If Γ `e M =β N : T then Γ `e M : T and Γ `e N : T .

However, Subject Reduction is really troublesome to prove:

Typed Subject Reduction:
If Γ `e M : T and M →β N, then Γ `e M =β N : T .

V. Siles, GU-Chalmers Pure Type Systems Conversion

Facts about PTSe

Almost all the properties that we know about PTSs are easily proved
valid for PTSe, and there are new ones:

Left-hand/Right-hand reflexivity
If Γ `e M =β N : T then Γ `e M : T and Γ `e N : T .

However, Subject Reduction is really troublesome to prove:

Typed Subject Reduction:
If Γ `e M : T and M →β N, then Γ `e M =β N : T .

V. Siles, GU-Chalmers Pure Type Systems Conversion

Facts about PTSe

Almost all the properties that we know about PTSs are easily proved
valid for PTSe, and there are new ones:

Left-hand/Right-hand reflexivity
If Γ `e M =β N : T then Γ `e M : T and Γ `e N : T .

However, Subject Reduction is really troublesome to prove:

Typed Subject Reduction:
If Γ `e M : T and M →β N, then Γ `e M =β N : T .

V. Siles, GU-Chalmers Pure Type Systems Conversion

Back to the old proof

To prove Subject-Reduction for PTS, we relied on Confluence, and
more precisely on Π-injectivity. Now that we have a typed equality, we
need a typed version of this injectivity property.

Proving it for PTSe is a difficult problem since we can’t do it in the
same way as PTS: the proof would rely on (typed) Confluence,

which
relies on Subject Reduction, which relies on Π-Injectivity, which relies on ...

V. Siles, GU-Chalmers Pure Type Systems Conversion

Back to the old proof

To prove Subject-Reduction for PTS, we relied on Confluence, and
more precisely on Π-injectivity. Now that we have a typed equality, we
need a typed version of this injectivity property.

Proving it for PTSe is a difficult problem since we can’t do it in the
same way as PTS: the proof would rely on (typed) Confluence, which
relies on Subject Reduction,

which relies on Π-Injectivity, which relies on ...

V. Siles, GU-Chalmers Pure Type Systems Conversion

Back to the old proof

To prove Subject-Reduction for PTS, we relied on Confluence, and
more precisely on Π-injectivity. Now that we have a typed equality, we
need a typed version of this injectivity property.

Proving it for PTSe is a difficult problem since we can’t do it in the
same way as PTS: the proof would rely on (typed) Confluence, which
relies on Subject Reduction, which relies on Π-Injectivity,

which relies on ...

V. Siles, GU-Chalmers Pure Type Systems Conversion

Back to the old proof

To prove Subject-Reduction for PTS, we relied on Confluence, and
more precisely on Π-injectivity. Now that we have a typed equality, we
need a typed version of this injectivity property.

Proving it for PTSe is a difficult problem since we can’t do it in the
same way as PTS: the proof would rely on (typed) Confluence, which
relies on Subject Reduction, which relies on Π-Injectivity, which relies on ...

V. Siles, GU-Chalmers Pure Type Systems Conversion

Back to the old proof

To prove Subject-Reduction for PTS, we relied on Confluence, and
more precisely on Π-injectivity. Now that we have a typed equality, we
need a typed version of this injectivity property.

Proving it for PTSe is a difficult problem since we can’t do it in the
same way as PTS: the proof would rely on (typed) Confluence, which
relies on Subject Reduction, which relies on Π-Injectivity, which relies on ...

Non-fact: Strong Π-injectivity

If Γ `e ΠxA.B =β ΠxC .D : u, then there are s, t such that
(s, t ,u) ∈ Rel , Γ `e A =β C : s and Γ, x : A `e B =β D : t .

V. Siles, GU-Chalmers Pure Type Systems Conversion

Back to the old proof

To prove Subject-Reduction for PTS, we relied on Confluence, and
more precisely on Π-injectivity. Now that we have a typed equality, we
need a typed version of this injectivity property.

Proving it for PTSe is a difficult problem since we can’t do it in the
same way as PTS: the proof would rely on (typed) Confluence, which
relies on Subject Reduction, which relies on Π-Injectivity, which relies on ...

We do not know any direct proof of this fact in a direct manner.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Another kind of equality

Some presentations of programming languages and type theories
based on the work of Martin-Löf are using another form of equality:

The equality for terms is the same : Γ `e M =β N : T .
The equality for types is weaker : Γ `e A =β B.

If we assume that this equality enjoys Π-injectivity, then it is enough to
prove Subject Reduction for PTSe. Sadly, there is also no known proof
of this fact at the moment.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Another kind of equality

Some presentations of programming languages and type theories
based on the work of Martin-Löf are using another form of equality:

The equality for terms is the same : Γ `e M =β N : T .

The equality for types is weaker : Γ `e A =β B.

If we assume that this equality enjoys Π-injectivity, then it is enough to
prove Subject Reduction for PTSe. Sadly, there is also no known proof
of this fact at the moment.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Another kind of equality

Some presentations of programming languages and type theories
based on the work of Martin-Löf are using another form of equality:

The equality for terms is the same : Γ `e M =β N : T .
The equality for types is weaker : Γ `e A =β B.

If we assume that this equality enjoys Π-injectivity, then it is enough to
prove Subject Reduction for PTSe. Sadly, there is also no known proof
of this fact at the moment.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Another kind of equality

Some presentations of programming languages and type theories
based on the work of Martin-Löf are using another form of equality:

The equality for terms is the same : Γ `e M =β N : T .
The equality for types is weaker : Γ `e A =β B.

If we assume that this equality enjoys Π-injectivity, then it is enough to
prove Subject Reduction for PTSe. Sadly, there is also no known proof
of this fact at the moment.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Is there another way to prove it ?

Another way to prove Subject Reduction for PTSe would be to use the
Subject Reduction we have for PTSs. We need to prove some kind of
equivalence between both systems.

A more practical reason why we are looking for this equivalence is
about proof assistants. Usually, the implementation is done with an
untyped equality, whereas the consistency proof is done with a typed
equality. Such an equivalence would bring closer the implementation
from its theory.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Is there another way to prove it ?

Another way to prove Subject Reduction for PTSe would be to use the
Subject Reduction we have for PTSs. We need to prove some kind of
equivalence between both systems.

A more practical reason why we are looking for this equivalence is
about proof assistants. Usually, the implementation is done with an
untyped equality, whereas the consistency proof is done with a typed
equality. Such an equivalence would bring closer the implementation
from its theory.

V. Siles, GU-Chalmers Pure Type Systems Conversion

The Big Question

Are PTSs and PTSe the
same systems ?

[Geuvers93]

V. Siles, GU-Chalmers Pure Type Systems Conversion

Easy part of the equivalence

We prove by mutual induction that
If Γ `e M : T then Γ ` M : T .
If Γ `e M =β N : T then Γ ` M : T , Γ ` N : T and M =β N.
If Γwfe then Γwf .

Here we just “lose” some information, nothing difficult.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Easy part of the equivalence

We prove by mutual induction that
If Γ `e M : T then Γ ` M : T .
If Γ `e M =β N : T then Γ ` M : T , Γ ` N : T and M =β N.
If Γwfe then Γwf .

Here we just “lose” some information, nothing difficult.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Difficult part of the equivalence

The other way around needs a way to “type” a β-equivalence into a
judgmental equality:

If Γ ` M : T then Γ `e M : T .
If Γ ` M : T , Γ ` N : T and M =β N then Γ `e M =β N : T .
If Γwf then Γwfe .

Here, we need to find a way to type all the intermediate steps.

But can we ?

V. Siles, GU-Chalmers Pure Type Systems Conversion

Difficult part of the equivalence

The other way around needs a way to “type” a β-equivalence into a
judgmental equality:

If Γ ` M : T then Γ `e M : T .
If Γ ` M : T , Γ ` N : T and M =β N then Γ `e M =β N : T .
If Γwf then Γwfe .

Here, we need to find a way to type all the intermediate steps.

But can we ?

V. Siles, GU-Chalmers Pure Type Systems Conversion

Difficult part of the equivalence

The other way around needs a way to “type” a β-equivalence into a
judgmental equality:

If Γ ` M : T then Γ `e M : T .
If Γ ` M : T , Γ ` N : T and M =β N then Γ `e M =β N : T .
If Γwf then Γwfe .

Here, we need to find a way to type all the intermediate steps.

But can we ?

V. Siles, GU-Chalmers Pure Type Systems Conversion

The Big Answer

YES

[Siles 2010]

but its quite complex and not really intuitive.

V. Siles, GU-Chalmers Pure Type Systems Conversion

The Big Answer

YES

[Siles 2010]

but its quite complex and not really intuitive.

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS→ PTSe: How do we do this ?

Γ ` M : T M =β N Γ ` N : T

P is well-typed in PTS by Subject Reduction.
Is P well-typed in PTSe ?
How do we type M =β P and N =β P in PTSe ?

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS→ PTSe: How do we do this ?

Γ ` M : T M

�� ��

=β N

����

Γ ` N : T

Γ `e M : T P Γ `e N : T

P is well-typed in PTS by Subject Reduction.
Is P well-typed in PTSe ?
How do we type M =β P and N =β P in PTSe ?

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS→ PTSe: How do we do this ?

Γ ` M : T M

�� ��

=β N

����

Γ ` N : T

Γ `e M : T P Γ `e N : T

P is well-typed in PTS by Subject Reduction.

Is P well-typed in PTSe ?
How do we type M =β P and N =β P in PTSe ?

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS→ PTSe: How do we do this ?

Γ ` M : T M

�� ��

=β N

����

Γ ` N : T

Γ `e M : T P Γ `e N : T

P is well-typed in PTS by Subject Reduction.
Is P well-typed in PTSe ?

How do we type M =β P and N =β P in PTSe ?

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS→ PTSe: How do we do this ?

Γ ` M : T M

�� ��

=β N

����

Γ ` N : T

Γ `e M : T P Γ `e N : T

P is well-typed in PTS by Subject Reduction.
Is P well-typed in PTSe ?
How do we type M =β P and N =β P in PTSe ?

V. Siles, GU-Chalmers Pure Type Systems Conversion

Some partial solutions

Early attempts to prove such an equivalence did not aim at the
whole generality of PTSs, and were based on the construction of a
model [Geuvers93,Goguen94].

A first syntactical criterion was shown for a subclass of PTSs
[Adams06] called functional PTSs, by adding annotations inside
the syntax of terms.
By using the same intermediate system, Herbelin and I extended
this result to other subclasses of PTSs called semi-full and full.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Some partial solutions

Early attempts to prove such an equivalence did not aim at the
whole generality of PTSs, and were based on the construction of a
model [Geuvers93,Goguen94].
A first syntactical criterion was shown for a subclass of PTSs
[Adams06] called functional PTSs, by adding annotations inside
the syntax of terms.

By using the same intermediate system, Herbelin and I extended
this result to other subclasses of PTSs called semi-full and full.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Some partial solutions

Early attempts to prove such an equivalence did not aim at the
whole generality of PTSs, and were based on the construction of a
model [Geuvers93,Goguen94].
A first syntactical criterion was shown for a subclass of PTSs
[Adams06] called functional PTSs, by adding annotations inside
the syntax of terms.
By using the same intermediate system, Herbelin and I extended
this result to other subclasses of PTSs called semi-full and full.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Extension of the TPOSR solution

Adams introduced an additional annotation inside the applications:
M,N,A,B ::= x | λxA.M | M(x)B N | ΠxA.B | s

Also, its system called Typed Parallel One Step Reduction is no longer
based on equality but on reduction:

Γ ` M B N : A Γ ` A ∼= B : s
Γ ` M B N : B

Γ ` A B A′ : s Γ, x : A ` B B B′ : t
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A (s, t ,u) ∈ Rel

Γ ` (λxA.M)(x)BN B M ′[N ′/x] : B[N/x]

V. Siles, GU-Chalmers Pure Type Systems Conversion

Extension of the TPOSR solution

Adams introduced an additional annotation inside the applications:
M,N,A,B ::= x | λxA.M | M(x)B N | ΠxA.B | s

Also, its system called Typed Parallel One Step Reduction is no longer
based on equality but on reduction:

Γ ` M B N : A Γ ` A ∼= B : s
Γ ` M B N : B

Γ ` A B A′ : s Γ, x : A ` B B B′ : t
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A (s, t ,u) ∈ Rel

Γ ` (λxA.M)(x)BN B M ′[N ′/x] : B[N/x]

V. Siles, GU-Chalmers Pure Type Systems Conversion

Summary of the proof

PTS PTSe

TPOSR
V. Siles, GU-Chalmers Pure Type Systems Conversion

Summary of the proof

PTS PTSe

TPOSR
V. Siles, GU-Chalmers Pure Type Systems Conversion

Summary of the proof

PTS PTSe

TPOSR
V. Siles, GU-Chalmers Pure Type Systems Conversion

Summary of the proof

PTS PTSe

TPOSR
V. Siles, GU-Chalmers Pure Type Systems Conversion

Road map to a proof of equivalence

The idea is to prove that:
TPOSR’s equality is Confluent.
TPOSR’s equality has Injectivity of Π-types.
TPOSR has Subject-Reduction.
TPOSR is equivalent to PTS and PTSe.

⇑
tricky part

V. Siles, GU-Chalmers Pure Type Systems Conversion

Road map to a proof of equivalence

The idea is to prove that:
TPOSR’s equality is Confluent.
TPOSR’s equality has Injectivity of Π-types.
TPOSR has Subject-Reduction.
TPOSR is equivalent to PTS and PTSe.

⇑
tricky part

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS with Annotated Typed Reduction

To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.
And we have to change the typing rule to deal with this new
annotation:

. . .
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS with Annotated Typed Reduction

To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.

And we have to change the typing rule to deal with this new
annotation:

. . .
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS with Annotated Typed Reduction

To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.
And we have to change the typing rule to deal with this new
annotation:

. . .
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS with Annotated Typed Reduction

To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.
And we have to change the typing rule to deal with this new
annotation:

. . . Γ ` A ∼= A′ : s
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, GU-Chalmers Pure Type Systems Conversion

PTS with Annotated Typed Reduction

To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.
And we have to change the typing rule to deal with this new
annotation:

. . . Γ ` A0 B
+ A : s Γ ` A0 B

+ A′ : s
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, GU-Chalmers Pure Type Systems Conversion

Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.

M

N P

Q

V. Siles, GU-Chalmers Pure Type Systems Conversion

Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.

Γ ` MN : ΠxA.B ⇒ ∃C,∃D,

Γ ` M : ΠxC .D ∧ ΠxA.B =β ΠxC .D

V. Siles, GU-Chalmers Pure Type Systems Conversion

Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.

Γ `e MN : ΠxA.B ⇒ ∃C, ∃D,

Γ `e M : ΠxC .D ∧ Γ `e ΠxA.B =β ΠxC .D

V. Siles, GU-Chalmers Pure Type Systems Conversion

Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.

Γ ` MΠxA.BN B M ′
ΠxA′ .B′N

′ : B[N/x]⇒

Γ ` M B M ′ : ΠxA.B

V. Siles, GU-Chalmers Pure Type Systems Conversion

Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.

As a direct consequence:

Π-Injectivity for PTSatr

If Γ ` ΠxA.B ∼= ΠxC .D then Γ ` A ∼= C and Γ, x : A ` B ∼= D.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Typed Subject Reduction and annotations

As we said before, the key point of the equivalence is the Subject
Reduction of the typed system:

Subject Reduction for PTSatr

If Γ ` M B P : T and M →β N then Γ ` M B+ N : T .

The proof is almost the same as the usual one for PTSs. Some
additional work is required for the β case: we need to provide the A0
that links both annotations.

. . . Γ ` A0 B
+ A : s Γ ` A0 B

+ A′ : s

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, GU-Chalmers Pure Type Systems Conversion

Typed Subject Reduction and annotations

As we said before, the key point of the equivalence is the Subject
Reduction of the typed system:

Subject Reduction for PTSatr

If Γ ` M B P : T and M →β N then Γ ` M B+ N : T .

The proof is almost the same as the usual one for PTSs. Some
additional work is required for the β case: we need to provide the A0
that links both annotations.

. . . Γ ` A0 B
+ A : s Γ ` A0 B

+ A′ : s

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, GU-Chalmers Pure Type Systems Conversion

Typed Subject Reduction and annotations

As we said before, the key point of the equivalence is the Subject
Reduction of the typed system:

Subject Reduction for PTSatr

If Γ ` M B P : T and M →β N then Γ ` M B+ N : T .

The proof is almost the same as the usual one for PTSs. Some
additional work is required for the β case: we need to provide the A0
that links both annotations.

. . . Γ ` A0 B
+ A : s Γ ` A0 B

+ A′ : s

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x] : B[N/x]

V. Siles, GU-Chalmers Pure Type Systems Conversion

Equivalence between PTSs and PTSatr

It is easy to translate a PTSatr judgment into PTSs (same kind of
erasure than PTSe).

However, from usual PTSs, we need to compute the additional
annotations needed by PTSatr :

From PTS to PTSatr

If Γ ` M : T , then there is Γ∗,M∗ and T ∗ such that Γ∗ ` M∗ B M∗ : T ∗,
where |Γ∗| ≡ Γ, |M∗| ≡ M and |T ∗| ≡ T .

How do we compute the valid Γ∗,M∗ and T ∗ ?.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Equivalence between PTSs and PTSatr

It is easy to translate a PTSatr judgment into PTSs (same kind of
erasure than PTSe).
However, from usual PTSs, we need to compute the additional
annotations needed by PTSatr :

From PTS to PTSatr

If Γ ` M : T , then there is Γ∗,M∗ and T ∗ such that Γ∗ ` M∗ B M∗ : T ∗,
where |Γ∗| ≡ Γ, |M∗| ≡ M and |T ∗| ≡ T .

How do we compute the valid Γ∗,M∗ and T ∗ ?.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Equivalence between PTSs and PTSatr

It is easy to translate a PTSatr judgment into PTSs (same kind of
erasure than PTSe).
However, from usual PTSs, we need to compute the additional
annotations needed by PTSatr :

From PTS to PTSatr

If Γ ` M : T , then there is Γ∗,M∗ and T ∗ such that Γ∗ ` M∗ B M∗ : T ∗,
where |Γ∗| ≡ Γ, |M∗| ≡ M and |T ∗| ≡ T .

How do we compute the valid Γ∗,M∗ and T ∗ ?.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Equivalence between PTSs and PTSatr

It is easy to translate a PTSatr judgment into PTSs (same kind of
erasure than PTSe).
However, from usual PTSs, we need to compute the additional
annotations needed by PTSatr :

From PTS to PTSatr

If Γ ` M : T , then there is Γ∗,M∗ and T ∗ such that Γ∗ ` M∗ B M∗ : T ∗,
where |Γ∗| ≡ Γ, |M∗| ≡ M and |T ∗| ≡ T .

How do we compute the valid Γ∗,M∗ and T ∗ ?.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Annotations and Typing

The proof is done by induction:

Γ ` A : s Γ, x : A ` B : t (s, t ,u) ∈ Rel

Γ ` ΠxA.B : u

By induction, we have:

Γ1,A1 such that Γ1 ` A1 B A1 : s, |Γ1| ≡ Γ and |A1| ≡ A.
Γ2,A2 and B2 such that Γ2, x : A2 ` B2 B B2 : t , |Γ2| ≡ Γ, |A2| ≡ A
and |B2| ≡ B.
We need a way to glue things together:

Erased Conversion
If |A| ≡ |B|, and if A and B are well-formed types in PTSatr , then
Γ ` A ∼= B.

The proof of this lemma is very technical, and the most difficult
proof of my thesis.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Annotations and Typing

The proof is done by induction:

Γ ` A : s Γ, x : A ` B : t (s, t ,u) ∈ Rel

Γ ` ΠxA.B : u

By induction, we have:

Γ1,A1 such that Γ1 ` A1 B A1 : s, |Γ1| ≡ Γ and |A1| ≡ A.

Γ2,A2 and B2 such that Γ2, x : A2 ` B2 B B2 : t , |Γ2| ≡ Γ, |A2| ≡ A
and |B2| ≡ B.
We need a way to glue things together:

Erased Conversion
If |A| ≡ |B|, and if A and B are well-formed types in PTSatr , then
Γ ` A ∼= B.

The proof of this lemma is very technical, and the most difficult
proof of my thesis.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Annotations and Typing

The proof is done by induction:

Γ ` A : s Γ, x : A ` B : t (s, t ,u) ∈ Rel

Γ ` ΠxA.B : u

By induction, we have:

Γ1,A1 such that Γ1 ` A1 B A1 : s, |Γ1| ≡ Γ and |A1| ≡ A.
Γ2,A2 and B2 such that Γ2, x : A2 ` B2 B B2 : t , |Γ2| ≡ Γ, |A2| ≡ A
and |B2| ≡ B.

We need a way to glue things together:

Erased Conversion
If |A| ≡ |B|, and if A and B are well-formed types in PTSatr , then
Γ ` A ∼= B.

The proof of this lemma is very technical, and the most difficult
proof of my thesis.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Annotations and Typing

The proof is done by induction:

Γ ` A : s Γ, x : A ` B : t (s, t ,u) ∈ Rel

Γ ` ΠxA.B : u

By induction, we have:

Γ1,A1 such that Γ1 ` A1 B A1 : s, |Γ1| ≡ Γ and |A1| ≡ A.
Γ2,A2 and B2 such that Γ2, x : A2 ` B2 B B2 : t , |Γ2| ≡ Γ, |A2| ≡ A
and |B2| ≡ B.
We need a way to glue things together:

Erased Conversion
If |A| ≡ |B|, and if A and B are well-formed types in PTSatr , then
Γ ` A ∼= B.

The proof of this lemma is very technical, and the most difficult
proof of my thesis.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Complete Equivalence

PTS PTSe

PTSatr
V. Siles, GU-Chalmers Pure Type Systems Conversion

Consequences of the equivalence

Complete Equivalence:
Γ `e M : T iff Γ ` M : T
Γ `e M =β N : T iff Γ ` M : T , Γ ` N : T and M =β N
Γwf iff Γwfe

Proving Subject Reduction for PTSe is now trivial:
If Γ `e M : T and M →β N, then Γ ` M : T .
By Subject Reduction in PTS, Γ ` N : T , so Γ `e N : T .
Once again, by equivalence, Γ `e M =β N : T .

Corollary: Weak Π-Injectivity

If Γ `e ΠxA.B =β ΠxC .D then Γ `e A =β C and Γ, x : A `e B =β D.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Consequences of the equivalence

Complete Equivalence:
Γ `e M : T iff Γ ` M : T
Γ `e M =β N : T iff Γ ` M : T , Γ ` N : T and M =β N
Γwf iff Γwfe

Proving Subject Reduction for PTSe is now trivial:
If Γ `e M : T and M →β N, then Γ ` M : T .
By Subject Reduction in PTS, Γ ` N : T , so Γ `e N : T .
Once again, by equivalence, Γ `e M =β N : T .

Corollary: Weak Π-Injectivity

If Γ `e ΠxA.B =β ΠxC .D then Γ `e A =β C and Γ, x : A `e B =β D.

V. Siles, GU-Chalmers Pure Type Systems Conversion

Consequences of the equivalence

Complete Equivalence:
Γ `e M : T iff Γ ` M : T
Γ `e M =β N : T iff Γ ` M : T , Γ ` N : T and M =β N
Γwf iff Γwfe

Proving Subject Reduction for PTSe is now trivial:
If Γ `e M : T and M →β N, then Γ ` M : T .
By Subject Reduction in PTS, Γ ` N : T , so Γ `e N : T .
Once again, by equivalence, Γ `e M =β N : T .

Corollary: Weak Π-Injectivity

If Γ `e ΠxA.B =β ΠxC .D then Γ `e A =β C and Γ, x : A `e B =β D.

V. Siles, GU-Chalmers Pure Type Systems Conversion

By the way

Formalizing such theorem in a proof assistant has proved to be quite
helpfull (if not mandatory):

You do the non-interesting things once (handling binders,
weakening, substitution,. . .)
So you can only focus on the interesting (design a new system,
adapt proofs,. . .)

Proved in
Coq

V. Siles, GU-Chalmers Pure Type Systems Conversion

By the way

Formalizing such theorem in a proof assistant has proved to be quite
helpfull (if not mandatory):

You do the non-interesting things once (handling binders,
weakening, substitution,. . .)
So you can only focus on the interesting (design a new system,
adapt proofs,. . .)

Proved in
Coq

V. Siles, GU-Chalmers Pure Type Systems Conversion

Conclusion

What to bring home:
+ PTS and PTSe are equivalent: you can choose what’s best for you.
- The proof of equivalence is completely syntactic and (I think) too

complex.
- Trying to extend the system (e.g. with subtyping of sorts,
η-conversion, . . .) will certainly break the proof: it doesn’t scale
nicely.

+ Doing proofs within a proof assistant can save you a lot of time
when trying to define new systems whose syntax is not clear yet.

That’s all folks, thank you for your time !

V. Siles, GU-Chalmers Pure Type Systems Conversion

Conclusion

What to bring home:
+ PTS and PTSe are equivalent: you can choose what’s best for you.
- The proof of equivalence is completely syntactic and (I think) too

complex.
- Trying to extend the system (e.g. with subtyping of sorts,
η-conversion, . . .) will certainly break the proof: it doesn’t scale
nicely.

+ Doing proofs within a proof assistant can save you a lot of time
when trying to define new systems whose syntax is not clear yet.

That’s all folks, thank you for your time !

V. Siles, GU-Chalmers Pure Type Systems Conversion

	Pure Type Systems
	Equivalence and Typed Reduction
	Proof formalization

