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Simply Typed λ-Calculus

M,N ::= x | λxA.M | M N
A,B ::= a | A→ B

Γ ::= ∅ | Γ, x : A

Γ(x) = A
Γ ` x : A

Γ, x : A ` M : B

Γ ` λxA.M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` M N : B

id A == λxA.x : A→ A
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System-F

M,N ::= x | λxA.M | M N | Λa.M | M A
A,B ::= a | A→ B | ∀a,B

Γ ::= ∅ | Γ, x : A

Γ(x) = A
Γ ` x : A

Γ, x : A ` M : B

Γ ` λxA.M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` M N : B

Γ ` M : B
Γ ` Λa.M : ∀,a B

Γ ` M : ∀A,B
Γ ` M A : B[A/a]

id == ΛA.λxA.x : ∀A,A→ A
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Calculus of Constructions

M,N,A,B ::= Prop | Type | x | λxA.M | M N | Πx : A.B
Γ ::= ∅ | Γ, x : A

. . .
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1 Pure Type Systems

2 Equivalence and Typed Reduction

3 Proof formalization
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Pure Type Systems

Pure Type Systems have been built to unify all these different
presentations in a single system:

M,N,A,B ::= x | λxA.M | M N | ΠxA.B | s
Γ ::= ∅ | Γ, x : A

PTSs are an abstraction of Barendregt’s λ-cube, presented
independently by Berardi and Terlouw.
To be able to deal with all the different type systems, PTSs have
parameters that describe which type is valid: Sorts,Ax and Rel .
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Typing Rules

∅wf

Γ ` A : s x /∈ Dom(Γ)

(Γ, x : A)wf

Γwf (s, t) ∈ Ax
Γ ` s : t

Γwf Γ(x) = A
Γ ` x : A

Γ ` A : s Γ, x : A ` B : t
(s, t ,u) ∈ Rel Γ, x : A ` M : B

Γ ` λxA.M : ΠxA.B

Γ ` A : s Γ, x : A ` B : t (s, t ,u) ∈ Rel

Γ ` ΠxA.B : u

Γ ` M : ΠxA.B Γ ` N : A
Γ ` MN : B[N/x ]

Γ ` M : A A
β
≡ B Γ ` B : s

Γ ` M : B
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Difference with STLC

STLC PTS

Γ, x : A ` M : B

Γ ` λxA.M : A→ B ⇒
Γ ` ΠxA.B : s Γ, x : A ` M : B

Γ ` λxA.M : ΠxA.B

Γ ` M : A→ B Γ ` N : A
Γ ` M N : B ⇒

Γ ` M : ΠxA.B Γ ` N : A
Γ ` M N : B[N/x ]

Γ ` M : A A =β B Γ ` B : s
Γ ` M : B

CONV
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Why a conversion rule ?

Let’s consider the type of lists of N of length n: list n.

What is the result and the type of concat l l ?
Πnnat .Πmnat. list n→ list m→ list (n + m)

l = [1,3,5,7] : list 4
concat 4 4 l l =β [1,3,5,7,1,3,5,7] : list (4+4)

The conversion rule is here to compute at the level of types and
change list (4+4) into list 8.
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Facts about PTSs

For example:

Type Correctness
If Γ ` M : T then there is s ∈ Sorts such that T ≡ s or Γ ` T : s.

A more complex one:

Subject Reduction
If Γ ` M : T and M →β M ′ then Γ ` M ′ : T .
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Π-injectivity

The proof of Subject-Reduction relies on the following property:

Injectivity of products

If ΠxA.B =β ΠxC .D then A =β C and B =β D.

Proof.
By Confluence of β-reduction, there is M such that ΠxA.B �β M and
ΠxC .D �β M. By definition of�β, this implies that M is of the shape
ΠxK .L and that A�β K , C �β K , B �β L and D �β L.
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Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

Γ ` M : A A =β B Γ ` B : s
Γ ` M : B (λxA′

.P) Q =β P[Q/x ]
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Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

Let’s consider P to be the following proof of Γ ` M : B.

P1 P2 P3
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Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

By Confluence:

P1 P3P'2 P"2
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Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

By Type Correctness and Subject Reduction:

P1

P3

P'2

P"2
SR
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Untyped conversion considered harmful ?

What if the path between A and B is “ill-typed” ?

But Subject Reduction introduces new harmful conversions:

P1

P3

P'2

P"2

SR
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PTS with typed equality (PTSe)

To avoid this possibility, we can type every step of the conversion.
They are called semantical PTSs or PTSs with typed
equality [Geuvers93]. We have now two typing judgments:

One for terms: Γ `e M : T
One for equalities: Γ `e M =β N : T
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PTS with typed equality (PTSe)

To avoid this possibility, we can type every step of the conversion.
They are called semantical PTSs or PTSs with typed
equality [Geuvers93]. We have now two typing judgments:

One for terms: Γ `e M : T
One for equalities: Γ `e M =β N : T
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PTS with typed equality

Untyped β-equality is quite “small”:

(λxA.M) N =β M[N/x ]

A =β A′ M =β M ′

λxA.M =β λxA′
.M ′
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PTS with typed equality

Typed β-equality is notably “bigger”:

Γ, x : A `e M : B Γ `e N : A
Γ `e A : s Γ, x : A `e B : t (s, t ,u) ∈ Rel

Γ `e (λxA.M)N =β M[N/x ] : B[N/x ]

Γ `e A =β A′ : s Γ, x : A `e M =β M ′ : B
Γ, x : A `e B : t (s, t ,u) ∈ Rel

Γ `e λxA.M =β λxA′
.M ′ : ΠxA.B
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Facts about PTSe

Almost all the properties that we know about PTSs are easily proved
valid for PTSe, and there are new ones:

Left-hand/Right-hand reflexivity
If Γ `e M =β N : T then Γ `e M : T and Γ `e N : T .

However, Subject Reduction is really troublesome to prove:

Typed Subject Reduction:
If Γ `e M : T and M →β N, then Γ `e M =β N : T .
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Back to the old proof

To prove Subject-Reduction for PTS, we relied on Confluence, and
more precisely on Π-injectivity. Now that we have a typed equality, we
need a typed version of this injectivity property.

Proving it for PTSe is a difficult problem since we can’t do it in the
same way as PTS: the proof would rely on (typed) Confluence,

which
relies on Subject Reduction, which relies on Π-Injectivity, which relies on ...
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Back to the old proof

To prove Subject-Reduction for PTS, we relied on Confluence, and
more precisely on Π-injectivity. Now that we have a typed equality, we
need a typed version of this injectivity property.

Proving it for PTSe is a difficult problem since we can’t do it in the
same way as PTS: the proof would rely on (typed) Confluence, which
relies on Subject Reduction, which relies on Π-Injectivity, which relies on ...

Non-fact: Strong Π-injectivity

If Γ `e ΠxA.B =β ΠxC .D : u, then there are s, t such that
(s, t ,u) ∈ Rel , Γ `e A =β C : s and Γ, x : A `e B =β D : t .
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Back to the old proof

To prove Subject-Reduction for PTS, we relied on Confluence, and
more precisely on Π-injectivity. Now that we have a typed equality, we
need a typed version of this injectivity property.

Proving it for PTSe is a difficult problem since we can’t do it in the
same way as PTS: the proof would rely on (typed) Confluence, which
relies on Subject Reduction, which relies on Π-Injectivity, which relies on ...

We do not know any direct proof of this fact in a direct manner.
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Another kind of equality

Some presentations of programming languages and type theories
based on the work of Martin-Löf are using another form of equality:

The equality for terms is the same : Γ `e M =β N : T .
The equality for types is weaker : Γ `e A =β B.

If we assume that this equality enjoys Π-injectivity, then it is enough to
prove Subject Reduction for PTSe. Sadly, there is also no known proof
of this fact at the moment.
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Is there another way to prove it ?

Another way to prove Subject Reduction for PTSe would be to use the
Subject Reduction we have for PTSs. We need to prove some kind of
equivalence between both systems.

A more practical reason why we are looking for this equivalence is
about proof assistants. Usually, the implementation is done with an
untyped equality, whereas the consistency proof is done with a typed
equality. Such an equivalence would bring closer the implementation
from its theory.
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The Big Question

Are PTSs and PTSe the
same systems ?

[Geuvers93]
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Easy part of the equivalence

We prove by mutual induction that
If Γ `e M : T then Γ ` M : T .
If Γ `e M =β N : T then Γ ` M : T , Γ ` N : T and M =β N.
If Γwfe then Γwf .

Here we just “lose” some information, nothing difficult.
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Difficult part of the equivalence

The other way around needs a way to “type” a β-equivalence into a
judgmental equality:

If Γ ` M : T then Γ `e M : T .
If Γ ` M : T , Γ ` N : T and M =β N then Γ `e M =β N : T .
If Γwf then Γwfe .

Here, we need to find a way to type all the intermediate steps.

But can we ?
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The Big Answer

YES

[Siles 2010]

but its quite complex and not really intuitive.
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PTS→ PTSe: How do we do this ?

Γ ` M : T M =β N Γ ` N : T

P is well-typed in PTS by Subject Reduction.
Is P well-typed in PTSe ?
How do we type M =β P and N =β P in PTSe ?
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Some partial solutions

Early attempts to prove such an equivalence did not aim at the
whole generality of PTSs, and were based on the construction of a
model [Geuvers93,Goguen94].

A first syntactical criterion was shown for a subclass of PTSs
[Adams06] called functional PTSs, by adding annotations inside
the syntax of terms.
By using the same intermediate system, Herbelin and I extended
this result to other subclasses of PTSs called semi-full and full.
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Extension of the TPOSR solution

Adams introduced an additional annotation inside the applications:
M,N,A,B ::= x | λxA.M | M(x)B N | ΠxA.B | s

Also, its system called Typed Parallel One Step Reduction is no longer
based on equality but on reduction:

Γ ` M B N : A Γ ` A ∼= B : s
Γ ` M B N : B

Γ ` A B A′ : s Γ, x : A ` B B B′ : t
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A (s, t ,u) ∈ Rel

Γ ` (λxA.M)(x)BN B M ′[N ′/x ] : B[N/x ]
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Road map to a proof of equivalence

The idea is to prove that:
TPOSR’s equality is Confluent.
TPOSR’s equality has Injectivity of Π-types.
TPOSR has Subject-Reduction.
TPOSR is equivalent to PTS and PTSe.

⇑
tricky part
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PTS with Annotated Typed Reduction

To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.
And we have to change the typing rule to deal with this new
annotation:

. . .
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x ] : B[N/x ]
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To achieve the equivalence for all PTSs, we need to improve TPOSR.
The idea came from [Streicher91], but was used for completeness
results.

Our idea is to extend the annotation on application: MΠxA.B N.
And we have to change the typing rule to deal with this new
annotation:

. . . Γ ` A0 B
+ A : s Γ ` A0 B

+ A′ : s
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A
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Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.
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Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.

Γ ` MN : ΠxA.B ⇒ ∃C,∃D,

Γ ` M : ΠxC .D ∧ ΠxA.B =β ΠxC .D
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Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.

Γ ` MΠxA.BN B M ′
ΠxA′ .B′N

′ : B[N/x ]⇒

Γ ` M B M ′ : ΠxA.B
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Typed Confluence and Injectivity

Diamond property for PTSatr

If Γ ` M B N : A and Γ ` M B P : B then there is Q such that
Γ ` N B Q : A,B and Γ ` P B Q : A,B.

As a direct consequence:

Π-Injectivity for PTSatr

If Γ ` ΠxA.B ∼= ΠxC .D then Γ ` A ∼= C and Γ, x : A ` B ∼= D.
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Typed Subject Reduction and annotations

As we said before, the key point of the equivalence is the Subject
Reduction of the typed system:

Subject Reduction for PTSatr

If Γ ` M B P : T and M →β N then Γ ` M B+ N : T .

The proof is almost the same as the usual one for PTSs. Some
additional work is required for the β case: we need to provide the A0
that links both annotations.

. . . Γ ` A0 B
+ A : s Γ ` A0 B

+ A′ : s

Γ ` (λxA.M)ΠxA′ .BN B M ′[N ′/x ] : B[N/x ]
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Equivalence between PTSs and PTSatr

It is easy to translate a PTSatr judgment into PTSs (same kind of
erasure than PTSe).

However, from usual PTSs, we need to compute the additional
annotations needed by PTSatr :

From PTS to PTSatr

If Γ ` M : T , then there is Γ∗,M∗ and T ∗ such that Γ∗ ` M∗ B M∗ : T ∗,
where |Γ∗| ≡ Γ, |M∗| ≡ M and |T ∗| ≡ T .

How do we compute the valid Γ∗,M∗ and T ∗ ?.
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Annotations and Typing

The proof is done by induction:

Γ ` A : s Γ, x : A ` B : t (s, t ,u) ∈ Rel

Γ ` ΠxA.B : u

By induction, we have:

Γ1,A1 such that Γ1 ` A1 B A1 : s, |Γ1| ≡ Γ and |A1| ≡ A.
Γ2,A2 and B2 such that Γ2, x : A2 ` B2 B B2 : t , |Γ2| ≡ Γ, |A2| ≡ A
and |B2| ≡ B.
We need a way to glue things together:

Erased Conversion
If |A| ≡ |B|, and if A and B are well-formed types in PTSatr , then
Γ ` A ∼= B.

The proof of this lemma is very technical, and the most difficult
proof of my thesis.
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Complete Equivalence

PTS PTSe

PTSatr
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Consequences of the equivalence

Complete Equivalence:
Γ `e M : T iff Γ ` M : T
Γ `e M =β N : T iff Γ ` M : T , Γ ` N : T and M =β N
Γwf iff Γwfe

Proving Subject Reduction for PTSe is now trivial:
If Γ `e M : T and M →β N, then Γ ` M : T .
By Subject Reduction in PTS, Γ ` N : T , so Γ `e N : T .
Once again, by equivalence, Γ `e M =β N : T .

Corollary: Weak Π-Injectivity

If Γ `e ΠxA.B =β ΠxC .D then Γ `e A =β C and Γ, x : A `e B =β D.
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By the way

Formalizing such theorem in a proof assistant has proved to be quite
helpfull (if not mandatory):

You do the non-interesting things once (handling binders,
weakening, substitution,. . . )
So you can only focus on the interesting (design a new system,
adapt proofs,. . . )

Proved in
Coq
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Conclusion

What to bring home:
+ PTS and PTSe are equivalent: you can choose what’s best for you.
- The proof of equivalence is completely syntactic and (I think) too

complex.
- Trying to extend the system (e.g. with subtyping of sorts,
η-conversion, . . . ) will certainly break the proof: it doesn’t scale
nicely.

+ Doing proofs within a proof assistant can save you a lot of time
when trying to define new systems whose syntax is not clear yet.

That’s all folks, thank you for your time !
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